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Let X, ,< -+ <X, , be the order statistics of » independent and
identically distributed random variables and let m, and k, be positive
integers such that m, - o, k, > 0, m,/n - 0 and k,/n - 0 as n > .
We find a necessary and sufficient condition for the existence of normalizing
and centering constants A, > 0 and B, such that the sequence

n—k,
Tn = A;l{ Z Xi,n - Bn}

i=m,+1

is stochastically compact and completely describe the possible subsequential
limiting distributions. We also give a necessary and sufficient condition for
the existence of A, and B, such that T), is asymptotically normal. A variant
of Stigler’s theorem when m,/n — a and k,/n - 1 — B, where 0 < a <
B < 1, is also obtained as a by-product.

1. Introduction and statements of results. Let X, X, X,,... be a se-
quence of independent nondegenerate random variables with a common (right-
continuous) distribution function F and for each integer n > 1 let X . <

< X, , denote the order statistics based on the sample X,,..., X,. The
asymptotic behavior of trimmed sums of X,..., X, has been investigated by a
large number of authors. A trimmed sum may be obtained by excluding either a
fixed or a growing number of the smallest and largest order statistics from the
sum X, + --- + X, at each stage n, or by discarding either a fixed or a growing
number of extreme terms largest in absolute value. Sometimes extreme values of
truncated summands are thrown away. Results on the asymptotic distribution of
trimmed sums have been obtained by Darling (1952), Arov and Bobrov (1960),
Stigler (1973), Hall (1978), Teugels (1981), Maller (1982), Mori (1984), M. Csorgé,
S. Csorgd, Horvath and Mason (CsCsHM) (1986b), S. Csorgd, Horvath and
Mason (1986), Kuelbs and Ledoux (1987), Pruitt (1985) and Hahn and Kuelbs
(1985).
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Introduce the inverse or quantile function @ of F defined as
Q(s) = inf{x: F(x) >s}, 0<s<lI; Q(0) = Q(0 +),

and for 0 < s <1 — £ < 1 consider the truncated mean and variance functions

M(s,1-t) = fsl_tQ(u) du,

o%(s,1—-t)= fl_tfl_t(u Av—u)dQ(u)dQ(v),

S S

where u A v = min(u, v), u V v = max(u, v). Let m, and &, be any sequences
of integers satisfying

(11) 0<m,<n—-k,<n,m,— oo, k,—> oo,m,/n—0and k,/n - 0.

One of the problems that we are going to consider is when the following
central limit theorem (1.2) holds:

n—k,
Y N Z Xi n_ p‘n(mn’ kn) - N(071)’
an(mn’ kn) i=m,+1 ' ?

(1.2)
where p,(m,, k,) = nM(m,/n,1 = k,/n), a(m,, k,) = n’o(m,/n,1 -
k,/n) and where —, denotes convergence in distribution and N(0,1) is a
standard normal random variable. (Here and elsewhere in this paper, unless
otherwise specified, all limit relations are assumed to hold as n — oo, or an
unspecified convergence statement will hold along a subsequence of the positive
integers.) When F is in the domain of attraction of a nondegenerate stable or
normal law, (1.2) was shown by S. Csorgd, Horvath and Mason (1986) when
m, = k,. It was remarked in that paper that the same methods could be used to
show (1.2) in this case when m, # k, (perhaps by assuming some additional
regularity conditions on F). The aim of the present paper is to give an
exhaustive study of the problem of asymptotic distribution for arbitrary F of
sums of the form

n—k,
Xi,n'
i=m,+1

With the exception of Theorem 5 and its proof, throughout the present
section and Section 2, which contains the proofs, two sequences of positive
integers m, and k, will be fixed so that they satisfy (1.1). Therefore in the
notation we may drop the dependence on m, and k&, for convenience. Besides
the already introduced quantities a, = a,(m,, k,), 1, = p(m,, k,), we need
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the following notation:

m,\V2( (m mY/? m,
{2 o) o) o
n n n n
mv/2 mY2
- ; <c< ; ,
¥y, 4(¢) = m\/? m\/2
\Ifl,n(— 2 ), -0 <c< — g
mv/? mv/2
¥, n( ! ), <c< oo,
’ 2
k,\ 12 R, RV k
(—") {Q(l——"+c . )—Q(l——”)} b,,
n n n n
B2 B2
Ty ses Ty
‘1'2,11(0) = k1/2 k1/2
q’2,n(_—2 ), —2 <c¢< oo,
B2 B2
\Ifz,n(— 2 ), -0 <c< — 5
m,\V% c1_p,, |
roa==(22) " [ - ) dQs) /b,
n m,/n
kn 172 1-k,/n
S "5 dQ(s)/b,,
r2,n (n) ‘/;n"/n s Q(S)/ n

m, 1 m, 1
%n = (7’5)/”n=°(7’§)/°

1 k, 1 n m, k,
“2,n=°(§’1‘7)/”n= (5’1‘7 /"(7’1—7)'

For large enough n the functions ¥, , and ¥, , are obviously well defined,
nondecreasing and left-continuous on R.

From the technical point of view, our most important results are contained in
the following two theorems.

THEOREM 1. Assume that there exists a subsequence {n’} of the positive
integers such that for two nondecreasing left-continuous real-valued functions
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¥, and ¥, with ¥,(0) = ¥,(0) = 0, we have
(1.3) ¥, w(€) = ¥(c),

at every continuity point c € R of ¥, for i = 1,2. Assume further that there
exist (necessarily) nonpositive constants r, and r, such that

(1.4) Iy .o r, fori=1,2.
Then, necessarily, ¥,(c) < —r, and ¥y(c) > r, for all ¢, and
1 n ke |

Ry Se— X o —u, k., V, = v,V

an,(mn,’ kn') {i=”§+1 i,n ”"n(mn’ n)} 9 V1 Vl( 1 2)’
where

-z 0
Vi= V¥, %) = T2+ ) d%(x) + 2+ [0 (2 + 2) d¥y(x),
T L

where (Z,,Z, Z,) is a trivariate normal random vector with mean vector zero
and covariance matrix

1 r, 0
(1.5) S=|rn 1 nj.
0 np 1

Moreover, if Var(X ) = oo, and for some positive constants o, and o, (neces-
sarily satisfying o + 02 = 1), we have

(1.6) 0, =0, fori=1,2,

then Z can be written as the sum of two independent normal random variables
W, and W,, W, =, N(0,0?) for i=1,2, such that the vectors (Z,, W,) and
(Z,, W,) are independent.

THEOREM 2. Assume that there exists a subsequence {n'} of the positive
integers such that for some c,

(17) ¥, ()] — o0
or
(1.8) 1%, u(e)] > oo.

Furthermore, assume that there exists a sequence of positive constants A, such
that for two nondecreasing left-continuous real-valued functions ¥* and ¥V on
R with ¥*(0) = ¥;*(0) = 0, we have

(1'9) (an’/An’)\Pi,n'(t) - ‘I't*(t)’
at every continuity point t of ¥* for i = 1,2. Then, necessarily, ¥*(c) = 0 and
Y*(—c) =0 forallc> 0, and

1 n'
A E Xl,n' - p’n’(mn’7 kn') 9 V; = ‘/2(\1,1*’ \I,2*)’

An' i=m,+1
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where, with independent standard normal random variables Z, and Z,,
Vy = VoW, ) = [(2, + 2) d¥(x) + [° (2, + %) d¥p(a).
0 -2z,

In Section 3, it is remarked that when Var(X) < oo, the functions ¥, and ¥,
appearing in V| are identically equal to zero. Also by Proposition 1 in the
Appendix, the limiting random variable V] in the second part of the statement of
Theorem 1 is a normal random variable if and only if both ¥, and ¥, are
identically equal to zero, and V, is never a nondegenerate normal random
variable. Examples will be given in Section 3 showing that, in fact, it is possible
for the limiting random variables V; and V, to be nondegenerate and nonnormal
along subsequences of the positive integers.

We can now state our two main results concerning the stochastic compactness
and asymptotic normality of trimmed sums. The sufficiency parts of these results
are more or less straightforward corollaries to the previous technical theorems.

We say that a sequence of random variables is stochastically compact if every
subsequence contains a subsequence that converges in distribution to a nonde-
generate random variable.

THEOREM 3. Let {m,} and {k,} be any two sequences of positive integers
satisfying (1.1). Then there exist sequences of normalizing and centering con-
stants A, > 0 and B, such that the sequence of random variables

n—k,

o ol 5 5mn)
t=m,+1
is stochastically compact if and only if there exists a sequence of positive
constants C, such that for every subsequence {n’} of the positive integers there
exists a further subsequence {n"’} of {n'} satisfying
a,.

(1.11) 0< lim —— <o

n" - o0 'n’”’
and that for appropriate nondecreasing left-continuous real-valued functions ¥*
and Y defined on R and depending on {n"},

(1.12) lim —=¥, ..(c) = ¥*(c),
n" -0 C

at every continuity point ¢ of ¥* for i = 1,2, where at least one of the ¥},
i = 1,2, is not identically equal to zero when the limit in (1.11) is equal to zero.
In this case, A, can be chosen to be C, and B, to be p.,, n > 1. Furthermore,
when the sequence of random variables given in (1.10) is stochastically compact,
all subsequential limiting random variables are affine transforms of random
variables of the form of Vi (¥*, ¥;*) or Vy(¥*, ¥;*) of Theorems 1 and 2.

The nature of Theorem 3 being rather exhaustive, the given necessary and
sufficient conditions may seem somewhat complicated. It will be clear from the
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proof of this theorem that a simple sufficient condition for the existence of {A,}
and {B,} to make the sequence in (1.10) stochastically compact is

(1.13) limsup|¥, ,(c)| < oo, foralle, i=1,2.

n—oo

In this case A, can be chosen to be a, and B, to be p,, n > 1. In fact, if we
restrict ourselves to these “natural” normalizing and centering constants a, =
a,(m,, k,) and p, = p,(m,, k,), then the sequence of random variables on the
left-hand side of (1.2) is stochastically compact if and only if condition (1.13)
holds.

However, turning to the problem of the characterization of the asymptotic
normality of trimmed sums, the result is simply formulated.

THEOREM 4. Let {m,} and {k,} be any two sequences of positive integers
satisfying (1.1). There exist sequences of normalizing and centering constants
A, > 0 and B, such that

n—k,
(1'14) A;:l{ Z Xi, n_ Bn} 9 N(O’ 1)

i=m,+1
if and only if
(1.15) lim ¥, ,(c) =0, foralle, i=1,2.
n— oo

In this case, A, can be chosen to be a, and B, to be u,, n > 1.

For clarity Theorem 4 is stated along the whole sequence of positive integers,
but the proof will show that it also holds along subsequences.

To round off the present study, we finally discuss the extreme case of heavy
trimming when, for example, m, = [an] and %k, =n — [Bnr], where 0 < a <
B < 1 and [ -] denotes the integer part function. [The other extreme case of very
light trimming when m, = m and k, = k with some fixed positive integers m
and k is completely solved in S. Csorgd, Haeusler and Mason (1989). Some
results for this case are contained in S. Csérg6, Horvath and Mason (1986) and in
CsCsHM (1986b).] We obtain the following variant of Stigler’s (1973) theorem.

THEOREM 5. Assume
(1.16) m,=[an] and k,=n-[Bn],

where 0 < a < B < 1. Then for any underlying quantile function @, we have
when o(a, B) >0

1 n—k,
—_— X, , - , Rk Vi,
an(mn’ kn) i=mzn+1 1,n l"‘n(mn n) 9 V1
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where
a2
Vl 0( :B) (Q(a +) - Q(a))mln(o A ) +Z
(1-8)"
(e B) (Q(B +) — Q(B))max(0, —Z,),

where (Z,,Z, Z,) is a trivariate normal random vector with mean zero and
covariance matrix

l1-a r (a(l1- .3))1/2
r 1 Iy ,
(a(l - .3))1/2 Ty B

where

r = —al/zj;ﬁ(l —5)dQ(s) and r,=-(1- ,B)l/zjfsdQ(s).

Note that the limiting random variable V, here is also of the form of
Vi(¥,,¥,) of Theorem 1 with

0, ifx <0,

\I’l(x)= a1/2 _ l
Ty (@) - Q). x>0,

0, ifx <0,

_ 1/2
Hl) - (a(f;) (QUB+) - @(B), ifx>0.

(1.17)

This fact puts Stigler’s theorem into a broader picture. Indeed, under (1.16) we
have

(1.18) ¥, (x) > ¥(x), i=1,2,
for any x € R, with the ¥, functions in (1.17), and
(1.19) ro.or,  i=12

with the r; constants of Theorem 5. Hence Theorem 5 will, in fact, follow from
the proof of Theorem 1. Note that in Theorem 5, V|, = Z, a standard normal
variable, if and only if @ is continuous at a and 8 and o(a, 8) > 0.

The proofs are given in the next section. Section 3 contains a discussion of the
conditions given previously, with special reference to the case when the whole
sum X, + --- +X,, when properly centered and normalized, is stochastically
compact. This section also contains a number of examples. Finally, in the
Appendix some technical results required in Section 2 are proved.

Our methods of proof are probabilistic in nature and independent of the use of
the characteristic function. After submission of this paper we received a preprint
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entitled “Asymptotic normality and subsequential limits of trimmed sums” by P
Griffin and W. Pruitt. They obtain by characteristic function methodology
mathematically equivalent versions of our Theorems 1-4.

2. Proofs. Let {U,},., be a sequence of independent random variables
uniformly distributed on (0,1). For any integer n > 1, let u,,<--=<U,
denote the order statistics of U,,...,U, and let G, be the (rlght contmuous)
empirical distribution function of Ul, , U,. The two sequences {X,},.; and
{Q(U,)}, -, are equal in law, and, consequently, the two processes {X; ,:1 <i <
n, n>1} and {Q(U;, ,): 1 <i<n, n>1} are equal in law as well. Therefore
without loss of generahty, we may assume X; , = Q(U, ,) forall1 <i<n and
n = 1. Moreover, CsCsHM (1986a) (cf. Theorem 2.1 and Corollary 2.1) have
constructed a probability space (2, «, P) carrying a sequence U,, U,,... of
independent random variables uniformly distributed on (0,1) and a sequence of
Brownian bridges B,(s), 0 <s <1, n=1,2,..., such that for all 0 < » < 1/4,

(2.1) sup  [n'2{Gy(s) — s} = By(s)l/(s(1 — 8))"*7" = Opl(n™),

1/n<s<1-1/n

(2:2) sup  |n'(s — Uy(s)} = By(s)l/(s(1 = 5))"*™" = Op(n™),
1/n<s<1-1/n
where U(s) =U, ,for(i—1)/n<s<i/nandi=1,...,n and U,0) = is
the uniform empmcal quantile function. Again, w1thout loss of generallty, we
may and do assume throughout the proofs of Theorems 1 and 2 that we are on
this space (2, &7, P). The only exception will be the proof of Lemma 2.4, where
we use a Skorohod construction. We shall be using the integral convention of S.
Csorg6, Horvath and Mason (1986).
The following identity will be crucial to the proofs:

n—k,
{ ) Xi,n—un}=a;ln/1"“"/"(s— A(5)) dQ(s)
m,/n

i=m,+1

(2.3) +a;1nfm“/" ( G,(s) - —)dQ(s)

n.

+a;‘nf1—k"/n( G,.(s )—
U

n—kp,n
=Y, +R ,+R,,.
It will become clear in Lemma 2.2 that Y, is always asymptotically standard

normal and the “remainders” R, , <0 and R 2,n = 0 contribute the rest. To
prove the normality of Y,, we need the followmg technical step.

)dQ<s)

LeEmMA 2.1.  For any quantile function Q,
tQ%(1 —¢) + s@(s) _

lim sup 0.
5,£10 o?(s,1 - t)
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Proor. We only have to consider the infinite variance case in which

S%(s,1—t) = fl_tQ2(u) du —> o, ass,t]O0.

Then, exactly as in Gnedenko and Kolmogorov (1954), page 173, one can show
that

(2.4) R(s,t) = fl“‘Q(u)du/s(s,l —t) >0, ass,tl0.

Hence, using the well-known decomposition
0%(s,1—t) =tQ%*(1 —t) + sQ?(s) + S%*(s,1 — t)
(2.5) 1-¢ 2
~{tQ - 6) + 5Q(s) + [7Qu) ),
writing f(s, t) ~ g(s, t) when their ratio goes to one as s, ¢ |0 and introducing
r(s, t) = {tQ*(1 — ¢t) + sQ*(s)}/S%(s,1 — t), we have

tQ*(1 — t) + sQ%(s)

0%(s,1 - t)
B r(s,t)
r(s, 1) + 11— ([(1Q(1 — £) + 5Q(s))/S(s,1 — )] + R(s, )}*
_ r(s,t)
r(s,t) +1— {(tQ(1 — t) + sQ(s))"/S%(s,1 - ¢t)}
- r(s,t)
T (s, t) + 1= (s Vv ) {(£751Q( — t)] + sQ(s)))’/S(s,1 - 1))
r(s,t) r(s,t)

=) +1-2v (s, t) r(s, ) +1°

LEMMA 2.2. For any underlying distribution, Y, = Z, + op(1), where
Z,= b7 [ "B, (s) dQ(s)

m,/n

is a standard normal random variable for each n > 1.
ProoF. Observe that by (2.1) we have for any 0 < » < 1/4 that
1Y, = Zol = Op(r ™) [ (w1 = w))* ™ dQ(u)

m,/n

< OP(n—v)bn—l{fl/Z u1/2—de(u) + fl/;kn/n(l _ u)1/2—de(u)}‘
n 1

my/

1—-k,/n
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Applying integration by parts, it is easy to see by Lemma 2.1 that
1Y, = Z,J = O,(m;")b; 1Q(m,/n)|(m,/n)"* + Op(my”
+0,(k;")b; QL = ky/n)|(o/n)"* + Oy(R;”)
= Op((mn A kn)_y)'
Since E{Z,} = 0 and Var{Z,} = 1, Z,, is a standard normal random variable. O

ProoF oF THEOREM 1. For notational convenience the primes will be dropped
from the {n’} sequence in the proofs of Theorems 1 and 2. Any convergence and
stochastic order relations should be understood as taking place along {n’}.

Set Z, , = (n/m,)/*B,(m,/n)and Z, , = (n/k,)"/’B,(1 — k,/n). Note that
the claimed bounds on ¥, and ¥, follow by an elementary argument based on
the definition of ¥; , and r, ,, i =1,2. For any M > 0, with I(-) being the
indicator function, write

Il,n(M) = I(lzl,nl < M)’ IZ, n(M) = I(|Z2,n| < M)’

_Zl,n
Y, n(M) = L, (M) [ (2, + %) d¥, ,(3),

0
Y, (M) = L (M) [ (s, + 3) A%y, ().
T4,
We separate the essential steps of the proof as lemmas.

LEMMA 2.3. For M > 0, under the assumptions of the first part of Theo-
rem 1,

(2.6) L (M)R, , =Y, (M) + 0p(1),
2.7) L (M)R, , = Y, (M) + 0p(1).

ProoF. First consider (2.6). Choose any 0 < » < 1/4. From (2.2) it is easy to
conclude that
(2.8) (n/m;/z)(Ummn —m,/n)+Z, , = Op(m;").
Introduce the indicators

I* (M) = 12, ,| < M and (n/mi/?)|U,, , ~ m,/n| < M).

In view of (2.8) it is obvious that
(29) P(I# (M) = I, (M) > 1,
from which it follows that I, (M)R, , = I}*,(M)R, , + op(1). Observe that for
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any 0 < » < 1/4 and all n sufficiently large,

m
L (M| Ry, — b7t [ U'";’"{B,,(s) + (s - 7");:1/2} dqQ(s)

s ap [ Z] G (0) - ) - B

m,/2n<s<2m,/n n

m,\1/ 1/2
_n) m,,/n+Mm//ndQ( )

n my/n—MmY/?/n

xb,;l(

which by (2.1) and (1.3) equals (¥, (M) — ¥, ,(—~M))O,(m,”) = 0,(1). Next we
have

oo o 2o

n.

—b! mn/n—Bn('"n/"V"w{B,,(s) + (s - —) ‘/2} dQ(s)
(2.10) e

n \1/2
<{sup|—
sEJ, m,

X {l\I,l n(ljm n) - ‘I,l n(_Zl n)lIl*n(M)l’

where J, = [m,/n — Mm}/*/n, m,/n + Mm}/*/n] and U, ,=nU, ,-
m,/n) /ml/ 2, The first factor on the right-hand side of mequahty @. 10) can
easily be shown to be a Og(1) random variable. Now we show the following.

B,(s) + (s— m7) 172

CLaM. Under the assumptions of the first part of Theorem 1,
Dn = Ilfn(M)l\Ifl, n(Um,,, n) - ‘I,l, n( _Zl, n)l —p 0

ProoOF. Since ¥, is a left-continuous function on [ — M, M], given any £ > 0,
we can find divisory points —M =¢, <t < -+ <t,,, = M such that

(2.11) |¥,(s) — ¥,(¢)] <e/2, whenevers,te (t,t,,,], i=0,...,k.

[Cf. the left-continuous version of Lemma 1 on page 110 of Billingsley (1968).]
For any sufficiently small § > 0 choose continuity points /; <r; of ¥, i =
k such that [, r]c (¢,¢t.,], ,—¢t; <8 and ¢, —r,< 8 for each

z = , k. Let I(8,n) denote the mdlcator function of the event that
) (M) = 1and both —Z, , and U, , liein[l,r,] for some i = , k. Since
\I'l’ . is a nondecreasing function, we see that on the event mdlcated by 1(6, n),

|\I, n( m, n) \Pl,n(_Zl,n)l =< ‘I,l n(ri) - \Pl,n(li)’

for some i = , k. Hence, using (1.3), (2.11) and the tnangle inequality, we see
that for all n sufﬁmently large I(8, n)D, < e. But it is straightforward to
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establish by (2.8) that
}Sin(l) liminf P{I(8,n) = I}* (M)} = 1.
10 n>x !

Thus we conclude that P{D, < &} — 1 for all ¢ > 0, proving the claim. O

Now we know that the right-hand side of (2.10) goes to zero in probability.
Observe next that by the change of variables x = (s — m,/n)(n/mY/?),

—B,(m,/n)/n' m,
Iffn(M)bn_l/m"/n B,(m,/n)/ ﬂ{Bn(s) + (s _ 7)n1/2} dQ(s)
m,/n

172 1/2
= J* “Zal [ Mn M
1,00 [ 57| (o) B a0,
which by (2.9) equals
—nf(n (M M
Il,n(M)/(; {(m—n) B, 7+x " )—i—x d\Pl,n(x)ti-oP(l)'

Notice further that

_z n\"2 [(m m/?
f 1’"{ (—) Bn(—" +x— ) +x|-2 ,- x} d¥, (x)
0 m n n ! ’

n

Il,n(M)

-M<x<M n
1/2
mn mn mn
X B"(T” n )’B"(T) ’

where the first factor is bounded. Using now the representation B,(t) = W,(¢) —
tW,(1), 0 < t <1, where W,() is a standard Wiener process, and applying
standard bounds on the distribution of the absolute supremum of a Wiener
process, it can be seen that the second factor converges to zero in probability.
This completes the proof of (2.6). Since the proof of (2.7) follows in the same
way, Lemma 2.3 is completely proved. O

For each M > 0 set
A
V(M) = I(Z,| < M) fo (Z, + x) d¥,(x)
+Z+ 1(Z,) < M) [ (2, + x) d¥y(x)
_Z2

= V(M) + Z + Yy(M),

where (Z,, Z, Z,) is the trivariate normal random vector as in the statement of
Theorem 1. The next step in the proof of the first part of Theorem 1 is as follows.
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LEMMA 2.4. Under the assumptions of the first part of Theorem 1,
le,n(M) + Zn + }’2,n(M) 9 VI(M)’
for each M > 0, where Z, is defined in Lemma 2.2.

ProoF. Elementary calculations show that for each n > 1, (7, ,, Z,, Z, ,) is
a trivariate normal random vector with mean vector zero and covariance matrix

1-m,/n r, (m.k,/n%
rl,n 1 r2,n
1/2

(m,k,/n?) Ty n 1-k,/n
which by assumption (1.4) and by (1.1) converges to 2 in (1.5). Thus
(Zl,n’ Zn’ Z2,n) _)Q(Zl’ Z’ Z2)'

Applying the Skorohod representation theorem, there exists a probability
space carrying a copy of (Z,,Z,Z,) and a sequence of random vectors
(Zf 0 ZF, 25 ,) =9 (Zy, ny 2y, Zs, ) for each n > 1 such that

(2.12) (Zit 28, 23,) ~ (2,2, 2,) as.

Let Y*(M) and Y,*,(M) denote the corresponding: versions of Y, (M) and
Y, (M). To finish the proof of Lemma 2.4, it is enough to show that

(2.13) Y'ij"n(M) -Y(M)->0 as, i=1,2.
Notice that

1/2

_le,‘n
Yf,kn(M) - I(|Z1=':n| < M)j(; (Z, + x) d‘I’l’n(x)

=< {\Pl,n(M) - \Pl,n(_M)}lzlﬂ,‘n - le’
which by (2.12) and (1.3) converges almost surely to zero. Next we have

_le,‘n
1022, < M,12] < M)| [ (2, + 2) a¥, ()

(2.14) - fo (2, + x) d¥, (%)

<2MI(ZE,| < M, |Z)| < M)1¥, (=Z,) = ¥, (=Z},),

which, since —Z, is almost surely equal to a continuity point of ¥, and each ¥, ,
is nondecreasing, converges to zero almost surely by (2.12) and (1.3). It is easy to
see by (2.12) that

I(Z¥,) < M) = I(Z#,) < M,1Z,) < M) >0 as,,
I0Z)] < M) — I(Z#,] < M,1Z) < M) >0 as.

Therefore the previous relations and a final application of (1.3) give (2.13) for
i = 1. The case i = 2 of (2.13) follows in the same way. O
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It is now simple to finish the proof of the first part of Theorem 1. From (2.3)
and Lemma 2.2 we have

n—k,
TnEa;l{ Z Xl,n_“n} =R1,n+Zn+R2,n+OP(1)'

i=m,+1
For M > 0 set T,(M) = I, (M)R, ,+ Z, + I, (M)R, . Observe, trivially,
lim limsup P{|T, — T,(M)| > ¢} =0,

M-ow ;.54
for all ¢ > 0, and by combining Lemmas 2.3 and 2.4, for each M > 0,
T.(M) -5 Vi(M).
Since, obviously,
V(M) -5V, asM > oo,

the first part of Theorem 1 follows from Theorem 4.2 in Billingsley (1968).

In order to establish the second part of Theorem 1, we need the following
lemma, whose proof follows by integration by parts and an application of
Lemma 2.1 and (2.4). The routine details are omitted.

LEmMA 2.5. Whenever Var(X) = oo,

lim {fsl/zudQ(u) + jll/:(l —u) dQ(u)}/o(s,l —t)=o0.

s,tl0

Set
Wi = =b1 [ B(s)dQ(s) and W, ,=—b;" "B (s) dq(s).
1/2

m,/n

Clearly, Z, = W, , + W, , and (Z, ,, W, ,, W, ,,, Z, ,,) is a quadrivariate normal
random vector with mean vector zero,

Con(Zys W) = [ 72) 5 [ 1"(1 - 5) d(s),

Cov(W, 0 Wy o) = 25 [ sd@(s) [ (1 - 1) aQ(o),
1/2

b I n
kn 1/2 1 1/2
CovlZ,,, W) = (2| 5 [ sdats).

Application of Lemma 2.5 shows that each of these covariances converges to
zero. It is easy now to see by (1.6) and the previous considerations that

(Zl,n’ Wl,n’ VV2,n’ Z2,n) '—)Q(Zl’ Wl’ VV2’ Z2)'

This relation combined with the proof of the first part of the theorem completes
the proof of the second part of Theorem 1. O
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ProOF OF THEOREM 2. Assumptions (1.7) and (1.8) combined with (1.9)
imply that a,/A, — 0, which when combined with Lemma 2.7 gives ¥*(¢) =
and ¥*(—c) = 0 for all ¢ > 0. Notice that by (2.3),

n—k,
Z X 1,n Mn

i=m,+1

which by Lemma 2.2 equals ¢ ,R, ,/A, + a,R, ;/A, + 0,(1). That this random
variable converges in distribution to V, follows, after obv10us changes of nota-
tion, by the same method used to prove the first part of Theorem 1. O

A—l

n

o g Iy a"R
L U S

n n n

Proor oF THEOREM 3. To keep track of all subsequences and sub-subse-
quences of the positive integers occurring in the proof, the following notation will
be used: {n,} denotes a subsequence of the positive integers, {n,} denotes a
subsequence of {n,}, etc. For convenient reference later on we state the following
version of the Helly—Bray theorem.

LEMMA 2.6. Letf, be a sequence of nondecreasing left-continuous functions
defined on R such that f,(0) = 0 for all n > 1. If for all x,

lim sup|f,(x)] < oo,
n—oo
then there exists a subsequence {n,} of {n} and a nondecreasing left-continuous
function f with f(0) = 0 such that f,(x) = f(x) as n; —> co at every continuity
point x of f.

First assume the existence of a sequence C, having the stated properties.
Choose any subsequence {n,} of {rn} and a further subsequence {n,} of {n,} such
that (1.11) and (1.12) hold. Consider the case when the limit in (1.11) is equal to
zero. Then, by assumption, at least one of the two ¥, i= 1,2, functions
appearing in (1.12) is not identically equal to zero. It is apparent that this entails
that for some ¢ and i = 1 or 2,

[¥), ()] = o0, asn,— oo.

Applying Theorem 2, with V,, of the form given there, we have

ny—ky,,
-1
C.l X Xin —ln| 2o Ve, asn, - oo

i=m,, +1

Next suppose that the limit in (1.11) is equal to a positive constant 0 < y < 0.
On account of (1.12), this implies that for i = 1,2,

(2.15) ¥, . (c) > ¥ (c), asny, - oo,

at every continuity point c¢ of ¥, = ¥*/y. Observing that the sequences r, ,,
and r, , are uniformly bounded w1th a11 terms being nonpositive, we can find a
further subsequence {n} of {n,} and finite nonpositive constants r, and r, such
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that for i = 1,2,

Iyn, > Tis 88Nz — 0.

Since (2.15) also holds along the sequence {n,}, Theorem 1 yields

nS_kn3
-1
Cn3 Z Xl,n3 Byl o YVI’ asng = o0,

i=m, +1

where V, is of the form given in Theorem 1. Proposition 2 in the Appendix says
that neither of these random variables V; and V, is degenerate. Thus by setting
A,=C, and B, =p,, we conclude that the resulting sequence of random
variables in (1.10) is stochastically compact.

Now assume that for appropriate sequences of normalizing and centering
constants A, > 0 and B, the sequence of random variables in (1.10) is stochasti-
cally compact. Choose any subsequence {n,} of {n}. Suppose first that for all
ceERandi=1,2,

limsup|¥; ,(c)| < oo.

n;— oo
By Lemma 2.6 along with the boundedness of the sequences I'yn and ry, , we
can choose a further subsequence {n,} of {n,} such that for i = 1,2,

¥, .(c) = ¥,(c), asn, - oo,
at every continuity point ¢ of ¥;, where ¥, and ¥, are nondecreasing left-con-
tinuous functions equal to zero at zero, and for nonpositive finite constants r

and r, for i = 1,2,

r. - r.

iy, = Ti» 88Ny — 0.

Applying Theorem 1, we have

n2_kn2
-1
an,, Z Xi, ng  Mny,p QVI‘

i=m,,+1

Since, by assumption, the sequence in (1.10) is stochastically compact, there
exists a further subsequence {n,} of {n,} such that

n3_kn3
A;al{ Z Xi, ng Bn3}

i=m, +1

converges in distribution to a nondegenerate random variable V. Therefore, by
the convergence-of-types theorem [Gnedenko and Kolmogorov (1954), pages
40-42], there exist 0 <y < 00 and — 0 < § < oo, such that
Ayla, >y and A Y(p, — B,)—8, asn;— oo,
and hence for i = 1,2,
Ar:;;lan;I,i, ns(c) - Y\I'i(c) = \I,i*(c)’

at every continuity point ¢ of ¥;* and V = yV, + &.
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Next assume that for some c € R and i = 1 or 2,
(2.16) limsup|¥; ,(c)| = co.

n;— o

Obviously, (2.16), holding for some ¢ and i = 1 or 2, allows us to choose a further
subsequence {n,} of {n,} such that for the same c and ¢ for which (2.16) is true,
we have
(2.17) lim |¥; , (c)| = oo.

ng— o
At this stage, in order to complete the proof of Theorem 3, we require a number
of technical lemmas.

LEMMA 2.7. Forall c > 0,

(2.18) limsup|¥, ,(c)| < o0,
n—oco
(2.19) limsup|¥, ,(—c)| < oo.
n—oo

ProoF. First consider (2.18). We shall assume that Q(s) » —oo as s]0,
since otherwise the assertion is trivial. Choose any ¢ > 0. The following in-
equality for large n when combined with Lemma 2.1 gives (2.18):

m._\1/2
¥, (0] < b2 2

o3|

The second assertion is proven similarly. O

LEMMA 28. Fori=1,2,
(2.20) lim liminf P{|R; ,| < M} > 0.

M- n—ow

Proor. First consider the case i = 1. Observe that
G mn) mn ( U ) mn
"( n n QUn,.n Q( n ) )

Choose any ¢ > 0. On the event A,(c)={0< U, ,—m,/n<cmy?/n}, we

-1,.1/2
IRy .l < b, 'n'/

have
m m
(2:21) Ryl < m )G 2] = 22, (o).
n n ’
By (2.1) (or the classical central limit theorem)
mn mn
(2.22) m;l/zn{Gn(—n—) — -n—} -9 N(O, 1)

and by (2.2) [or cf. Balkema and de Haan (1975)]
(2.23) m,*n{U, ,—m,/n} -5 N(0,1),
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which in turn implies that
(2.24) P{A,(c)} = P{0 < N(0,1) < c}.

That (2.20) holds for the case i = 1 is now a direct consequence of (2.18), (2.21),
(2.22) and (2.24). The case i = 2 is proven analogously. O

We shall say that two sequences of random variables L, and M, are
asymptotically independent if

sup|P{L,<x, M, <y} —P{L,<x} P(M,<y}| = 0.
x?y

The next lemma follows from a special case of Satz 4 of Rossberg (1967) by an
elementary method similar to the one used in the proof of Theorem 2 of Mason
(1985). The simple details are omitted.

LEMMA 2.9. The two sequences of random variables |R, ,| and |R, ,| are
asymptotically independent.

LEmMMA 2.10. Let A, , and A, , be two sequences of random varzables such
that A, , + A, , is stochastzcally ‘bounded, the sequences A, .| and |A, ,| are
asymptotzcally 'independent and for i = 1,2,

(2.25) hm liminf P{|A; ,| < M} > 0.

M- n—oo

Then both A, , and A, , are stochastically bounded.

Proor. Choose any M > 0. We see that
P{1A, , + 8, | > M} > P{|A, ,| > 2M, |4, ,| < M}
+P{|Ay ] > 2M, 1A, | < M},
which by the asymptotic independence assumption equals
P{|A, | > 2M}P{|A, | < M} + P{|A, ,| > 2M}P(|A, ,| < M} + o(1).

By assumption (2.25) for some ¢ > 0 this last expression is for large enough M
and n greater than or equal to

e(P{1A,, .| > 2M} + P{|A, ,| > 2M}) + o(1).
Thus, since necessarily,

hm limsup P{|A, , + A, ,| > M} =0,

M—o po0

hm limsup P{|A; ,| >2M} =0, i=1,2,

M- po0

implying that both A, , and A, , are stochastically bounded. O

LEMMA 2.11. Whenever there exists a subsequence {n.} of {n} with accom-
panying sequences of normalizing and centering constants A,, > 0 and B, such
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that the sequence

(2.26) A“{ Y X,,-B

n; n
i=m, +1

is stochastically bounded, then both sequences a, R, n/(Ap Va,), i=12,
are stochastically bounded.

ProoFr. Notice that by (2.3) we can write the expression in (2.26) as
T, =A.'a,(Y, + Ry, + Ry, ) — A (B, — ).
Consider an independent copy,
= Az, (Y, + Ry, + Ry, ) - AL(B, — 1),
of T, . Since both 7, and 7, are stochastically bounded,
T, — T, = A a, (Y, + Ry, + Ry — Yo — Ry, — R} )
is also stochastically bounded, and from A, /(4, V a,) <1 we see ‘that
On (Yo + Ry + Ry — Yo — R, — Ry ) /(An V oay,)
is stochastically bounded. Lemma 2.2 implies that Y, and Y, are stochastically
bounded, from which it is easy to infer that
@p(Ryn + Ry — RY, — Ry ) /(A V a,)
is stochastically bounded. Observe that for any M > 0,
Pla, Ry, + Ry, nl/(A, V a,) <2M} 2 PRy, | <M, R, ,| < M).
By Lemma 2.9 the right-hand side of this last inequality equals
P{|R,, | < M}P{|R, nl < M} + o(1).
Hence by Lemma 2.8, we have

lim liminfP{a,|R, , + R, ,I|/(A, Va,)<2M} > 0.

M—->0 n-w

Since R} , + Ry, =9 R, , + R;, and R, , + R, , and R} , + R} n, are
independent, we conclude from Lemma 2.10 that the sequence a,|Ry , +
Ry . |/(A, V a,) is stochastically bounded. A second application of Lemma
2.10 yields that both a, R; , /(A, V a,), i = 1,2, are stochastically bounded.

O

LEMMA 2.12. Whenever there exists a subsequence {n,} of {n} such that for
some cand i =1or 2,

(2.27) |¥; .(c)| = 0, asn, - oo,

and a sequence of positive constants A, such that both a, R, , /(A, V a,),
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i = 1,2, are stochastically bounded, then
(2.28) ‘ Ala, >0, asn, > o,
(2.29) limsupA;llanJ\I'i’ a0 <0, i=1,2, forallec.

n;— oo

Proor. First assume that (2.27) holds for : = 2. By Lemma 2.7 necessarily
¢ > 0. Choose any d > c. We get on the event

k, k1/2
An,(C, d) = = nl—k,ll—[ck},/lz]—l,nl}’

n,

— 1 kn kn k}l/z
X/l b/t ®/m | Tm G,|1 - —+d—|}dQ(s)
1 l " ™

_knl/nl nl 1
S n, fl—k,”/nl+dk§,{2/n1{1 _ knl
(An1 v anl) 1-k, /m n,

- Gnl(Unl—knl—[ck},/lz]—l, nl)} dQ(S)

1/2
> (A, V anl)—lckif{Q(l - %— + dk ) - Q(l - Ifi’_l)}

1 1
= canl(Anl \ a’nl)_l\I’2, nl(d) = 0.
Notice that by (2.2) we have
P{An‘(c, d)} » P{N(0,1) >d+c} >0, asn, - co.

Thjs along with the fact that necessarily ¥, ,(d) — oo and the assumption that
a, R, ,/(A, V a,) is stochastically bounded forces (2.28) to hold. We also see
1mmed1ate1y that for all d > 0,

0 < limsupA,'a,¥, ,(d) < oo,

n,— o
which when combined with Lemma 2.7 establishes (2.29) for the case i = 2. The
assertion that (2.29) also holds for the case i = 1 follows by a similar argument.
0O

2, m

We are now prepared to complete the proof of Theorem 3. By assumption, we
can choose a further sequence {ns} of {n,} such that the sequence

ng—k,,
A;;{ Y Xin, }

i=m, +1
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converges in distribution to a nondegenerate random variable, and since neces-
sarily (2.17) holds for the same c¢ and i =1 or 2 along the sequence {n;}, a
straightforward application of Lemmas 2.11 and 2.12 yields

‘I’i,na(c)| < 0, i=1,2, forallc,

nsl

limsup A, 'a
ng— oo
and A;alan3 — 0 as ny — oo. Applying Lemma 2.6, we can choose a further
subsequence {n,} of {ns} such that for nondecreasing left-continuous functions
¥} and ¥, equal to zero at zero, for i = 1,2,

Ala, ¥, , (c) > ¥F(c), asn,— oo,

ngti,ny

at every continuity point ¢ of ¥*. Thus by Theorem 2

-9 Vo,

n4_kn4
Ar::{ Z Xi,n4 By,

i=m,, +1

where V, is of the form given in Theorem 2, but since {n,} C {nj},

ny—ky,
Ar::{ Z Xi, ng Bn4}

i=m,, +1

converges in distribution to a nondegenerate random variable V. Therefore by
the convergence-of-types theorem V, =5, V + § for some —oo <& < oo. This
implies that V, is nondegenerate and, hence, at least one of the two functions ¥;*
and ¥ is not identically equal to zero. Setting C, = A, completes the proof of
Theorem 3. O

ProoF oF THEOREM 4. First assume that (1.15) holds. Then by Theorem 1
we have (1.14) with A, = a, and B, = p,, since for every subsequence {n,} of
{n} there exists a further subsequence {n,} of {n,} such that r,, —r; for
appropriate nonpositive constants r;, i = 1, 2.

Next assume that there exist sequences of normalizing and centering con-
stants A, > 0 and B, such that (1.14) is true, but there exists a subsequence
{n,} of {n}, a ¢, and i = 1 or 2 such that
(2.30) lim |¥, ,(c)|>0.

n; — oo
Since the sequence in (1.14) is obviously stochastically compact, Theorem 3
implies that there exists a further subsequence {r,} of {n,} such that

ny knz
(2.31) A;zl{ Y Xi,nz_an}

i=mp,,+1

converges in distribution to an affine transform of either a V| or a V, random
variable. [Note that if V; is the case, due to (2.30), at least one of the functions
¥, or ¥, is not identically equal to zero. Moreover, by the discussion in the next
section, we must have Var(X) = oco. So we can also assume that {n,} is such
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that o, , — o, as n, = oo for i = 1,2 with of + o} = 1, implying that the
random variable Z in V; has the representation given in the second part of the
statement of Theorem 1.] However, since we are assuming that (1.14) holds,
the sequence of random variables in (2.31) must converge in distribution to a
standard normal random variable, forcing the V, or V, random variable to be a
nondegenerate normal random variable. In either case, Proposition 1 in the
Appendix says that this cannot happen. Thus (1.15) must be true. This com-
pletes the proof of Theorem 4. O

PRrROOF OF THEOREM 5. Note that with {m,} and {k,} as in (1.16) we have
(1.18) and (1.19). Now the proof of the first part of Theorem 1 remains valid
word for word along the whole sequence {n} with the present {m,} and {%,}.
The only difference is, of course, that the matrix given in the proof of Lemma 2.4
now converges to the covariance matrix in the formulation of the theorem.
Noticing also that

1/2

[T+ ) d¥lx) = o5 (Qa +) - Qa)min(0,2),

RNV
[+ ) ) = S (@8 +) - QUB)max(0, ~2,)
2, a(a, B)

with the ¥ functions of (1.17), the theorem is proved. O

3. Discussion and examples. We begin with a brief discussion of what
Theorem 4 implies when the distribution function F has a finite positive
variance. In this case it is easy to show that the lim sup appearing in Lemma 2.1
is equal to zero. This implies (1.15) for all sequences m,, and &, satisfying (1.1) so
that the functions ¥, and ¥, appearing in V| are identically equal to zero, as
already remarked in Section 1. Thus Theorem 4 yields the central limit theorem
(1.2) if F has a finite variance. Theorem 4 also contains (1.2) when m, = k,, for
all F being in the domain of attraction of a nondegenerate stable or normal law,
since the technical lemmas given in S. Cs6rg6, Horvath and Mason (1986) can be
used to verify (1.15).

Next we consider distribution functions for which the entire partial sum
X, + -+ +X,, when properly centered and normalized, is stochastically com-
pact. For the sake of simplicity of the exposition we restrict ourselves from now
on to sequences m, = k, so that, if we refer to a sequence %, satisfying (1.1), we
always mean a pair m,, k, with m, = k,,. It is shown in S. Csorgd, Haeusler and
Mason (1989) that there exist sequences A, and B, of normalizing and centering
constants such that A; (X, + --- +X, — B,) is stochastically compact if and
only if

(8.1) limsup #(Q%(¢t +) + Q*(1 — ¢))/S*(t,1 — t) < o0,
tlo0

which in turn is equivalent to

(3.2) limsup#(Q%(¢/A) + @2(1 — t/A))/0*(¢,1 — t) < o0, forall A > 0.
t40
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It is also proved in that paper that these conditions are equivalent to the Feller
(1967) condition for stochastic compactness. Obviously, (3.2) entails uniform
boundedness of the functions ¥; ,, i = 1,2, n = 1,2,..., so that (1.13) is satisfied,
which means that for any stochastically compact F and any sequence k, of
positive integers satisfying (1.1) the sequence in (1.10) is stochastically compact
with A, = a,(k,, k,) and B, = p,(k,, k,). Moreover, only subsequential limits
of the form V, are possible with bounded functions ¥;, i = 1,2. The following
example shows that nonnormal subsequential limits are possible when F is
stochastically compact.

ExaMmpLE 1. Fix any sequence r,, ry,... of strictly positive constants such
that ¥¥_,r, = 1. On [1/2,1) let the quantile function @ be inductively defined
by @1/2)= -1, Q1/2+)=1, Q3/4) =1+ r;, Q linear on (1/2,3/4], and
for k=1,2,...,

k k
RQIIL-272%)+) =1+ Y r+ Y 28(1/2,1 — 27%),
i=1 i=1
k+1 ko ' ’
QUL —272FD)y =14+ Y i+ Y 25(1/2,1 — 27%),

i=1 i=1
Q linearon (1 — 272k 1 — 2-%k+D],
For0 <t <1/2set Q(t) = —Q(1 — ¢) + ). Observe that @ is strictly increasing

so that the corresponding distribution function is continuous. If £ = 1,2,... and
1-27%%<1—¢t<1—272%*D then computations show

Q-0 .,

kE 2
o 4+ Y 2| <o,
S21/2,1- 1) - L ) =

i=1

so that the stochastic compactness criterion (3.1) is satisfied. It is straightfor-
ward to verify that @ has infinite variance. Since @ is a symmetric quantile
function with infinite variance it is easy to infer from (2.5) that

(3.3) o%(¢t,1 -t) ~206%1/2,1—t), astlO.

For n=2,3,... let k, be defined for 2% < n < 23**D, =12 ..., to be
k, = 2**1. Then the sequence {k,)} is increasing. Consider the subsequence
n(l) =2%*D 1 =12,..., of the sequence {n} of positive integers. Obviously,
k) = 2" and, for 0 < ¢ < oo, routine bounds give

1072 < lilminf‘Ifz a(€) < limsup ¥, ,,(c) < oo,
- - oo
where finiteness of the lim sup follows from stochastic compactness, as remarked
previously. For —oo < ¢ < 0 it is easy to see that
¥, lc) >0, asl— oo.

By Lemma 2.6 there exist a subsequence {n’} of {n(l)} and a nondecreasing
left-continuous function ¥, such that ¥, ,(c) = ¥y(c) as n’ - o at every
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continuity point ¢ of ¥,. Obviously, ¥,(¢) =0 for —c0 <c¢ <0 and 1072 <
W¥,(c) for 0 < ¢ < oo. It is also clear that along a further subsequence {n”} of
{n’} the assumptions of the second part of Theorem 1 concerning ¥, , and 7; ,,
0, »» i = 1,2, are satisfied. Consequently, on account of Theorem 1, the sequence
in (1.10) converges along {n"} to a limit V;, which in view of Proposition 2 in the

Appendix is nonnormal since ¥, is not identically equal to zero.

Theorem 2.1 of Pruitt (1985) states that if F' is a symmetric stochastically
compact, continuous distribution function and if the %, summands, which are
largest in absolute value, are discarded from X, + --- +X, at each stage n,
where k, statisfies (1.1), then the remaining sums, suitably normalized, are
asymptotically normal. This result and Example 1 together say that (perhaps
contrary to intuition) trimming the partial sums from a symmetric distribution
symmetrically on both sides and trimming such sums by absolute value are two
different problems.

We have just seen that for a stochastically compact distribution only the
assumptions of Theorem 1 can be satisfied. In our next example we provide a
symmetric distribution, necessarily not stochastically compact, for which the
assumptions of Theorem 2 are satisfied along an appropriate subsequence for a
certain sequence &,.

EXAMPLE 2. On [1/2,1) let the quantile function @ be inductively defined
by @1/2) = —1,Q(¢t)=1for1/2 <t <3/4and for k =1,2,..., set

k
Q(t) =1+ Y 2%(1/2,1 —27%), forl —2 2k <t <1 — 272D,

i=1

To obtain a symmetric quantile function, set @(¢) = @1 —¢) + ) for 0 < ¢t <
1/2. This @ has infinite variance and (3.3) holds. Let the sequences m, and n(l)
be defined as in Example 1. Then for 0 < ¢ < oo in view of (3.3) it can be shown
that

¥y pa)(€) ~ 2872 5> 0, asl— 0.
For — o0 < ¢ < 0 it is easy to see that
¥, »y(c) 20, asl— co.
So by putting A, = 2712 for L= 1,2,..., and recalling that F is symmetric,
we have constructed an example for which the assumptions of Theorem 2 hold.
A prime example of a symmetric distribution function F, which is not
stochastically compact, is a distribution function with a slowly varying tail, i.e.,
(3.4) 1- F(x) = L(x), x large,

where L is a slowly varying function at infinity. The function @(1 — ¢) is then
rapidly varying at zero, i.e,, for all A > 1,

Q(1—1)/Q(1 — t\) > o, ast]O,
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cf. Corollary 1.2.1.5 in de Haan (1975). Since the variance of @ is infinite, an
application of Theorem 1.3.2 in de Haan (1975) together with (3.3) yields,

(3.5) o%(t,1 —t) ~ 2tQ*(1 — t), ast|O.

This behavior of the variance enables us to infer the following central limit
theorem from Theorem 4.

COROLLARY. Let F be any symmetric distribution function satisfying (3.4),
and let k,, be any sequence of integers for which (1.1) holds. Then the following
three statements are equivalent:

(i) There exist normalizing and centering constants A, > 0 and B, such
that

n—k,
A;l{ Z Xi,n - Bn} 9 N(011)°

imk,+1

(i) Q1 — k,/n + ck/?/n)/Q(1 — k,/n) > 1 for all c.
(iil) X, _,, /QQ — k,/n) >pl.

If (i) holds, then one can choose A, = a,, and B, = 0 for n > 1.

Proor. By (3.5) we have for — o0 < ¢ < o0,

1—k,/n+ck?/n
¥,,0(0) - 2-1/2{ W a/nt ki) 1},
' Q(1 — k,/n)
so that equivalence of (i) and (ii) is immediate from Theorem 4 combined with

the symmetry of F. Equivalence of (ii) and (iii) follows from the representation
Xo—k,n= QU,_}, ,) and the fact that n{U,_, , — (1 — k,/n)}/kY/? is O,1).
|

ExAMPLE 3. We now demonstrate how this result is applicable in a concrete
example. The function Q(1 — s) = e'/* is, for s > 0 small enough, the quantile
function pertaining to a distribution function F' with slowly varying upper tail.
Assume that F is symmetric. For —oo < ¢ < oo and any sequence &, of integers
satisfying (1.1), we have

Q(1 — k,/n+ ck/?/n)/Q(1 — k,/n) = exp{cnk,**(1 + o(1))}.
So we have ¥, ,(c) = 0 for all —o0 < ¢ < oo if and only if n/k%2? - 0. Since
¥, .(¢) = =¥, (—c) in the present situation, this is exactly the condition on %,
for asymptotic normality of a, (X, ., ,+ *** +X,_; ,) to hold.

Consider now the case k, ~ n??%. In this case it can be shown that the
assumptions of the second part of Theorem 1 are satisfied along the whole
sequence {n}. Simple evaluations give that, with Z, and Z, being independent
standard normal random variables,

V, = — 27 V2% 4 2-1/2% 22,

so that the distribution of V] is the convolution of two log-normal distributions.
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When n/k3? - o it can be shown that it is impossible to center and
normalize the trimmed sums in such a way that they converge in distribution to
a nondegenerate limit.

APPENDIX

Let ¢, and ¢, be two nondecreasing left-continuous functions on R with
¢,(0) = @4(0) = 0 such that for r, <0 and r, <0, @,(c) < —r; and @y(c) = r,
for all c. Also, let (Z,, W,, W,, Z,) be a quadrivariate normal random vector with
mean vector zero and covariance matrix

1 o 0 0
rn 62 0 0
0 0 o
0 0 np 1

with 67 + 67 = 1 and set .
z 0
N = {/0 (Z, + x)do,(x) + Wl} + <VVz + f Z(Zz +x) d(p2(x)}
T L

= {Ni+ W} + (W, + N}
and M = N, + N,.

PROPOSITION 1. With the notation given previously, N =4 N(u, o?) if and
only if ¢, =¢@,=0, in which case p=0 and ¢ =1, and M is never a
nondegenerate normal random variable.

ProoF. First, obviously, when ¢, = ¢, = 0, then N =, N(0,1). Assume that
N =5 N(p, 0?). The assumptions imply that N, + W, and W, + N, are indepen-
dent and this by the Cramér characterization of the normal distribution implies
that both N; + W, and W, + N, must be normally distributed. We shall show
that N, + W, can be normally distributed only if ¢, =0, i = 1,2.

Suppose that N, + W, is normally distributed but ¢, is not identically equal
to zero. We can write

-2,
N, + W, =@f0 (Z, + x) doy(x) + nZ, + Y,,

where Y, is a normally distributed random variable independent of Z,. This
forces the random variable

—-Z 0
/(.) (Z, + x) do,(x) +r1Z1=/_Z(‘P1(x) +rl)def(Z1)
to be normal, but ¢, < —r, implies that f is a nondecreasing function. This
forces f(2) to be linear in 2, which can only happen if ¢, = 0. Similarly, it can
be shown that if N, + W, is a normal random variable, then ¢, = 0. By
inspection, we must have p = 0 and 6% = 1. This completes the proof of the first
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part of the proposition. For the proof of the second part, we note that if M were
a nondegenerate normal random variable, by independence of N, and N, this
would force at least one of these two random variables to be nondegenerate
normal, which is clearly impossible. O

Let (Z,, Z, Z,) be a trivariate normal random vector with mean vector zero
and covariance matrix as in (1.5).

ProposITION 2. With the notation given previously, M + Z is always a
nondegenerate random variable and M is a nondegenerate random variable if
and only if @, or ¢, is not identically equal to zero.

Proor. The first part follows from Proposition 1 and the second by a simple
conditioning argument. O
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