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If {Z,)3 is a critical branching process such that E,Z% < co, then
(log n)"'E;M,, — i, where E; refers to starting with Z,=i and M, =
max . ; < ,Z;. This improves the earlier results of Weiner [9] and Pakes [7].

1. Introduction. Let {Z,}7 be a critical branching process. (See [1] for a
complete definition and basic results.) Let M, = max, _;_,Z,. This paper stud-
ies the growth rate of EM,,.

Here is a quick argument to show that EM, — co. By monotone convergence
theorem EM, - EM, where M = max; ,Z,. Clearly,

E{Z,Z,>0} <E(M:Z,>0),

and if EM < oo, then this goes to zero since P(Z, > 0) — 0. On the other hand,
E{Z, Z,> 0} = EZ, = EZ, for all n.
We establish the following:

THEOREM 1. If E,Z? < o, then (logn) 'E;M, — i, where E; refers to
starting with Z, = i.

This is an improvement over the results of Weiner [9] and Pakes [7]. The
former showed that if there exists a finite K such that P(Z, < K) = 1, then
there exists a finite positive constant ay such that EM, > ayglog n with ay — 0
as K — oo, and that if E;Z? < o, then there exists a 8 such that EM,, < B log n.
Pakes [7] improved Weiner’s upper bound and showed that

limsup (EM,)(logn) ' <1, if E,(Z?) < 0.

Here is an outline of the proof of Theorem 1.

Step 1. Pakes [7] has shown that for any nonnegative martingale {Z,} such
that E(Z,(logZ,)*) — oo, Doob’s maximal inequality ([2], page 263) can be
improved to get

limsup EM,(EZ,(log Z,)*) ' < 1.
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Since a critical branching process {Z,} is a nonnegative martingale for which
EZ (logZ,)* does go to o (see Proposition 1) this result is available to us
without any additional moment conditions other than E,Z, = 1.

Step 2. Using the conditional limit law of Yaglom (see [1], page 20) we
establish (see Proposition 1) that if E;Z2 < oo, then

lim(E;Z,(logZ,)" —ilogn) =p;, 0<p; <o,
n
exists for each i > 1.
Step 3. Using a stopping time argument we establish a bound for the lim inf

(see Proposition 4).
If E,Z? < oo, then

liminf E,M, (logn) ' > i.
n
Clearly, the above three steps imply Theorem 1.
2. Proofs.

PropoSITION 1. Let {Z,}¥ be a critical branching process with offspring
distribution {p;}. Assume p, # 1. Then (i) E;Z,log Z, - o for each i > 1, and
(ii) if, in addition, L j’p; < co, then for i > 0, lim (E;Z,log Z, — ilog n) = iy
exists, where 0 < p < 0.

ProoF. (i) It is enough to consider i = 1,

EZ)ogZ,=E(Z,ogZ,|Z, > 0)P(Z, > 0)
= E(a,'Z,log(a,'Z,)Z, > 0) + loga,,

if we choose a, = (P(Z, > 0)) .
Thus, EZ,logZ,— loga, > E(a,'Z,log(a,'Z,): 0<2Z,<a,lZ,>0). But
since sup, ., <;|x log x| = C < o0, we get

liminf( EZ,log Z, — loga,) > —C,

proving (i) as a, = 0.
(ii) Since E,Z, = i,

EZ)ogZ,—ilogn = E,(Z,ogZ, — Z,log n)
= E/(n"'Z,log(n"'2,)1Z, > 0)nPA(Z, > 0).
From (2) we see that nP(Z, > 0) - i\. Now
E(n"*Z}\Z, > 0) = n"'E(2}: Z, > 0)(nP(Z, > 0)
= n"Y(ino? + i2)(rP(Z,> 0)) ',

and this converges to 2 '* as n —» oo. Thus, n"1Z,log(n"'Z,)|Z, > 0 are
uniformly integrable and (3) now implies (ii) with p = A [°(x log x)Ae ™ ** dx. O
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PROPOSITION 2. Let {S,}y be random walk generated by the probability
distribution {p;}3. Let Ljp;=1 and Lj’p;< co. Let p>1 and Y(k,1) =
E(S,: S, > pl). Then L1 "Y(1, 1) < oo.

PrOOF. It is enough to consider the case p = (1 + 2~ !) when £ is a positive
integer. Clearly,

I(1,1) = IE(S,: S, > pl)
=1"1E(S,— pl: S, > pl) + pP(S;> pl)
=a,+ b, say.
Since T;7%p; < o0, L;b; < pZ,P(|S; — I| > 1/k) < oo by the criterion for com-

plete convergence due to Hsu and Robbins [5].
Next,

kla, = RE(S,— pl: S,> pl)
= E(SII: Sl/ > 0), .
where {S;/} is a random walk generated by the random variable S; =
k(S; — 1) — 1. From Spitzer [8], pages 180-181, we know that
E(S;: T < o)
—IE 7. Q7 0) =
where
T inf{n: n>1, S, > 0},

"\ oo, ifS/<O0foralln>1.
Since ES] = -1 <0, p=P(T = o) > 0. Also E(S;: T < o0) < EM’, where
M’ = sup{S;: n > 0}. Kiefer and Wolfowitz [6] have shown that EM’ < oo if

ES{? < «0. But ES;? < 0 is the same as ¥j’p; < co. Thus, Z;a, < oo and we
are done. O

REMARK 1. Actually, the converse to Proposition 2 is also valid. If
L, (, pl) < oo for some p > 1, then Lb, < oo implying L;j’p; < o by a
converse proved by Erdés [3] to the Hsu and Robbins result [5] on complete
convergence.

ProposiTION 3. Let {Z,: n=0,1,2...} be a nonnegative martingale. Fix
n>1,1>1. LetT=T,, be a stopping time defined by

T min{r:1<r<n,Z,=0o0rZ.>1},
"\ n, if0<Z.<lforl<r<n.

Then E(Zy: Zy > 1) = E(Z,: Z, = ).

Proor. Since T is a bounded stopping time for the martingale {Z,},
the optional sampling theorem applies so that E(Z;) = E(Z,). The event
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(0O<Zp<l)isthesame as T=n and 0 < Z, <I. Thus, E(Z;: 0<Zp<1) =
E(Z,:0<Z,<l,T=n)<E(Z,0<Z,<]l).Since E(Z;) = E(Z,) the given
assertion follows. O

PROPOSITION 4. Let {Z,} be a critical branching process with offspring
distribution { p;} such that ¥j*p; < co. Then
liminf(logn) 'EM, > i.
n

Proor. Now let {Z,} be a critical branching process. It is a nonnegative
martingale and so Proposition 3 applies. For fixed integers / and n and positive
number p > 1, we get

E(Z,:Z,>21)<E(Zp:Z;21)
=E(Zp:Zp21,Zp<pl) + E(Zp: Zp 21, Zyp > pl)
= An,l + Bn,l’ Say.
Clearly, A, ; < plP(M,, > 1), where M,, = max, _ ;_,{Z;}. Next
B,,= Y E(Zp:Zp>p; T=r)

r=1

YE(Z:Z >pl;Z,<l,....,Z,_,<]1)

r=1

Z E(¢'(Zr—1’ l)’ 0 < Zr—l < l)’
r=1

IA

where Y(k, 1) = E(S,: S, > pl), {S,}5 being random walk generated by the
offspring distribution {p;}. Since y(%, !) is increasing in & for fixed /, we have

Bn,l =< ‘P(L l) Z Cr,l’
r=1

where
G =PO0<2Z_, <)
We shall now show that if Z; j%p; < oo, then

(1) limsup (logn) ' Y I"'B, ,=0.
n =1

To do this we need the following facts proved in [1]. If 1 < X3¢/ 2pj < o0, then for
i>1lasr— oo,

(2) rP(0 < Z,) — i

and

(3) sup|P(0 < Z, < nx|Z, > 0) — ¢(x)| =0,
x>0

where ¢(x) = 1 — e ™%, A = 20672, ¢ being the variance of {p;}. Since C, ; <
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P < Z,_)), (2) implies

@ sup (logn) " 3 G, < oo,
n>2 r=1
I>1

Vv

Next
LG, <Ki+ ¥ CIP0<Z_ ,<Uz,_,>0)-¢(l(r-1)7")
r=1

r=Kl+1

ro(K) Y G,

r=Kl+1
where C, = P(Z,_, > 0).
Using (2) and (3) and the fact that ¢(x) — 0 as x — 0, we get by choosing K
first and then letting n — oo that for each fixed I,

(5) (logn) ™' Y C., >0, asn - .
r=1

We know from Proposition 2 that
(6) 2N < oo, if Yj%p; < 0.
1 J

Now (1) follows from (4), (5), (6) and the dominated convergence theorem.
Returning now to the inequality

E(Z,:Z,21)<A,,+B, <plP(M,>1) + B, ,,
we have on adding over [,
pYXP(M,21)+ Y I"'B, ,> Y I"'E(Z,: Z,> 1),
l l l

yielding the inequality

Zn
p(logn) "EM, + (logn) ' Y.I"'B, ;> (log n)_lE(ZnZl‘l).
l

1
We know from (ii) in Proposition 1 that ¥£j%p; < co implies
(logn) 'E,Z,log Z, — i.
This with (1) and the above inequality yield
limninfp(log n) 'EM, > i.

Since p > 1 is arbitrary, the proof of Proposition 4 is complete. O

3. Extensions.

(a) Markov branching processes. Our Theorem 1 extends to any contin-
uous-time Markov branching process with finite second moments. To deduce
this from Theorem 1, we proceed as follows. The upper bound of Step 1 of
Section 2 can be shown to hold for any continuous-time nonnegative martingale
{Z,: t € [0, )} such that EZ, log Z, - oo and thus is valid for a critical Markov
branching process. Also Yaglom’s theorem holds in the continuous case (see [1],
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Chapter 3) and so Proposition 1 extends here. Combining these two, we get
lim sup,E;M,(log t) ! < i. Finally, for n < ¢ < n + 1 we have
M, > M = max Z,

0<j<n
yielding
liminf E;M,(log £) " > liminf E,M*(logn) " > i,
t n

by applying Theorem 1 to {Z;: j =0,1,2...} to get the last inequality.

A special case of the above result, namely, that of a critical birth and death
process has been proved by Hammerle and Schuh in [4]. They use their result to
establish a special case of our Theorem 1, namely, that of a linear fractional
offspring distribution by embedding it in a critical birth and death process.

(b) Multitype Galton—Watson process. The methods of proof of Theorem 1
carry over to the multitype case. We state the result without proof.

THEOREM 2. Let {Z,: n = 0} be a p-type positively regular critical branch-
ing process with mean matrix M and finite second moments. Let u and v be
right and left eigenvectors of M for the eigenvalue one normalized so that
u-+l=1u-v =1, wherel is a vector with all coordinates equal to one and -+
denotes dot product. Let M,, = max,_ ;_ v * Z,. Then (logn) 'E;M, > i+ v as
n — co.
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