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TIME REVERSAL ON LEVY PROCESSES

By JEAN JACOD AND PHILIP PROTTER!
Université Paris VI and Purdue University

Time reversal of semimartingales defined on a Lévy process framework is
considered. Usually semimartingales cannot be time-reversed such that the
reversed process is still a semimartingale. An expansion-of-filtrations result
for Lévy processes is established and then it is used to give sufficient
conditions such that a semimartingale defined on a Lévy process can be
time-reversed and still r main a semimartingale.

1. Introduction. Usually semimartingales, when reversed, are not semi-
martingales, as Walsh (1982) has pointed out. Nevertheless, since semi-
martingales are essentially the most general possible stochastic differentials, it is
desirable to obtain sufficient conditions such that they be reversible. This type of
problem and related questions have recently been considered by a number of
authors [e.g., Follmer (1986), Lindquist and Picci (1985), Pardoux (1986), Picard
(1986) and Protter (1987)]

Suppose we are given a complete probability space (2, #, P) with at least
two filtrations F = (#),c [, and H= (2 ecro)- Let Y be a process with
paths that are right-continuous and have left limits (hereafter, cadlag), defined
on [0,1]. We associate to Y the time-reversed process Y= (Y)te[o y [also
denoted (Y)"] given by

0, ift=0
(1.1) Y,={Y,_, -Y_, ifo<t<l,
Y,-Y,_, ift=1,

where Y,_ denotes the left limit at », 0 < u < 1.

(1.2) DEFINITION. Y is called an (F, H)-reversible semimartingale if

(1) Y is an F-semimartingale on [0, 1], and
(ii) Y is an H-semimartingale on [0, 1).

Note that in the above definition ¥ need not be a semimartingale on the
closed interval [0,1]. This is an important point; see the discussion followmg
Theorem (1.9). By Stricker’s theorem if Y is an F-semimartingale, it is also a
semimartingale for its natural filtration (i.e., the minimal filtration to which it is
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adapted), and thus one can simply say Y is a reversible semimartingale if both Y
and Y are semimartingales with respect to their natural filtrations.

We shall be primarily interested here in Lévy processes and we make the
convention that Z will always denote a Lévy process. (A Lévy process Z on [0,1]
is a cadlag process with stationary and independent increments, and with Z, = 0
a.s.)

We let Z° denote the continuous local martingale part of Z relative to its
natural filtration F. [We refer the reader to Jacod (1979) or Dellacherie and
Meyer (1982) for all unexplained terms, notation and “well-known” results. ]
Then either Z¢ = 0 or Z¢/o is a standard Wiener process for some ¢ > 0. Let %
be the natural filtration of Z.

(1.3) PrROPOSITION. The Lévy process Z is a reversible semimartingale. Its
continuous local martingale part Z¢ is an (F, F)-reversible semimartingale.

PRrROOF. Z is clearly also a Lévy process, with the same law as —Z; thus it is
a reversible semimartingale since Lévy processes are semimartingales [e.g., Jacod
(1979), page 63]. It is well known that for s < ¢, Z{ — Z¢ is measurable with
respect to the o-field o(Z, — s<u< t) Thus (Z”) is again a Lévy process
with respect to F, and we deduce that Z¢ is an (F, F) reversible semimartingale
(indeed, it is a reversible martingale). Using that #£(Z) = #(—Z), where £(X)
denotes the law of the process X on [0,1], one could easily prove as well that
(Z°)=(2). O

Next consider semimartingales of the form
t t
(1.4) X, = [1(z.)dz, Y= [i(z)d

for a suitable (e.g., locally bounded) Borel function f. These semimartingales will
not in general be (F, i')-reversible since X and Y are not even adapted to F. We
shall see later, however, that they are adapted to the following filtration:

G =( 9:),6[0, 1) denotes the smallest complete (right-continu-
(1.5) ous) filtration relative to which Z is adapted and Z, is
9,-measurable.

Since Z, = Z, — Z,_ equals —Z, a.s., this is clearly equivalent to:
(1.6) G is the smallest complete filtration relative to which Z is
adapted and Z, is 9,-measurable.
For convenience, we define as well:

G = (9,);< 0,17 denotes the smallest complete (right-continu-
(1.7)  ous) filtration relative to which Z is adapted and Z; is
9,-measurable.

Our goal is to show that X and Y in (1.4) are (F, G)-reversible for as many
functions f as possible. Clearly, the first step is to prove that Z itself is
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(F, G)-reversible. Since Z is also a Lévy process, by comparing (1.6) and (1.7), this
amounts to the following theorem, due to Kurtz (1986).

(1.8) THEOREM (Kurtz). A Lévy process Z is a G-semimartingale on [0,1].

Actually it is possible to describe the situation for all semimartingales defined
on a Lévy process:

(1.9) THEOREM. Let Z be a Lévy process. Then every F-semimartingale is a
G-semimartingale on [0, 1).

In the usual terminology [cf., e.g, Jeulin (1980)], the filtration satisfies “Hy-
pothesis (H)” on [0,1).

In Theorem (1.9) the restriction to [0,1) instead of [0,1] is necessary. Jeulin
(1980), pages 46-47, has shown that even if Z is a Brownian motion (and hence a
Lévy process), then Hypothesis (H’) does not hold for G on [0,1].

Returning to the processes X and Y of (1.4), we still need an hypothesis on the
function f.

(1.10) HypoTHESIS. There is a right-continuous function f of finite variation
on compacts such that the set D = {x: f(x) # f(x)} is at most countable.

For example, every Borel function of finite variation on finite intervals is of
this description.

Our main results for Lévy processes are the following two theorems. Our other
primary result is Theorem (3.3) and its consequences.

(1.11) THEOREM. Let Z be a Lévy process and let f satisfy (1.10). Then the
process X, = [{f(Z,_) dZ, is an (F, G)-reversible semimartingale.

(1.12) THEOREM. Let Z be a Lévy process, and let  satisfy (1.10). Then the
process Y, = [{f(Z,_)dZ¢ is an (F, G)-reversible semimartingale.

1t is implicit in Theorem (1.12) that Z° is not identically zero, since otherwise
the statement is trivial. Other results similar to that of (1.11), where the process
X is a stochastic integral with respect to the jump measure of Z are given in
Section 4.

If either of the semimartingales X or Y defined in (1.4) are (F, G)-reversible,
then one can add a process A of finite variation provided it is adapted to F, and
also A is adapted to G. Since we can consider the Lévy process Z as a Markov
process, we shall see in Section 3 that the reversed process A of an additive
functional A of Z is adapted to G.

As a corollary of Theorem (1.11) and the previous remark we then obtain (for
example)
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(1.13) COROLLARY. Let L be the local time at 0 of the Brownian motion
Z = W. Then the process

U, = fo‘f(Ws)dWs+ fo‘g(M)dLs+ fo‘h(Ws)ds

is an (F, G)-reversible semimartingale, for all Borel locally bounded g and h and
all functions f satisfying (1.10).

Corollary (1.13) is a special case of Theorem (6.2).

This paper is organized as follows. In Section 2 we prove Theorems (1.8) and
(1.9), and even slightly more. In Section 3 we prove a general result (unrelated to
Lévy processes) and show how it yields simple proofs of Theorems (1.11) and
(1.12) under a supplementary hypothesis. Theorem (1.11) is proved in full
generality in Section 4. In Section 5 we prove a theorem that is useful for
reversing purely discontinuous local martingales with paths of infinite variation
[Theorem (5.3)], and we then use it to prove Theorem (1.12). In Section 6 we
consider the Brownian case and give proofs that are elementary in the sense that
they do not use Markov process theory or the results of Cinlar, Jacod, Protter
and Sharpe (1980). Our results are then used to give simple interpretations of
recent results of Haussmann, Pardoux and Picard.

2. Expansion of filtrations for Lévy processes. In this section we estab-
lish results about the expansion of filtrations that have an interest in their own
right. All that is needed for the time-reversal results, however, is Theorem (1.8).
A simple proof of Theorem (1.8) alone is given following Comment (2.18) for the
convenience of the reader who is interested primarily in time reversal.

For all facts about random measures and stochastic integrals with respect to
random measures, we refer the reader to Jacod (1979).

Let p denote the jump measure of Z. That is,

(2'1) p’(w; dt X Cix) = z s(s,AZ,(w))(dt X (tx)7
§>0,AZ(w)#0

where AZ, = Z_— Z,_, the jump of Z at time s. Since Z is a Lévy process, the
F-compensator of p is given by

(2.2) v(w; dt X dx) = dt ® F(dx),

where F' is a nonrandom measure on R, which integrates the function x —
min(x2,1). For every a > 0 we have a decomposition for the Lévy process Z,

t
(2.3) Zt=bat+Zf+/0f x(p—v)dsxdx)+ ¥ AZYjazsa

x|<e 0<s<t

where b, € R, and the integral above is a stochastic integral.
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We introduce still another filtration, which is larger than G:
H = (), is the smallest complete filtration relative to
which Z is adapted, and Z{ and p([0,1] X A) =
Yo <s<1la(AZ,) are H#-measurable, for all Borel sets A lying
at a positive distance from 0.
That H is larger than G (i.e, 9, C 5, for all ¢) is easily deduced from the
following two facts:

(i) fr((0,1] X dx)f(x) = Lo 4<1f(AZ,) is H#measurable for all Borel func-
tions f vanishing on a neighborhood of 0.

(ii) The integral on the right-hand side of (2.3) is the limit in L?, as n tends to
o0, of

./:./; x(p—v)(dsxde)= Y AZYy oz <a)~ t_/; xF(dx).

/n<|x|<a O<s<t /n<|x|<a

(2.4)

As a consequence Z, is clearly s ;measurable.

The main result of this section is the following.

(2.5) THEOREM. Let Z be a Lévy process. Then every F-semimartingale is
an H-semimartingale on [0,1), where H is as defined in (2.4).

Since any H-semimartingale that is adapted to G is also a G-semimartingale
by Stricker’s theorem, this result yields Theorem (1.9) and a fortiori Theorem
(1.8) on [0, 1). [For a complete proof of (1.8), see (2.19).]

We begin with two preliminary results that have intrinsic interest. The first
one is due to Kurtz (1986).

(2.6) THEOREM. Assume that the Lévy process Z is integrable [i.e.,
E(|Z,)) < oo for all t]. Then

tZ, —
(2.7) M,=2,— fo

1 s
1-s

ds is a G-martingale on [0,1].

ProOF. First assume E(Z2) < oo for all ¢. Let 0 < s <t <1 be rationals,
with s = j/n and ¢t = k/n. Next set
Y, = Z(i+1)/n - Zi/n'
Then Z, — Z, = £72}'Y; and Z, — Z, = X}_'Y,. The random variables Y; are i.i.d.

and integrable. Therefore

k—1
E{Zt_Zslzl _Zs} = E{ E Y,

T Y,-}

i=j i=j
—7n—1
(2.8) _RoINy
n—j 2
t—s
= (Zl _Zs)
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The independence of the increments of Z yields E{Z, - Z,|9,} = E{Z, —
ZJ\Z, - Z)}; thus E{Z,— Z|9,} = (t — s)/( — s)(Z, — Z,) for all rationals 0 <
s < t < 1. Since Z, — E(Z,) is an F-martingale, the random variables (Z,), .,
are uniformly integrable, whereas the paths of Z are right-continuous. We
deduce that (2.8) holds for all reals, 0 < s < ¢ < 1.

Now fix s and ¢, 0 < s < ¢ < 1. Using first Fubini’s theorem for conditional
expectations and second (2.8) yields

1
t
E(M, - M9} = E{Z,- 2)9,) - [ {—,E(2, - 29} du

1—-u

t—s t
=1 (%-2) —fs (2, - Z,)du

= 0.

It remains to verify that E{/}|Z, — Z,|/(1 — s) ds} < 0. Due to the inde-
pendence and stationarity of the increments of Z, we have

E(Z, - 2} < B{(2, - 2.)*} " < a(1 - 5),

for some constant a and 0 < s < 1. Therefore

Z.— 7 V1 —
E{flLl——jl-ds}Safl sds<oo.
o 1-—s 0

1-ul-s

1-s

Finally, suppose we have only that E{|Z,|} <o, 0 <t<1 Let J}!=
20<s'stAZsl{AZ,>l)’and JP = —Xo<s<tBZ1pz <_1)- ThenY, = Z, — J) + 7
is a Lévy process with bounded jumps, hence square integrable. Since Y, J! and
J? are independent, we have that Y, — [{(Y;, — Y,)/(1 — s) ds is a G-martingale
on [0,1].

The same proof shows that J — [{(J} — J})/(1 — s)ds is a martingale on
[0,1] if Ef}|Jf — J}| /(1 — s)ds < o0. But

Wi~ I i
SR e

1-s 1-s

=£1E{(Jf—<f;')}ds

1-s

11—8
=ai£)1_sds=ai<oo,

by the stationarity of the increments. Since Y, J' and J? are independent, we
“conclude that M is a G-martingale on [0,1]. O

(2.9) THEOREM. Let Z be a Lévy process.

(i) The process

th—ZEdS

(2.10) Z‘:=Z§—f0 T

is an H-martingale on [0,1] with quadratic variation (2°, 2°)y = (Z°, Z°).



626 J. JACOD AND P. PROTTER

(i) The H-compensator p of the jump measure p. on [0,1] is given by
p(w; (¢,1] X dx)

(2.11) p(w; dt X dx) = dt X -

Lio,1)(2)-

Proor. We indicate the dependence of the various filtrations on the underly-
ing process Z by writing F(Z), G(Z) or H(Z). .

(i) Since Z° is itself an integrable Lévy process, Theorem (2.6) implies that Z¢
is a G(Z°)-martingale on [0,1]. In this case G(Z°¢) = H(Z°), and letting Z¢ =
Z — Z° we have that H(Z) is the filtration generated by H(Z¢) and H(Z¢). [That
is, #(2), = N, H(Z°), V H#(Z?),.] Note that the filtrations H(Z¢) and H(Z¢)
are independent, whence Z° is also an H(Z)-martingale on [0, 1].

(i) Let # denote the class of Borel subsets of R lying at a positive distance
from 0. For A € %, we set

ZA =p((0,t] x A),
eZt - Z}
2A=74— j L2 ds = p((0,¢] x A) — p((0, ] x A).
o 1—s
For all A € %, the processes (p((0, t] X A))y.,<, are continuous and adapted
to H; thus the random measure p is H-predictable. Therefore the statement (ii)
is equivalent to the claim that for every A € %,, the process Z4 is an H(Z)-
martingale on [0, 1]. In other words, for all 0 < s < ¢ < 1 it suffices to prove that

(2.12) E{(Z27 - Z4)Uv) =,
where U is bounded and %#(Z),-measurable, and V is bounded and measurable
with respect to o(Z{ — Z5, ZB — ZB: B € %,).

Due to the independence of the increments of Z, the r.v. U is independent of

(2;“ -2 )V, and thus it is enough to prove (2.12) when U = 1. Furthermore, by
a monotone class argument it is enough to consider V of the form

V=i(z; - Z¢) I]lfi(Zf‘f - ZM) rllg,(lef -z5),
1= j=

where f, f; and g; are all bounded Borel; where (4,,..., A,) is a Borel partition
of A; and where B; € %, with BN A = &. )

Next observe that the processes Z¢ and Z% are independent of Z4 and Z4:.
Thus it is enough to prove (2.12) when U = 1 and

V= T1f(z8 - z%).
i=1

with A; as before. Since Z4 = L7 ,24: and since the processes Z“: are indepen-
dent, we have in this case

E{(2# - 28)Uv)

=éE{(Z;%_Z:i)f,.(z;*i—zfi)} [T E{f(z0 - z)).

J#i,1<j<n
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Finally, it suffices to show
(2.18) E{(Z# - 22)f(28 - 224)} = 0.
At this stage we observe that Z4: is an integrable Lévy process (recall that A;
lies away from 0), and hence by Theorem (2.6) we have that Z4: is a G(Z4+)-
martingale on [0,1). Since Z{i — Z4i is 9(Z4),-measarable, (2.13) follows and
the proof is complete. O

ProOOF OF THEOREM (2.5). As is well known, it suffices to prove that any
square-integrable F-martingale M on [0,1) with M, =0, and which is either
continuous or purely discontinuous, is an H-semimartingale on [0,1) [cf.
Dellacherie and Meyer (1982)].

Case (i). Let M be a continuous square-integrable F-martingale on [0, 1] with
M, = 0. The representation theorem for martingales of a Lévy process implies
that M, = [{H,dZ¢ for some predictable process H such that

(2.14) E{ fo 'H? 4(z°, Z°>s} - 02E{ fo 'H? ds} < o,

since (Z°, Z°), = o2t for some ¢ > 0. But (Z°, Z°) = (Z¢, Z°), and thus (2.14)
yields that the stochastic integral M, = JoH, dZ¢ is well defined and is an
H-martingale on [0, 1). Moreover, if C = Z¢ — Z°¢, then (2.10) together with (2.14)
implies that the Stieltjes integral D, = [fH, dC, is well defined on [0, 1).

It remains only to observe that
(2.15) M=M+ D.
Equality (2.15) is clear if H is bounded by Stricker’s theorem, since [{H, dZ{ has
the same value in F and H. If H is not bounded let H" = Hl,p, _,, M=
JEHP dZg, M = [{H? dZ¢ and D = [{H! dC,. Then

M*=M"+ D",

and M”, M”" and D" all converge in probability to M, M and D, respectively;
therefore (2.15) holds.

Case (ii). Let M be a purely discontinuous square-integrable F-martingale on
[0,1) with M, = 0. Then there exists a predictable function Won @ X [0,1) X R
such that

(2.16) M,= /()‘/RW(S, x)(p - »)(ds X dx),

where W satisfies

(2.17) E{folfRW(s,x)Zp(ds X dx)} = E{fOI/RW(s,x)%sF(dx)} < o,

and where p, » and F are given in (2.1) and (2.2) [cf. Jacod (1979)].
Note that (2.17) implies that the following stochastic integral is well defined
and gives an H-martingale on [0, 1):

- [ ‘ [ Wis, %) = p)(ds x d),
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where p is as given in (2.11). For n € N we set

= [ ‘ /.x.>1/,,W(s’ x)(p - v)(ds X dx),
= ‘ f|x|>1/nW(s’x)(“ ~ p)(ds x dx),

= fotflxl>l/nW(s,x)(p = »)(ds X dx),

where M = M° = C° = 0. These processes are all of finite variation on [0, ¢] for
all t < 1. Also M"=M"+ C" M" is an F-martingale on [0,1]; and M" is an
H-martingale on [0, 1). Furthermore, a classical convergence theorem for random
measures implies that M;” > M, and M i M in L2 as n tends to . There-
fore C* - C, in L2, where C, is deﬁned bo be M M It remains only to prove
that C has paths of finite variation on [0, ¢], all t< 1

To this end, we observe that in view of (2.2) and (2.14), we have

=‘/(;tljsndg

where

UMw) = f|

x|>l/n1 =S8

p(w; (s,1] X dx)W(w, s, x) —f F(dx)W(w s, x).

lx|>1/

Let n > m > 0, and with the convention 1/0 = + o0,

1
Nrmms() = 1(s<t)/ /1/ .y W(w, u, x)(p — v)(w; du X dx).
Note that N, ™ ®(w) is the integral (with respect to u — ») of the function

(wy u, x) i Wn,m,s(w’ u7x) = :1{s<u}w(w, s’x)l(l/n<}x}sl/m)‘

Therefore N™ ™ ¢ is an F-martingale, and

E{(Npm)’) = B{ [[ [ (W, 2)* duF(a)|

1 i sE{-/1/n<|x|sl/mW(s’ x)2F(dx)}.

By construction we also have N»™* = U — U". Hence for ¢ < 1,

E{fot(Un Um) ds} /ltissE{A/nqﬂsl/mW(s’x)ZF(dx)}’

which tends to 0 as n, m increase to oo, by (2.17). We deduce that U™ converges
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to a limit U in L2%Q X [0, t], P(dw) ® du), and, moreover, obviously C, =
J/{U, ds, which completes the proof. O

(2.18) COMMENT. Theorems (1.9) and (2.5) will not be used for the time-
reversal results comprising the rest of this article. Theorem (1.8), however, is
fundamental. It is worth noting, therefore, that it has a simple proof, based only
on Theorem (2.6).

(2.19) PROOF OF THEOREM (1.8). Let Z be an arbitrary Lévy process. Let
I} =Xg<s<:AZ,1 sz, 5 1) the last term on the right-hand side of (2.3) with
a = 1. Set

Z; =2, J.

Then Z’ is a square-integrable Lévy process and hence is a G(Z')-semimartingale
by Theorem (2.6). [We write G(Z’) to indicate the dependence of the filtration on
the underlying process, as in the proof of Theorem (2.9).] Moreover, Z’ and J!
are independent, hence G = G(Z) is contained in the filtration K, which is
generated by the two independent filtrations G(Z') and G(J 1), and it readily
follows that Z’ is a K-semimartingale on [0, 1]. It is therefore a G-semimartingale
on [0,1] as well, because of Stricker’s theorem [cf., e.g., Dellacherie and Meyer
(1982), page 248]. Moreover, since Z has right-continuous paths with left limits,
we deduce that J' has paths of finite variation on [0,1] and thus it is a
G-semimartingale. Therefore Z = Z’ + J' is a G-semimartingale on [0,1]. O

(2.20) COMMENT. In the case where the Lévy process is a Brownian motion
these results are not new. Theorem (1.8) for Z a Brownian motion is due to It6
(1978). Theorem (1.9) for the Brownian case can be found (along with many
other interesting results) in Jeulin (1980), page 46 ff.

3. Reversal of stochastic integrals. With the notation of Definition (1.2),
let Y be an (F, G)-reversible semimartingale. We also suppose given a process H
with cadlag paths that:

(3.1) Forall 4,0 < ¢ <1, H, is % and measurable.

The quadratic covariation [H,Y] exists in the following
sense: Fix t,0 < ¢t < 1, and let 7, = (..., t;) be a partition
of [0, t] with ¢, =0, ¢, = ¢. Let

Sf,(Ha Y) =H,Y, + Z_(Htm - Ht;)(Yt - Yt.)

(3.2) We say the quadratic covariation exists if there exists a
cadlag, adapted process [ H, Y] such that

lim S,.(H,Y) =[H,Y],, in probability,

n—o
0 < t < 1, for each sequence 7" of partitions of [0, t] with
mesh tending to 0.
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(3.3) THEOREM. Let H and Y be as given previously with H satisfying (3.1)
and (3.2). Then the processes [H,Y] and X, = [{H,_dY, are (F,G)-reversible

semimartingales. Moreover,

(3.4) X+ [HY) = [H_,dY,
0

Proor. First note that the left-continuous process H1 _, is G-adapted by
(3.1), and hence G-predictable, so the stochastic integral in (3.4) is well defined.
Fix ¢,0 < t < 1, and let 7 be a partition: {l—t—s <s1 cor <s,=1}of
[1 — ¢, 1], chosen such that AY, =0as. foralli=1,2,...,n — 1. (For a process
V, AV, =V, - V,_, the jump at t.) Next we define
n—2
AT = H(l—t)— AY, ,+ 'Zo Hs;(
im

= Z 3;+1( Siv1- Y;i—)’

Y.~ Y)+H, (Y, -7, ),

(3.5)

C"= AH,_,AY, ,+ Z( -H)(Y, -Y)

im0 i+1 Si+1 S
+(H, - H, )Y, _-Y, )
By hypothesis (3.2) we have (limits are in probability)
lim C"=[H,Y],_-[HY],_,+AH, _,AY,_,

mesh(7) -0

(3.6) [H,Y],—[H,Y)a-o-

-[H,Y],.

By Hypothes1s (3.1) and the assumption that Y is (F, G)-reversible, we know
that C" is 9-measurable, hence [H,Y] is G-adapted. It is of finite variation by
hypothesis. Therefore [ H, Y] is an (F, G)-reversible semimartingale.

To show X is also an (F, G)-reversible semlmartmgale it will suffice to show
the validity of formula (3.4). To that end, since H is cadlag, we know that

~

(3.7) limA’—f[l e dY= X = Xy = -,

where the limit is in probability as mesh(r) tends to 0. Equation (3.7) is the
Riemann approximation theorem for stochastic integrals [e.g., Dellacherie and
Meyer (1982)]; alternatively, it can be shown directly by the dominated conver-
gence theorem for stochastic integrals [cf. Jacod (1979), page 57]. Also, since
-Y, = -Y,_,-Y_ s;.,)» analogously we have

Siv1-

(3.8) lim B" = ['H,_, d¥,.
0
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From (3.5) we have

n—2
A"+ B"+C"=H,_,AY,_,+ Y Hsm(Ysm - Ysi)

=0

n—1
+ Hl—(Yl—_ YS,.RI) - Z HS;'H(Y(S.‘H)—_ Ysi-)

i=0

n—2
=H,_,AY,_,+ ) Hsm(AYSM - AYs)
i=0
- AHI(YI—_ Y, ) - H,AY,

n—~1 sn—l.
However, we chose 7 so that AY, =0for1 <i <n — 1, and thus

A"+B +C"=(H,_,- Hsl)AYl_t + AHl(Ys,,_, -Y.),
which clearly tends to 0, since s, decreases to 1 — ¢t and s,_, increases to 1.
Therefore formula (3.4) follows from (3.6)-(3.8). O

(3.9) ComMmENT. If IZ' isa Q-semimartingale on the closed interval [0, 1], the
same proof shows that X is a G-semimartingale on [0,1].

(3.10) COMMENT. Let f be a ¢! function and suppose Z is a Lévy process.
If we take H = f(Z), then Theorem (1.11) follows trivially from Theorem (3.3);
one need only check that (3.2) holds, which has been shown by Meyer (1976),
page 359. The same argument establishes Theorem (1.12) whenever f is ¢'. In
Section 6 we apply Theorem (3.3) to stochastic differential equations.

4. Time reversal and additive functionals. In this section we prove
Theorem (1.11). It is convenient (and involves no loss of generality) to use the
Dynkin realization for our Lévy process Z. That is, we take Q to be the path
space © = D([0, «0),R); Z to be the canonical process Z,(w) = w(t) for w € Q; F
to be the canonical filtration; (6,),. o to be the canonical shifts (so that Z,,, =
Z,°0,); and we assume given a family of measures (P¥), c g under which Z is a
Lévy process with Z, = x, P*-a.s. Therefore = = (Q, #,6,, Z,, P*) is a strong
Markov process. These are the standard notational conventions of Blumenthal
and Getoor (1968). Note that the measure P of Theorems (1.11) and (1.12) is the
measure P° restricted to %, in this context.

An adapted, cadlag process A is an additive functional (AF) of = if A, =
A, + A, 00, as, all s,t> 0, where the null set does not depend on s or ¢. Note
that we drop the traditional requirement that the paths of A be increasing.

For a given process Y, let Y be as defined in (1.1), and let G be as defined in
(1.5).

(4.1) LEMMA. If A is an additive functional of E, then A is adapted to G.
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PROOF It suffices to prove that A,_ is 9-measurable. Since A is additive we
have A, o8, _, also A,_ is %, - measurable so it is enough to show that
0,1 (%, ) c ‘? “Since F was defined to be minimal, it is enough to show that
Z,00,_,= Z1 ++s 18 G measurable for all s < ¢. But Z, _,, , Z(, s-+ Zo — Z,
and also Z, = 0, P-a.s. Since G is P-complete, we are done. O

PrOOF OF THEOREM (1.11). First we observe that Z — Z, is an AF, and
hence X, = [{f(Z,_) dZ, [cf. (1.4)] is also an AF of =. [See Cinlar, Jacod, Protter
and Sharpe (1980) for proofs of this and related statements.]

We next recall that if Z is a pure step process (that is, a compound Poisson
process), then its paths are of finite variation on [0, 1]. Therefore X and X are
also of finite variation on [0,1] and the result follows from Lemma (4.1).
Therefore it remains to consider the case where Z is not a pure step process.

Let f be the right- continuous functlon of finite variation on compacts
associated to f in (1.10), and let X 1¢ f(Z )dZ We will first prove that X is
an (F, G)-reversible semimartingale. Note that f is the right derivative of a
function F, which is the difference of two convex functions. Let 5 be the Radon
(signed) measure, which is the derivative of f taken in the generalized functions
sense.

Next we recall the construction of the local time L? of the F-semimartingale Z
at a level a. [This is the semimartingale local time as introduced by Meyer
(1976), page 365; it is not the Markov local time as found, for example, in
Blumenthal and Getoor (1968). The latter need not even exist.] Set

. -1, ifx<0O,
sgnie = { 71 1530

Then
t,
L¢=\Z,—a| - |Z,— a| — '{)s1gn(Z _—a)d(Z - Z,),

-2 {1Z, - a| - |1Z,_— a| —sign(Z,_— a) AZ,}

s<t

defines the local time. As is well known there exists a jointly measurable version,
and we use this one by convention. Since |Z, — a| — |Z, — a| is an AF, L? is also
an AF, which is indeed continuous and nondecreasing in ¢. Then the
Meyer—Tanaka-It6 change-of-variables formula yields

1
F(Z,) - F(Z,) = X, + 5 [L¢n(da)

+ X {F(Z,) - F(Z, ) - {(Z,-)AZ,}.

s<t

Denote by S, the second two terms on the right-hand side of (4.2). Then S, is an
AF with paths of finite variation on [0,1]; thus S is a G-semlmartmgale by
Lemma (4.1). Moreover, if we set V, = F(Z,) — F(Z,) for t € (0,1), we have

Vt = F(Z(l—t)—) -F(Zz, )= F(Zt - Z1) - F(_Zl),

(4.2)
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P-as., since Z, = 0 a.s. However, by Theorem (1.8) we know that Z,—Z isa
G-sennmartmgale on [0, 1). Therefore V is also a G-semimartingale on [0 1) since

F is the difference of convex functions. Equation (4.2) then yields that X isa
G-semimartingale on [0, 1), and thus X is an (F, G)-reversible semimartingale.

In order to finish the proof of the theorem it is then enough to show that
X, = X a.s. for all ¢ € [0,1]. That is, letting D = {x: f(x) # f(x)} it is enough
to prove that

(4.3) [15(2,.)dZ,=0 as, o0sts<1.
0

First note that since Z is not a pure step process, by Theorem 1 of Blum and
Rosenblatt (1959), we have P(Z, = x) = 0 for all x, s. By hypothesis the set D is
at most countable, hence by Fubini’s theorem we have

(4.4) [1p(Z)ds =0 as.
0

Recalling (2.3), for every a > 0 the process Z has the decomposition
(4.5) Z,= M/ + bt + Jg,

where Jf =Y, ,AZ1sz/5>0y b, €R and M?® is a martingale such that
(M*, M "), K ,t for some constant K ,. Then (4.4) implies

B{( [10(2) ave) | - B{ [15(2,) acate, 1%,

- K,,E{ fo “(Z,.) ds}

= 0.
Thus if Y* = M + b,t we obtain

(4.6) ) “1p(Z,)dY*=0 as, O<t<l.
0

Moreover, since lim,_, J7 =0, 0 < ¢ < 1, combining this with (4.6) and using
the decomposition (4.5) yields (4.3). O

(4.7) CoMMENT. Let H be the filtration associated to the Lévy process Z by
(2.4). Due to Theorem (2.5), we can obtain more than Theorem (1.11); namely,
that X is an (F, H)-reversible semimartingale. We state this as a theorem in the
next section [Theorem (5.16)].

5. Time reversal and enlargement of filtrations. In this section we prove
Theorem (1.12). We begin, however, with a theorem that has intrinsic interest.
We need an additional hypothesis.

(5.1) HypoTHESIS. For every ¢, 0 < t < 1, the law of the random variable
Z, has a density p, (with respect to Lebesgue measure). Moreover,
SUP|y<p, e<t<1P(Y) < coforall nEN, > 0.
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(5.2) CoMMENT. If Z° is not identically zero, then (5.1) holds.

(5.3) THEOREM. Assume Hypothesis (5.1) holds. Let k be a Borel function
on R? such that

(i) k is bounded and sup,, . , |, <1R(%, ¥)/|y| < o foralln € N;
(ii) for each y, |y| <1, the function k(-, y) is either right-continuous or
left-continuous, and it admits a Radon measure v, as its generalized function

sense derivative; moreover, there is a positive Radon measure m such that
In,l < |yIm, all |y| <1, where |n,| denotes the total variation measure of n,.

Then the F-martingale
t

(5.4) Vo= [ [ R(Ze- 3) (s = »)(ds X dy)
0 /r

is an (F, G)-reversible semimartingale.

PROOF. (a) Let fi denote the jump measure of the reversed process Z. Since
,?(Z ) = &(—Z), the I*-compensator (where F is the natural filtration of Z) of ji
is clearly

(5.5) 5(dt X dy) = dt ® F(dy),
where F is the symmetric analog of F given in (2.2). By virtue of Hypothesis

(6.1) and Jacod (1985), pages 28-29, there is a nonnegative G-predictable func-
tion U on € X [0,1] X R such that the G-compensator of i is

(5.6) F(w; dt X dy) = U(w, t, y)#(dt X dy)
and
t ~
(5.7) A fI _JUCe,5,5) = 1 b17(ds x dy) < oo,
yI<

forallt <1, w € Q.
(b) Next we set for n € N,

(58) Vo= [ e )= v)(ds x ).

This is an AF with paths of finite variation [cf. Cinlar, Jacod, Protter and
Sharpe (1980)], and thus it is an (F, G)-reversible semimartingale by Lemma
(4.1). Also since Z is a Lévy process AZ, = 0 a.s. and we have

//yl>1/n a5 ¥)r(ds X dy)

—fo/un/ R(Zq_,)-» y)u(ds X dy)
(59) 1> 1/n
= ft[y|>1/nk(Z1_s, —y)#(ds X dy)

h f ./ k(Z,_ +y, —y)ii(ds X dy).

y|>1/n
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Since & is bounded, both V" and V" have bounded jumps; in particular, V" is a
special semimartingale, and its G-canonical decomposition

Vr=M"+ A"
is given by [using (5.5), (5.6) and (5.9)]

- _f fy R(Z,_, +y, —y)(i — 7)(ds X d),

|>1/n
1 "
(5.10) - ff (k(Z,_,, —y) — k(Z,_, +y, —y)U(s,y)}i(ds X dy)
¥1>1/n
= B’tn + C"tn,
where
~ t ~
Br= [ | HZit 3 =)(1 = Uls, )}3(ds x dy),
(5.11) g

Cr=['ds {(k(Z,_5, y) = k(Z,_, — , y) }F(dy).
0 Jyi>i/m

(c) The next step is to let n increase to co. Using hypothesis (i), a classical
convergence theorem for stochastic integrals with respect to random measures
yields that V;” > V, in probability, uniformly in ¢ Therefore we also have
V" - V in probablhty for all ¢, 0 < ¢ < 1. Analogously, by the same theorem

M i M in probability, where
- ¢ L.
M, = — [[k(Z_, + 5, =3)(f = 7)(ds X dy).
0 'R

Using hypothesis (i) again together with (5.7) and (5.11), we have B," - B, in
probability, where

B~ [ [R(Zis+ 3, —y)[L - Uls, y)l3(ds x dy),

which is a process with paths of finite variation. We can thus deduce that cr
converges in probability to C V M B,. It remains only to prove that C is
a continuous process of ﬁmte varlatlon since that will imply that V is a
semimartingale.

(d) Actually we will show that

t
(5.12) D,sfodsfllsl|k(zl_s,y) —k(Z,_, -y, y)IF(dy) < 0 as.
Yy

If (5.12) holds we can use Lebesgue’s dominated convergence theorem to con-
clude

Co= [(ds [ (R(Zi-pr 3) = k(Ziy = 7, 7)) F(dy),

and C will have continuous paths of finite variation. To show (5.12), define
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K, ={|Z, <n,all s <1}. Then

E[1D] < [(ds [ F@)E[kZis, 3) = M(Zi =3 Mgz,

t

= [lds [ F(dy)[ pr_i(u)k(u, y) - k(u-y,y) du,
0 lyl<1 lul<n

where p, is the density defined in Hypothesis (5.1). Next we use hypothesis (ii) of

the theorem to obtain for |y| < 1,

k(u, y) — k(u -y, y)l < fl | In,|(do) < Iylfl ) n(dv)
u—v|<y u-v|<y
and thus, if L;’ = Sup|y|sn, sel-¢, l]ps(y)7 it follows that

BluD] < [ds[ F@)[  a@o[ o was

lyl=<1

<2tL’*?y([n—-1,n+ 1])[ F(dy)ly)? < o0. °
ly|=<1
Since U, K, = Q, we have established (5.12), and thus the theorem as well. O

(5.13) CoMmMENT. Hypothesis (5.1) is based on “Condition (A)” of Jacod
(1985), page 15. However, Condition (A) is shown to be equivalent to Condition
(A’), which gives rise to a weaker condition than Hypothesis (5.1). We can
therefore replace Hypothesis (5.1) by a weaker statement:

Let n, denote the law of the random variable Z,, and let {, denote the
“potential” {,(A) = [/ ,(A)ds. Assume that for each ¢, 0 <¢ <1, {, has a
density p, with respect to Lebesgue measure, and that sup, ,f,(y) < o, all
n € N.

(5.14) COMMENT. In (ii) of the previous theorem, the assumption that k(-, y)
is either right-continuous or left-continuous is clearly too strong a requirement.
Indeed, the property that it admits a Radon measure for its derivative implies
that at each point x it has a right and left limit, say &, (x, ¥) and &_(x, y); thus
it would be enough to assume only that k(x, y) lies in the interval having
k., (x, y) and k_(x, y) as its endpoints.

(5.15) CoMMENT. As in Comment (4.7), let H be the filtration associated to
the Lévy process Z by (2.4). Then V is an (F, H)-reversible semimartingale.

In fact, we could obtain this result directly by using the method of Section 2
instead of the results of Jacod (1985). More precisely, let § be the H-compensator
of ji on [0,1). Then we define M™ and M as before, using 5 instead of 7, so that
M" and M are H-local martlngales on [0,1). We still have

"= M"+ A"
and
A" = B 4+ Cr,
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with " unchanged but with B” given by [instead of (5.11)]

p= [ Rz 5, =2)( - B)(ds X dy).

0°“ly|>1/n

Thus B = [{U" ds, with

~ 1
Or=[  —i((s,1] X d)k(Zi_, + 3, -Y)
lyl>1/nl —

- F(dy)k(zl—s+y7 _y)
ly|>1/n
and, exactly as in the proof of (2.5), we deduce from assumption (i) that Br
converges to B, = [{U, ds in L? for a suitable process U.

The rest of the proof remains unchanged. Observe, however that, although we
do not use the results of Jacod (1985) with this method, we are unable to remove
Hypothesis (5.1), which seems necessary to obtain that C™ converges to a process
with paths of finite variation.

PROOF OF THEOREM (1.12). Exactly as in the proof of Theorem (1.11), it is
enough to show that the process Y fo f(Z _)dZ¢ is an (F, G)-reversible semi-
martingale, where [ is the functlon associated to f in (1.10). In other words, we
can and do assume that f is a right-continuous function of finite variation on
compacts. We let

X,= fo‘f(zs_)dzs, Y,= fo‘f(zs_)dz

as in (1.4).

By Theorem (1.11) we know that X is an (F, G)-reversible semimartingale.
Also since Z°¢ is not identically zero, by Comment (5.2) we have that Hypothesis
(5.1) holds.

Consider next the decomposition (4.5) of Z, Z, = M} + b,t + J£ with a = 1.
The martingale M} can be written as

t
M =Zi+ ['f  y(n=)(ds x dy).
0yl=<1

Hence if A, = b,t + J;' [the last two terms on the right-hand side of (4.5)], we
have

(16) X, =Y+ ['f (2= »)dyxds) + [1(2,) A,

Then C, = [{f(Z,_)dA, is an AF of = with paths of finite variation, and hence it
is an (F G)-reversible semlmartlngale by Lemma (4.1). It remains only to show
that the middle term on the right-hand side of (5.16) is (F, G)-reversible.

To this end, we use Theorem (5.3) with k(x, y) = f(x)y. Note that such a %
clearly satisfies the hypotheses (5.3)(i), (ii), and the proof is complete. O
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Actually, due to Lemma (4.1) and Theorem (2.5), we can obtain more than
Theorems (1.11) and (1.12). Let H be the filtration associated to the Lévy process
Z by (2.4).

(5.17) THEOREM. Let Z be a Lévy process and let f, g satisfy (1.10). Let A be
an additive functional of Z. If

t t
U= [1(2,.)dz,+ [e(2,.)dz: + A,
0 0
then U is an (F, H)-reversible semimartingale.

Proor. By Lemma (4.1), we know that A is G-adapted, and it has paths of
finite variation. Since 5, D ¢, [as shown in the remark following (2.4)], we have
that A is an H-semlmartmgale Letting X, = [{{(Z,_)dZ, and Y, = jog(Z _)dzZ¢
as in (1.4), we have by Theorems (1.11) and (1.12) that X and Y are G-semi-
martingales. But then it follows from Theorem (2. 5) that X and Y are each
H-semimartingales. Finally, it suffices to note that U = X + ¥ + A to complete
the proof. O

6. The Brownian case and applications. In the Brownian case the situa-
tion is particularly simple, since any additive functional A of a standard
Brownian motion B has a representation

(6.1) A= fn Liu(dx),

for some signed measure p, where L7 is a (jointly continuous) version of the local
times of B at levels x. The relation (6.1) allows us to use only martingale
stochastic integration theory, and, in particular, we can avoid Lemma (4.1). In
the Brownian case Theorem (1.8) was first treated in the context of expansion of
filtrations by Itd (1978) on [0,1]. Theorems (1.11) and (1.12) become in this case

(6.2) THEOREM. Let f satisfy (1.10). Suppose
t
V,= [1(B,) dB, + [ Liu(dx),
0 R

where p is a signed measure on R. Then V is an (F,G)-reversible semi-
martingale.

ProoF. Although the proof is a corollary of Theorem (1.11) and Lemma (4.1)
(with Z = B), we give an autonomous proof

Let f and D be associated with f as in (1.10). It is well known that B spends
a.s. zero time in the at most countable set D. Therefore

B{([10(8) a8,) } - B{ [15(B) a5} =0,

and so [¢f(B,) dB, = [¢{(B,) dB, a.s. Hence it is no restriction to assume that f
itself is right-continuous and of finite variation on compacts.
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Note that f = F, the right derivative of a function F, which is the difference
of two convex functions. Letting 1 be the (generalized function sense) derivative
of f, the Meyer—Tanaka-1t6 formula yields

(6.3) F(B) - F(B,) = ['1(B) B, + 3 [ Lin(da).

Letting U, = F(B,) — F(B,), an F-semimartingale, we have
U,= F(B,_,) — F(B,) = F(B,—- B,) - F(-B,),

and since B, — B, is a G-semimartingale by (1. 8), we have that U is one as well.
It remains to show that A, = [pLiu(dx) is (F,G)-reversible. Since it has

~

continuous paths of finite vanatlon however, it suffices to show that A, is
g -measurable. We do this using local time theory instead of using Lemma (4.1).

First, note that B,= B,_,— B, is an F-Brownian motion. Let I be its
(jointly continuous) local time. Then well-known results about Brownian local
time [see, e.g., Yor (1978), page 32] state

L} = lim — fl[x «+e(B,)ds as,

e—0 €

where the exceptional set can be taken independent of x and ¢. But then
(6.4) A=A, - A = (L5, — Ln(dx);

and

Li, - Li= AO——/ e zva(B) ds

€

=hm—-f ia-n, -5, v0(Be = By) ds

= lim — _fl[x By, x— Bl+e]('§ )du

e—0

= -z B

Combining this with (6.4) yields

A= - [ Pw(dx).

Since 7 are the local times of B, they are F-adapted, and thus A is G-adapted.
O

Note that since one can take p(dx) = g(x)e(o)(dx) + h(x) dx, where ¢, is
point mass at 0, Corollary (1.12) is a special case of Theorem (6.2).

An interesting application of these results is to stochastic differential equa-
tions. Here our general result, Theorem (3.3), is particularly useful. Let B be a
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Brownian motion and X the solution of

(6.5) X,= X, + [‘o(s, X,) dB, + [b(s, X,) ds.
0 0

The filtration F is that of B, and we define

J = j;)ze[o, 17 denotes the smallest complete (right-continu-

(6.6) ous) filtration relative to which B is adapted and X, is
F,-measurable.

It is a well-known result in the theory of flows [see Kunita (1984), page 227]
that if o and b in (6.5) are of class ¢! with derivatives that are globally Holder
continuous (of any positive index), then the flow x — (s, t; x) of (6.5) is a
%'-diffeomorphism. [Here <p(s t; x) represents the value of X, when X, = x and
s < t.] Moreover, ¢(s, t; x) is measurable with respect to o(B s<r<t).
If, furthermore, X, has a density with respect to Lebesgue measure for all
t €[0,1], we deduce that the conditional law of X; = ¢(¢,1; X,) with respect to
o(B.—Bit<r<1)=o(B,;0<u<1-t)also has a denslty In this case the
results of Jacod (1985) imply that B is a J-semlmartmgale on. [0,1), and
therefore by Theorem (3.3) we have that X is a J-semimartingale on [0, 1).
Haussmann and Pardoux (1986) have studied this type of question for systems
and they obtained sufficient conditions for X,, ¢ € (0,1] to have a density. [See
also Pardoux (1986).]

By combining a Girsanov technique [as in Protter (1987)] with the former, one
can consider a more general stochastic differential equation of the form

(6.7) Y,= Y+ [hds+ [o(s,¥,) dB,
0 0

where 4 is F-adapted and jointly measurable. If, for example, % is bounded and
o is bounded away from 0, then the process

6.8 B, -

(6:8) W= -/ o(s Y, °® h ds

is an F-Brownian motion for a probability @ equivalent to P, and the process Y
of (6.7) is a solution of

Y,= Y+ [o(s,Y,) dW;
0

the preceding discussion shows that Y is then a reversible semimartingale under
Q, if o is at least ¥' with Hélder continuous derivatives and also if Y, has a
density for all ¢ < (0,1]. Since @ is equivalent to P, Y is also a P-seml-
martingale. Picard (1986) has used basically this approach for the case of
systems, which, of course, is technically more complicated.
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