ON THE MAXIMUM SEQUENCE IN A CRITICAL BRANCHING PROCESS¹

By K. B. ATHREYA

Iowa State University, Indian Statistical Institute and the Mathematical Sciences Research Institute, Berkeley

If $\{Z_n\}_0^\infty$ is a critical branching process such that $E_1Z_1^2<\infty$, then $(\log n)^{-1}E_iM_n\to i$, where E_i refers to starting with $Z_0=i$ and $M_n=\max_{0\leq j\leq n}Z_j$. This improves the earlier results of Weiner [9] and Pakes [7].

1. Introduction. Let $\{Z_n\}_0^\infty$ be a critical branching process. (See [1] for a complete definition and basic results.) Let $M_n = \max_{0 \le j \le n} Z_j$. This paper studies the growth rate of EM_n .

Here is a quick argument to show that $EM_n \to \infty$. By monotone convergence theorem $EM_n \to EM$, where $M = \max_{j \ge 0} Z_j$. Clearly,

$$E\{Z_n: Z_n > 0\} \le E(M: Z_n > 0),$$

and if $EM < \infty$, then this goes to zero since $P(Z_n > 0) \to 0$. On the other hand, $E\{Z_n: Z_n > 0\} = EZ_n = EZ_0$ for all n.

We establish the following:

Theorem 1. If $E_1Z_1^2 < \infty$, then $(\log n)^{-1}E_iM_n \to i$, where E_i refers to starting with $Z_0 = i$.

This is an improvement over the results of Weiner [9] and Pakes [7]. The former showed that if there exists a finite K such that $P_1(Z_1 < K) = 1$, then there exists a finite positive constant α_K such that $EM_n \ge \alpha_K \log n$ with $\alpha_K \to 0$ as $K \to \infty$, and that if $E_1Z_1^2 < \infty$, then there exists a β such that $EM_n \le \beta \log n$. Pakes [7] improved Weiner's upper bound and showed that

$$\limsup_{n} (EM_n) (\log n)^{-1} \leq 1, \quad \text{if } E_1(Z_1^2) < \infty.$$

Here is an outline of the proof of Theorem 1.

Step 1. Pakes [7] has shown that for any nonnegative martingale $\{Z_n\}$ such that $E(Z_n(\log Z_n)^+) \to \infty$, Doob's maximal inequality ([2], page 263) can be improved to get

$$\limsup_n EM_n \left(EZ_n (\log Z_n)^+ \right)^{-1} \leq 1.$$

Key words and phrases. Branching process, critical, maximum.

Received April 1986; revised April 1987.

¹Research supported in part by NSF Grant DMS-85-02311, by a visiting professorship at the Indian Statistical Institute, Bangalore, and by a visiting membership at the Mathematical Sciences Research Institute, Berkeley.

AMS 1980 subject classifications. 60J80, 60K99.

Since a critical branching process $\{Z_n\}$ is a nonnegative martingale for which $EZ_n(\log Z_n)^+$ does go to ∞ (see Proposition 1) this result is available to us without any additional moment conditions other than $E_1Z_1=1$.

Step 2. Using the conditional limit law of Yaglom (see [1], page 20) we establish (see Proposition 1) that if $E_1Z_1^2 < \infty$, then

$$\lim_{n} \left(E_i Z_n (\log Z_n)^+ - i \log n \right) = \mu_i, \quad 0 < \mu_i < \infty,$$

exists for each $i \geq 1$.

Step 3. Using a stopping time argument we establish a bound for the liminf (see Proposition 4).

If $E_1Z_1^2 < \infty$, then

$$\liminf_{n} E_i M_n (\log n)^{-1} \geq i.$$

Clearly, the above three steps imply Theorem 1.

2. Proofs.

PROPOSITION 1. Let $\{Z_n\}_0^{\infty}$ be a critical branching process with offspring distribution $\{p_j\}$. Assume $p_1 \neq 1$. Then (i) $E_i Z_n \log Z_n \to \infty$ for each $i \geq 1$, and (ii) if, in addition, $\sum j^2 p_j < \infty$, then for $i \geq 0$, $\lim_n (E_i Z_n \log Z_n - i \log n) = i\mu$ exists, where $0 < \mu < \infty$.

PROOF. (i) It is enough to consider i = 1,

$$EZ_n \log Z_n = E(Z_n \log Z_n | Z_n > 0) P(Z_n > 0)$$

= $E(\alpha_n^{-1} Z_n \log(\alpha_n^{-1} Z_n) | Z_n > 0) + \log \alpha_n$,

if we choose $a_n = (P(Z_n > 0))^{-1}$.

Thus, $EZ_n \log Z_n - \log \alpha_n \ge E(\alpha_n^{-1} Z_n \log(\alpha_n^{-1} Z_n))$: $0 < Z_n < \alpha_n | Z_n > 0$). But since $\sup_{0 < x < 1} |x \log x| = C < \infty$, we get

$$\liminf (EZ_n \log Z_n - \log a_n) > -C,$$

proving (i) as $a_n \to \infty$.

(ii) Since $E_i Z_n = i$,

$$\begin{split} E_i Z_n \log Z_n - i \log n &= E_i (Z_n \log Z_n - Z_n \log n) \\ &= E_i \Big(n^{-1} Z_n \log \Big(n^{-1} Z_n \Big) | Z_n > 0 \Big) n P_i (Z_n > 0). \end{split}$$

From (2) we see that $nP_i(Z_n > 0) \rightarrow i\lambda$. Now

$$\begin{split} E_i \Big(\, n^{-2} Z_n^2 | Z_n > 0 \Big) &= n^{-1} E_i \Big(Z_n^2 \colon Z_n > 0 \Big) \big(\, n P_i (Z_n > 0) \big)^{-1} \\ &= n^{-1} \big(i n \sigma^2 + i^2 \big) \big(\, n P_i (Z_n > 0) \big)^{-1}, \end{split}$$

and this converges to $2^{-1}\sigma^4$ as $n \to \infty$. Thus, $n^{-1}Z_n\log(n^{-1}Z_n)|Z_n>0$ are uniformly integrable and (3) now implies (ii) with $\mu=\lambda\int_0^\infty (x\log x)\lambda e^{-\lambda x}\,dx$. \square

Proposition 2. Let $\{S_k\}_0^\infty$ be random walk generated by the probability distribution $\{p_j\}_0^\infty$. Let $\sum jp_j=1$ and $\sum j^2p_j<\infty$. Let $\rho>1$ and $\psi(k,l)=E(S_k;S_k>\rho l)$. Then $\sum_l l^{-1}\psi(l,l)<\infty$.

PROOF. It is enough to consider the case $\rho = (1 + k^{-1})$ when k is a positive integer. Clearly,

$$\begin{split} l^{-1} \psi(l, l) &= l^{-1} E(S_l : S_l > \rho l) \\ &= l^{-1} E(S_l - \rho l : S_l > \rho l) + \rho P(S_l > \rho l) \\ &= a_l + b_l, \quad \text{say}. \end{split}$$

Since $\sum_j j^2 p_j < \infty$, $\sum_l b_l \leq \rho \sum_l P(|S_l - l| > l/k) < \infty$ by the criterion for complete convergence due to Hsu and Robbins [5].

Next,

$$kla_{l} = kE(S_{l} - \rho l: S_{l} > \rho l)$$
$$= E(S'_{l}: S'_{l} > 0),$$

where $\{S_l'\}$ is a random walk generated by the random variable $S_1' = k(S_1 - 1) - 1$. From Spitzer [8], pages 180-181, we know that

$$\sum_{l} l^{-1} E(S'_{l}: S'_{l} > 0) = \frac{E(S'_{T}: T < \infty)}{P(T = \infty)},$$

where

$$T = \begin{cases} \inf\{n \colon n \ge 1, \, S'_n > 0\}, \\ \infty, & \text{if } S'_n \le 0 \text{ for all } n \ge 1. \end{cases}$$

Since $ES_1'=-1<0$, $p=P(T=\infty)>0$. Also $E(S_T':T<\infty)\leq EM'$, where $M'=\sup\{S_n':n\geq 0\}$. Kiefer and Wolfowitz [6] have shown that $EM'<\infty$ if $ES_1'^2<\infty$. But $ES_1'^2<\infty$ is the same as $\sum j^2p_j<\infty$. Thus, $\sum_l a_l<\infty$ and we are done. \square

Remark 1. Actually, the converse to Proposition 2 is also valid. If $\sum_l l^{-1} \psi(l,\rho l) < \infty$ for some $\rho > 1$, then $\sum b_l < \infty$ implying $\sum j^2 p_j < \infty$ by a converse proved by Erdös [3] to the Hsu and Robbins result [5] on complete convergence.

PROPOSITION 3. Let $\{Z_n: n=0,1,2...\}$ be a nonnegative martingale. Fix $n\geq 1,\ l>1.$ Let $T=T_{n,l}$ be a stopping time defined by

$$T = \begin{cases} \min\{r \colon 1 \leq r \leq n, \, Z_r = 0 \text{ or } Z_r \geq l\}, \\ n, \quad \text{if } 0 < Z_r < l \text{ for } 1 \leq r \leq n. \end{cases}$$

Then $E(Z_T: Z_T \geq l) \geq E(Z_n: Z_n \geq l)$.

PROOF. Since T is a bounded stopping time for the martingale $\{Z_n\}$, the optional sampling theorem applies so that $E(Z_T) = E(Z_n)$. The event

 $(0 < Z_T < l)$ is the same as T = n and $0 < Z_n < l$. Thus, $E(Z_T: 0 < Z_T < l) = E(Z_n: 0 < Z_n < l, T = n) \le E(Z_n: 0 < Z_n < l)$. Since $E(Z_T) = E(Z_n)$ the given assertion follows. \square

PROPOSITION 4. Let $\{Z_n\}$ be a critical branching process with offspring distribution $\{p_i\}$ such that $\sum j^2 p_i < \infty$. Then

$$\liminf_{n} (\log n)^{-1} E_i M_n \geq i.$$

PROOF. Now let $\{Z_n\}$ be a critical branching process. It is a nonnegative martingale and so Proposition 3 applies. For fixed integers l and n and positive number $\rho > 1$, we get

$$\begin{split} E(Z_n &: Z_n \geq l) \leq E(Z_T \colon Z_T \geq l) \\ &= E(Z_T \colon Z_T \geq l, \, Z_T \leq \rho l) + E(Z_T \colon Z_T \geq l, \, Z_T > \rho l) \\ &= A_{n,l} + B_{n,l}, \quad \text{say}. \end{split}$$

Clearly, $A_{n, l} \leq \rho l P(M_n \geq l)$, where $M_n = \max_{0 \leq j \leq n} \{Z_j\}$. Next

$$\begin{split} B_{n,l} &= \sum_{r=1}^{n} E(Z_{T} \colon Z_{T} > \rho l; \ T = r) \\ &= \sum_{r=1}^{n} E(Z_{r} \colon Z_{r} > \rho l; \ Z_{1} < l, \dots, Z_{r-1} < l) \\ &\leq \sum_{r=1}^{n} E(\psi(Z_{r-1}, l); \ 0 < Z_{r-1} < l), \end{split}$$

where $\psi(k, l) = E(S_k: S_k > \rho l)$, $\{S_k\}_0^{\infty}$ being random walk generated by the offspring distribution $\{p_j\}$. Since $\psi(k, l)$ is increasing in k for fixed l, we have

$$B_{n, l} \leq \psi(l, l) \sum_{r=1}^{n} C_{r, l},$$

where

$$C_{r,l} = P(0 < Z_{r-1} < l).$$

We shall now show that if $\sum_{i} j^{2} p_{i} < \infty$, then

(1)
$$\lim \sup_{n} (\log n)^{-1} \sum_{l=1}^{\infty} l^{-1} B_{n, l} = 0.$$

To do this we need the following facts proved in [1]. If $1 < \sum_{1}^{\infty} j^2 p_j < \infty$, then for $i \ge 1$ as $r \to \infty$,

$$rP_i(0 < Z_r) \to i\lambda$$

and

(3)
$$\sup_{x>0} |P_i(0 < Z_n < nx|Z_n > 0) - \phi(x)| \to 0,$$

where $\phi(x) = 1 - e^{-\lambda x}$, $\lambda = 2\sigma^{-2}$, σ^2 being the variance of $\{p_j\}$. Since $C_{r,l} \le$

 $P(0 < Z_{r-1}), (2)$ implies

(4)
$$\sup_{\substack{n \ge 2 \\ l > 1}} (\log n)^{-1} \sum_{r=1}^{n} C_{r, l} < \infty.$$

Next

$$\begin{split} \sum_{r=1}^{n} C_{r,\,l} &\leq K l + \sum_{r=K l+1}^{n} C_{r} | P(0 < Z_{r-1} < l | Z_{r-1} > 0) - \phi \Big(l (r-1)^{-1} \Big) | \\ &+ \phi \big(K^{-1} \big) \sum_{r=K l+1}^{n} C_{r}, \end{split}$$

where $C_r = P(Z_{r-1} > 0)$.

Using (2) and (3) and the fact that $\phi(x) \to 0$ as $x \to 0$, we get by choosing K first and then letting $n \to \infty$ that for each fixed l,

(5)
$$(\log n)^{-1} \sum_{r=1}^{n} C_{r,l} \to 0, \text{ as } n \to \infty.$$

We know from Proposition 2 that

(6)
$$\sum_{l} l^{-1} \psi(l, l) < \infty, \quad \text{if } \sum_{j} j^{2} p_{j} < \infty.$$

Now (1) follows from (4), (5), (6) and the dominated convergence theorem. Returning now to the inequality

$$E(Z_n: Z_n \ge l) \le A_{n,l} + B_{n,l} \le \rho l P(M_n \ge l) + B_{n,l},$$

we have on adding over l,

$$\rho \sum_{l} P(M_n \ge l) + \sum_{l} l^{-1} B_{n, l} \ge \sum_{l} l^{-1} E(Z_n; Z_n \ge l),$$

yielding the inequality

$$\rho(\log n)^{-1}EM_n + (\log n)^{-1}\sum_{l}l^{-1}B_{n,l} \ge (\log n)^{-1}E\bigg(Z_n\sum_{1}^{Z_n}l^{-1}\bigg).$$

We know from (ii) in Proposition 1 that $\sum j^2 p_j < \infty$ implies

$$(\log n)^{-1}E_iZ_n\log Z_n\to i.$$

This with (1) and the above inequality yield

$$\liminf_{n} \rho(\log n)^{-1} E_i M_n \ge i.$$

Since $\rho > 1$ is arbitrary, the proof of Proposition 4 is complete. \square

3. Extensions.

(a) Markov branching processes. Our Theorem 1 extends to any continuous-time Markov branching process with finite second moments. To deduce this from Theorem 1, we proceed as follows. The upper bound of Step 1 of Section 2 can be shown to hold for any continuous-time nonnegative martingale $\{Z_t: t \in [0,\infty)\}$ such that $EZ_t \log Z_t \to \infty$ and thus is valid for a critical Markov branching process. Also Yaglom's theorem holds in the continuous case (see [1],

Chapter 3) and so Proposition 1 extends here. Combining these two, we get $\limsup_{t} E_i M_t (\log t)^{-1} \le i$. Finally, for $n \le t < n+1$ we have

$$M_t \ge M_n^* = \max_{0 \le j \le n} Z_j,$$

yielding

$$\liminf_t E_i M_t (\log t)^{-1} \geq \liminf_n E_i M_n^* (\log n)^{-1} \geq i,$$

by applying Theorem 1 to $\{Z_i: j=0,1,2...\}$ to get the last inequality.

A special case of the above result, namely, that of a critical birth and death process has been proved by Hammerle and Schuh in [4]. They use their result to establish a special case of our Theorem 1, namely, that of a linear fractional offspring distribution by embedding it in a critical birth and death process.

(b) *Multitype Galton-Watson process*. The methods of proof of Theorem 1 carry over to the multitype case. We state the result without proof.

Theorem 2. Let $\{\mathbf{Z}_n: n \geq 0\}$ be a p-type positively regular critical branching process with mean matrix M and finite second moments. Let \mathbf{u} and \mathbf{v} be right and left eigenvectors of M for the eigenvalue one normalized so that $\mathbf{u} \cdot \mathbf{1} = 1$, $\mathbf{u} \cdot \mathbf{v} = 1$, where $\mathbf{1}$ is a vector with all coordinates equal to one and \cdot denotes dot product. Let $M_n = \max_{0 \leq j \leq n} \mathbf{v} \cdot \mathbf{Z}_j$. Then $(\log n)^{-1} E_{\mathbf{i}} M_n \to \mathbf{i} \cdot \mathbf{v}$ as $n \to \infty$.

Acknowledgments. The author thanks the referee for a careful reading of the earlier versions of this paper and for making several useful suggestions. Professor H. J. Schuh caught an error in the proof of Proposition 4 in an earlier version. Thanks are due him for this and for sending me a preprint of his paper [4] with Hammerle.

REFERENCES

- [1] ATHREYA, K. B. and NEY, P. (1972). Branching Processes. Springer, Berlin.
- [2] DOOB, J. L. (1953). Stochastic Processes. Wiley, New York.
- [3] ERDÖS, P. (1949). On a theorem of Hsu and Robbins. Ann. Math. Statist. 20 286-291.
- [4] HAMMERLE, K. and SCHUH, H. J. (1986). The maximum in critical Galton-Watson and birth and death processes. J. Appl. Probab. 23 601-613.
- [5] HSU, P. L. and ROBBINS, H. (1947). Complete convergence and the law of large numbers. Proc. Nat. Acad. Sci. U.S.A. 33 25-31.
- [6] KIEFER, J. and WOLFOWITZ, J. (1956). On the characteristics of the general queueing process with applications to random walk. Ann. Math. Statist 27 147-161.
- [7] Pakes, A. G. (1987). Remarks on the maxima of a martingale sequence with application to the simple critical branching process. J. Appl. Probab. 24 768-772.
- [8] SPITZER, F. (1976). Principles of Random Walk, 2nd ed. Springer, New York.
- [9] Weiner, H. (1984). Moments of the maximum in a critical branching process. J. Appl. Probab. 21 920-923.

DEPARTMENTS OF MATHEMATICS AND STATISTICS IOWA STATE UNIVERSITY AMES, IOWA 50011