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ASYMPTOTIC FORMS FOR THE DERIVATIVES OF
ONE-SIDED STABLE LAWS

BY WOLFGANG GAWRONSKI

Universitdit Trier

For the derivatives f{¥(x) of the one-sided stable density of index
a € (0,1) asymptotic formulas are computed as 2 — oo thereby exhibiting
the detailed analytic structure for large orders of derivatives. The results
extend those for the well-known case a = } which may be expressed in terms
of Laguerre polynomials (formulas of Plancherel-Rotach type).

1. Introduction and summary. Usually stable laws are considered via
their characteristic functions. The latter are well known to be expressible in
terms of “elementary” functions (see, e.g., [2, 4, 6, 18]), a property which is not
known for the corresponding stable densities except for the three cases of the
normal, Cauchy, and the one-sided stable density of index ;. In general, only
series and integral representations are available. This lack of explicitness often
causes difficulties even in proving simple properties of the general stable density
such as, e.g., unimodality which after several vain attempts of various authors
finally has been established by Yamazato [15]. For a sharpening see [3]. Further,
there is a variety of papers dealing with the analytic structure of stable densities
(e.g., [1, 2, 5, 6, 10, 16-18] and the references therein).

In continuation of these investigations the present paper primarily is con-
cerned with derivatives of stable laws. For orientation, we consider the one-sided
stable density of index ; given by

1
—-1/4x
(1-1) f1/2(x) = 2\/;x3/2e ’ x>0,

O’ x<0

([4], page 171, and [6], page 143), the derivatives of which can be written as

(-1)*r!

(1.2) H3(x) = ———LE/2(1/4x) f (%), k€N,

([11], page 388, problem 73, and [3], page 241), where L(k’” is Laguerre’s poly-
nomial, the definition of which we take from [11], page 100. Now it is well known
from the theory of orthogonal polynomials that finer analytic properties of L(kB )
become apparent in studying its behaviour as % gets large. The best asymptotic
description of Lsf)(x) is known as the formulas of Plancherel-Rotach type ([11],
Theorem 8.22.8, page 200).
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DERIVATIVES OF STABLE LAWS 1349

It is the main purpose of this paper to extend these classical results for (1.2) to
the general one-sided stable law of index a € (0,1) which we assume to be
defined by its Laplace transform e~* ([2], page 448). Denoting by f(x) the
associated stable density we prove asymptotic formulas for the derivatives
f#¥)(x) as k — oo, where according to the case « = } we distinguish the follow-
ing regions for x depending on k:

(1) oscillation interval (a,, o) (Theorem 1);

(2) monotonicity interval (0, ;) (Theorem 2);

(3) neighbourhood of the turning point a, (Theorem 3);

(4) neighbourhood of infinity 2° = O(x), & — oo (Theorem 4),

where s > 0 suitably and

alat/ (a1

(1.3) a, =

(a=1)/a
) , keN.

l—a«

The proofs depend on integral representations obtained by Laplace inversion and
on the asymptotic evaluation of the resulting contour integrals by the saddle-
point method and its various modifications.

2. Auxiliary results. In this section we collect technical details and pre-
pare some preliminary results which are basic for our main theorems in the next
section.

Starting from the Laplace transform e™*, by the inversion formula ([14],
Chapter 2, Section 7) we obtain

1 (1) o
2.1 = — e dt, >0,x>0,
(2.1) f.(x) Py fc_iw e dt c>0,x
for the one-sided stable density of index a € (0,1). Here and throughout the

power t* denotes the principal value, that is ¢* = exp(alog t), where logt =
log|t| + iargt, —m < argt < =, for ¢ in the set

(2.2) C_={t=o0 + ir|if 0 < 0, then 7 # 0}.

In view of the integrability properties of e *" an application of the Schwarz
reflection principle and Cauchy’s theorem implies

LEMMA 1. If ke Ny, c,x =0, then

1 c+i "
(1) fB(x) = —Imf T gttt gy
. . c
k+1
-1 inaga
(ii) f9(x) = -(——)—Imfwtke‘”‘_" ® dt.
w 0

In evaluating f®(x) asymptotically we transform the integrals such that the
method of steepest descent is applicable. To this end in Lemma 1(i) we put ¢ = 0



1350 W. GAWRONSKI

and substitute 7 = tx'/¢“~ Y, which gives (cf. [6], Section 5.9, page 151)
x(k+ 1)/(a—1)

fa(k)(x) = —_—Im/iwrkexa/(“_”(f—f"‘) dr.
T 0
Putting
(23) N =4k + 3,
N (a=1)/a
(2.4) X = ('4_§' - bky) )
(2.5) p(t) = (t*—¢t)¢ — logt,

where {, b, >0 and y € R have to be chosen suitably below, we get the
following representation in

LEMMA 2. With the notation above for x > 0 we have

x(k"'l)/(d'-l) i
(26) [ 0(x) = I [e VA0 buti 4 .
T 0

The choices (2.3) and (2.4) have been made in light of the case a = § (cf. [11],
Theorem 8.22.8, page 200). The asymptotic evaluation of (2.6) below requires a
solution of the saddle-point equation p’(¢) = 0, that is,

(2.7) (at*—t)¢ = 1.
This is a transcendental equation for which we have to determine solutions
t € C_ [see (2.2)]. In order to get explicit representations for possible solutions

we try to find a parametrization of the positive parameter { by starting with the
setup t = r(¢)e?*. Equating real and imaginary parts in (2.7) this gives

asin 2a¢ \ /1~
(2.8) r(¢) = (W) , 0<¢<m/2,
and
1 sin2¢
g‘ =

ar(¢)® sin2(1 — a)¢
This observation suggests considering

1 sin 2¢
ar(¢)” sin2(1 — a)¢’
with r(¢) defined in (2.8). Further, we put

(2.9) p(9) = 0<¢<m/2,

. ) asinh 2a¢ \ /1%

(2.10) r*(¢) =r(i¢) = (m) , ¢ >0,
. 1 sinh 2¢

(2.11) p*(¢) = p(i¢) = ¢ > 0,

ar*(¢)* sinh2(1 — a)¢’
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and generally for ¢ in (2.7) we choose the parametrizations

p(9), 0<¢<m/2,

(2.12) ¢ = p(0),
p*(¢),  ¢>0,

where

(2.13) r(0) = r*(0) = o>/~

and

(2.14) p(0) = p*(0) = alatD/(a=1)

l—-a
are obtained from (2.8) and (2.9) by continuity. Before discussing the saddle-point
equation (2.7) in detail we need some lemmas for trigonometric and hyperbolic
functions.

LEmMA 3. If vy €(0,1), then

(1) ysinx < sinyx, for 0 <x <,
(i) cotan x < ycotanyx, for 0 < x <,
(iii) sin yx/sin x is strictly increasing on (0, 7),
(iv) (sin ax/sin(1 — a)x)cos x is strictly decreasing on (0, 7/2),
(v) (0 — @)sinax/asin(l — a)x)sin x — x is strictly decreasing on (0, 7),
(vi) 1 — a — (acotan ax — cotan x)cotan x > 0, for 0 <x < .

PROOF. Parts (i)—(v) are proved successively by considering derivatives. Part
(vi) is immediate if 7/2 < x < 7. For 0 < x < 7/2 we use the expansion

1 22 x\2m
(2.15) cotanx — — = ——Z{(2p)(—) , O<x<m
x x 7

(e.g., [9], page 143), where { here denotes Riemann’s {-function. Now (2.15)
implies that

acotan ax — cotan x = ;i:‘,{@p.)(;)h(l — a?*)
(2.16) 4 "
< (- iewn( )

If 0 < x < 7 /4, then we use (2.15) and (2.16) to obtain

1 — a — (acotan ax — cotan x )cotan x

(- a>(1 - %?mm(;)“)

2 162

ilf;:_l) = (1 -a)(l - ————) > 0.

w| o

Z(I—a)(l— 3 152
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If m/4 <x < /2, then we have cotan x < 2 — (4/7)x, by convexity, and fur-
ther [use (2.15) and (2.16) again] we get

1 — a — (acotan ax — cotan x )cotan x

42 2
- S DL SR P
>(1-a)1 21 ﬂ%‘_l)(l Wx)x " )

3
2x® 1 [(w2u-—1\%"1
secof i msli )

> (1-a) 1-2?”§:;%)=(1~a)(1-2§)>o,

where we have used the fact that the function (1 — (2/7)x)x?*~! on [ /4, 7 /2]
attains its maximum at x = (7/2)(2p — 1)/2p). O

As a simple consequence of Lemma 3(iii) we obtain [see (2.8), (2.9), (2.13) and
(2.14)]

LEMMA 4. (i) r is strictly increasing on [0, 7/2) with r((0, 7/2)) =
[a?/(=9) o).

(ii) p is strictly decreasing on [0, 7/2) with

aet /=1 |

o([0,7/2)) = (0, -~

The next lemma again is verified successively by considering derivatives.
Therefore we omit its simple proof.

LEMMA 5. If y € (0,1), then

(i) sinhyx < ysinh x, for x > 0,

(ii) ycotanhyx < cotanh x, for x > 0,
(iii) sinh yx/sinh x is strictly decreasing on (0, ), ,
(iv) (sinhyx/sinh x) e =" is strictly increasing on (0, o).

For the functions r* and p* [see (2.10) and (2.11)] this immediately gives
LEmMMA 6. (i) r* is strictly decreasing on [0, ) with r*([0, o)) =

(0, a1 =],
(ii) p* is strictly increasing on [0, o) with

1
p*([0,0)) = | — aa«an)/(a—l», oo).

1
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Now we are in a position to discuss the saddle-point equation (2.7) through

LeEMMA 7. (i) Suppose that in (2.12) § = p(¢), where ¢ € (0, 7/2) is fixed.
Then (2.7) in C _ has only the solutions t, and t, with
(2.17) ty = to($) = r(¢)e*.

(ii) Suppose that in (2.12) { = p*(¢), where ¢ € [0, ) is fixed. Then (2.7) in
C _ has only the solutions t§ and t§* with ;
(2.18) ty = t3(o) = r*(¢)e®,  t3*=1t5(-9)
and 0 < t}* < t§, where t}* = t§ iff ¢ = 0.

PROOF. Since (2.7) has real coefficients it suffices to consider ¢ € C _ with
Imt¢ > 0. Further, it is readily verified that ¢,, t& and t}* satisfy (2.7) in the
cases stated. Thus it remains to investigate the question of uniqueness.

(i) Suppose that t = t(y) = s(¢)e?¥, 0 < ¢ < /2, s(¢) > 0, satisfies (2.7).
Then equating imaginary and real parts in (2.7) gives s(y) = r(¢) and p(y) =
p(¢) which implies ¢ = ¢, by Lemma 4(ii). Hence we get ¢ = ¢,.

(i) Assume that s(y)e?¥, 0 <y <m/2, is a solution of (2.7). Then we
conclude p(¢) = p*(¢) as above which contradicts Lemma 4(ii) and Lemma 6(ii).
Thus the only solutions in C _ are real and positive. Since (2.7) is equivalent to

p(t) = — 5 + o (#)(ats = 1) =0,

we conclude from [8], page 48, problem 75, that p’ has at most 2 zeros on (0, c0)
including multiplicities. Obviously, we have t§* < tJ [see (2.10) and (2.18)] and
further, by Lemma 8 below, we get p”(¢J) < 0 with equality iff ¢ = 0, which
completes the proof. O

Straightforward calculations lead to the following formulas in

LEMMA 8. (i) If ¢ = p(¢), 0 < ¢ < 7/2, in (2.5), then
_ iy 1 N 1 1 sin 2a¢ 2ig
p(to) = ~logr(9) = 2ip + a (a )sin2(1—a)¢>e ’
p'(t) =0,
., o« 1—a sin2a¢ 20
p'(t) = tl (1 a sin2(1 - a)¢e )

(i) If ¢ = p*($), 0 < ¢ < oo, in (2.5), then

t¥) = —logr* 2+1+1 1 I e
p(t3) = —logr*(¢) — 2¢ + — (a sinh2(1 — a)¢°
p'(tg) =0,

1 sinh 2¢
p(t3) = —ﬁ((l —a)

0

- 209 _ 1| < 0’
sinh2(1 — a)¢e )
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with equality iff ¢ = 0, and
P (£5(0)) = —a®rore,

ProoF. We only mention that for the assertion concerning p”(t§) Lemma
5(iii) can be used. O

3. Main results. These consist of generalizations of the formulas of
Plancherel-Rotach type for Laguerre polynomials (cf. [11], Theorem 8.22.8, page
200). Thereby the detailed analytic structure of derivatives of one-sided stable
laws is exhibited in terms of elementary functions for large orders of derivatives.
According to the partition of the positive real axis introduced in Section 1 first
we consider the oscillation interval for f® in

THEOREM 1. Suppose that ¢ € (0, 7/2) is fixed, N = 4k + 3, and

{ N( sin 2¢ )“/(1'“) sin 2¢ }(a_l)/a
x =

(3.1) 4a | sin2a¢ sin2(1 — a)¢

Then

2
L9(x) =

N sin2¢ (k+1)/a
(T asin2(1 - a)¢)

* i ) 1/4
N1 1 sin 2a¢
ol -3 [5+ 2~ e
N l1-a sin2a¢ 1
x{sin z-(2¢ T T sn2(i- a)¢sin2¢ + b(¢)) + 0(;)}’

as k — o0, where

l1—-a sin2a¢
a sin2(1 - a)¢
l1—a sin2a¢

1- 2
a sin2(1 - a)cpcos ¢

sin 2¢

) 1
(3.3) b(¢) = 3 + Earctan

REMARK. Arctan denotes the principal branch that is —#/2 < arctan ¢ <
@ /2, for real §. Further, observe that
l—a sin2a¢

1- 2¢ >0 0<o¢p<m/2,
a sin2(1—a)¢cos¢ ’ ¢<m/

by Lemma 3(iv).
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ProoF OF THEOREM 1. We use representation (2.6) in Lemma 2 with y =0
and ¢ = p(¢) [see (2.12)]. This gives (3.1) instead of (2.4) and

x(k+1)/(a-—1) .
(2.6) fB(x) = ———Im f o= (N/Hp()y=3/4 gy
T 0

which in the sequel we treat by the method of steepest descent (see, e.g., [7],
Chapter 4, Section 7). Lemmas 7(i) and 8(i) show that ¢, defined in (2.17) is the
only saddle point in the upper half-plane, being more precisely a simple one. The
crucial point is to find a path on which Re(p(¢) — p(¢,)) = 0 with equality iff
t = ¢,. A partial study of the conformal mapping p(t) shows that we could deal
with the path {tjargt = 2¢} in case /4 < ¢ < w/2, a choice which unfor-
tunately does not work for 0 < ¢ < 7 /4. Thus for every ¢ € (0, 7/2) in (2.6") we
consider the contour

(34) C, = {t(¥) = r(¥)e?¥0 <y < 7/2),

where r(y) is given by (2.8). Obviously, C, passes through the saddle point ¢,.
Using the reality of the integrand and Cauchy’s theorem (2.6") is rewritten as

xR+ D/(a=D)

(3.5) fO(x) = Z————TIm [ e~ N/9p(4=3/4 gy,
T C,

Use Lemma 4(i) for an existence proof of the integral.

Among the various assumptions of the saddle-point method we only verify in
detail the most important reality condition mentioned above. The other ones are
immediate (see [7], page 127). From (2.5), (2.8), (2.9) and (3.4) we get

Re(p((¥)) - p()

= Rep/(())2/(¥)

= Re(—l + (o) (at(y)® - t(xlz)))(% + 2i)

= Re(—l + p(¢)ar(¢)“8in2s(i:l2_¢a)¢)( rr((;f)) + 2i)
_ (p(qb) B 1) r'(¥)

p(¢) r(y)’
which in turn, by Lemma 4, gives

d Re(p(t(v)) - p(t )){ - }0 if ie g)’d))’
——Re(p - p(%)){ =0, = ¢,
W > ye(¢,7/2).

Since t{(¢) = t,, it follows that
Re(p(¢t) — p(¢)) >0, forte C,— {t,}.
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Now an application of Theorem 7.1 in [7], page 127, to (3.5) yields
2xk+D/(a=1)  o=(N/D)p(ty) 1
S g5on(1 4 o( -))
V7N/4 \/2p"(t0) k
In forming (p”(%,))'/* the branch of w, = arg p”(t,) must satisfy

(3.6) fP(x) =

t63/4

lwo + 20| < 7/2, where w = ‘Plig:oarg(t(xp) —ty).

From Lemma 8(i) we get

l1—a sin22« .
3.7 wy= —4¢ + arg|1 — ¢ 2“”)

a sin2(1 - a)¢e
Deforming C, locally at ¢ = ¢, such that arg ¢ = 2¢ near t, we have w = 2¢ and
the argument in (3.7) is determined by the principal branch of arctan as defined

in the remark above. Now using (2.4), (2.12) and Lemma 8(i) in (3.6) the proof is
completed. O

Looking at (3.2) again, by Lemma 3(v), we observe that the function
l1—a sin2a¢
a sin2(l - a)¢

2¢ — sin 2¢

is strictly increasing on (0, 7/2) with increment #. This together with the
following theorem confirms asymptotically the property of 1% to have exactly
k (simple) zeros on (0, o) (cf. Theorem 2(iv), page 236, in [3]). The monotonicity
interval is treated by

THEOREM 2. Suppose that ¢ > 0 is fixed, N = 4k + 3, and

is N[ sinh2¢ |09  ginhgg |V
(3.8) ¥ T\ 4a asinh 2a¢ sinh2(1 — a)¢
Then (N sinh 2¢ )(k+1)/a o
— e
£9(x) = 4 asinh2(1 - a)¢
a N 2 1 Sinh2¢ 2a¢ 1 1/2
69) VrN/2Z|( a)sinh2(1 “a)e
3.9
{ N( 1 1
Xexp{ — — —+(——1)
4\« o
y sinh 2a¢ 2% _ o 1+0 1
sinh2(l —a)p’ 2% ( * (Z) ’
as k — oo.

PROOF. Again we use representation (2.6) in Lemma 2 with y = 0, however
now with { = p*(¢) [see (2.12)]. Then clearly (2.4) reads as (3.8) and, by the
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Schwarz reflection principle, (2.6) becomes

x(k+1)/(a—1) ico
" (g) = — f e~ (N/9p()=3/4 gy
fa ( ) 27Ti —ioo

As above a discussion of the function p(%) in this case shows that according to
Lemma 7(ii) £ is an appropriate choice of a saddle point rather than ¢g*. Thus
we put

(3.10) Cyx = {t() = r(¢)tga®/ @ Ve — /2 <y < 7/2}

[£(0) = t¥ by (2.13)] and by Cauchy’s theorem we obtain

x(k+l)/(a—l)
(3.11) f(k)(x) = __._.——f e—(N/4)P(t)t—3/4 dt,
* 27 cy

which again we are going to treat by the saddle-point method. By symmetry it
suffices to check the key condition Re( p(#(y)) — p(tF)) > 0 for 0 < ¢ < 7 /2.
First we note that .

(3.12) 1< ta®@ D = ¢,
by (2.10), (2.13), (2.18) and Lemma 5(iv). From (3.10), (2.9) and (2.5) we get

d b
d—¢Re(p(t(¢)) - p(t3))

= Rep'(¢(¥))¢'(¥)
= Re(~1 + p*(6)(at(4)" - t(¢>))(% + )
= :,((I)) (=1 + p*(¢)(acr(y)“cos 2ay — cr(¥)cos2y))

—2p*(¢)(acr(¢) sin2ay — cr(y)sin2¢)
P [ ap(9)er()”

r(y) ( 1+ sin 2y
+2ap*(¢)cr(¢) sin2ay(c' % — 1)
O]

_r(-ﬂ\_l ") )

(sin2(1 — @)y — (¢! 7= — 1)sin2ay cos 2\1/))

+p*(¢)acr(y) sin2a(c' 7 - 1){2 - r(4) cotan24/}.
r(¢)
Next, using
! 2
(3.13) %j)) = 1= a(acotan2axl/ — cotan2y),
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by (3.12), Lemmas 4, 6 and 3(vi) it follows that
d
;l—ll;Re(p(t(xP)) - p(t3))

r(4) 0*(9)
= 7@7(‘1 ) )

2a

+{ Tzt (@)e(9) sinzay(e 7 - 1)

X (1 — a — cotan 2y/(a cotan 2ay — cotan 2\[/))}

>0, if0<y<w/2.

Thus we have Re(p(¢) — p(¢g)) > 0 for t € C¥ — {t5}. Now another applica-
tion of Theorem 7.1 in [7], page 127, to (3.11) implies that
iyTN/4\2p"(t3)

1+0 - ‘
+0|=||.
%)
Further, from (3.13) and (2.16) we have
lim arg(#(y) — t§) =7/2.
v—0+

Hence the branch of w,= arg p”(¢§) must satisfy |w,+ 7| < 7/2, giving
wy = —m in view of Lemma 8(ii). Thus it follows that (e‘w/2 = ¢=¥"/2 = —j)
(k+1)/(a—1),—(N/4Hp(t)
x e Pt Py

1
1+ 0|~
VaN/2|p (¢ /2 ( k ))
and finally the assertion is verified via (2.4), (2.12), (2.10), (2.18) and Lemma 8(ii).
O

x B+ D/ (a=1)g—(N/p(t8)

f8(x) =

t6k—3/4

0(x) =

The gap between the two regions previously investigated is described by

THEOREM 3. Suppose thaty € R is fixed, N = 4k + 3, and

N/4 p N/4 e eV
(3.14) =x= ey -y T .
all+e a (1 _ (X) 1 - a\ 6af a)/(1-a)
Then
(k+1)/(a—1) (B+a)/(1-a)\1/3
f®(x) =  gera-w) b "
(3.15) * W N/4

Xexa/(wl)a2a/(1—a)(a2_1)(A(y) + O(k_1/3)),
as k — o, where

(3.16) A(y) = Ime27ri/3 fooe_pa_pe2m/3y dp
0

is Airy’s function (see [11], Section 1.81 and problem 2, page 377).



DERIVATIVES OF STABLE LAWS 1359

Proor. This runs along the lines for that of Theorem 8.22.8c in [11], pages
232-234. Therefore we restrict examination of the details to some essential steps.
Obviously now in (2.4) and (2.12) we have the limit case ¢ = 0. Choosing y = 0
Lemma 8(ii) shows that £X(0) is a second-order saddle point for the integral (2.6).
The parametrization (3.14) produces a small neighbourhood of the turning point
x = a, in (1.3).

Once more we use (2.6) with { = p(0) in (2.4), (2.12) and

a N/4 1/3
T 1-a ( 6a(5+a)/(1—a))
leading from (2.4) to (3.14). However, now we may not apply the saddle-point
method directly but a modified version. Suppose that § < § < § and
a

(3.17) b -

3.18 c, = brl, 1= tF(0) = o/
k k 0 0

l1-a
[see (2.13) and (2.18)]. Then Lemma 2 in connection with Cauchy’s theorem
implies that

x(k+D/(a=1)

(3.19) [9(x) = T———(H, + R,),
where

(3.20) H,=Im / ot cek’e™S _ (N/9p(t) = bt 1)4=3/4 gy
and '

(3.21) R,=1Im f e~ (N/DpW=b,X(t=14=3/4 gy
with "

(822) v = {t(¥) = r(¥) 10> VeV + ¢, k%"/%0 < ¢ < 7/2}
[cf. (3.10)]. In (3.20) the integration is performed on a straight line. Putting
t—1=cpe”?  0<p<k’

in (3.20) and using Taylor expansions at 7, [see Lemma 8(ii), (3.17) and (3.18)] we
obtain

Hy, = e~ (N/9P(0)=bux=8)7=3/4¢,

. N(-¢
X Ime'/? /ksexp{— —-('——kpw(”'o)P3 + o )}

0 4\ 6
xexp{ —b,y((1 — arg ) cppe™? + -+ )}
3
x(1- 2o s ap
4 7,

= e~ (N/DP()=bux(ro=E)r=3/4¢,

o0
0

v=1
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This is an asymptotic expansion in the usual sense and the u, are polynomials
independent of k. Since obviously

A(y) = Ime"/3 j(;ooe“’a”"em/3 dp
[see (3.16)] and
L& u o) do = O(e), koo,
k

for some ¢ > 0, we get

(3.23) H,= ck70_3/4exp(_ 2{1’(70) = bey(7 — "'Oa))(A(y) + O(k™1/3)),

as k — oo. For handling R, in (3.21) we write

ol (52

(3.24) v ‘
XImekexp{ - (—Zz - %Z)(p(t) - P(To))}tbky/§_3/4 dt,

and further for the integral we get the bound

(3.25) 0( eck”? / e~ (k/DRe(p(t)—p(79)) ldtl) ,

Yk

as k — oo (¢ > 0) since the integrand decays exponentially in y,. Finally, for the
very same reason there exists a y, € (0, 7/2) such that

Re(p(H(¢)) —p(n)) = clt], Y& [y, 7/2),

and, by continuity, from the proof of Theorem 2 we take

%Re@(tw)) -p(n) >0, ¥ (0,¥]

[see (3.10) and (3.22)]. This together with the relation [see Lemma 8(ii)]
Re(p(8(¥)) = p(r,)) = —4p" (r,)cik® + O(cik*), k- oo,
gives
O( eckl/ﬂ—c'k”) = 0O( e—c”k”)

(c’,¢” >0, § > 3) as a bound for (3.25). Now combining (3.24), (3.23), (3.19),
(3.18), (3.17), (3.14), (2.4) and (2.5), formula (3.15) is derived completely. O

Tedious but straightforward calculations show that Theorems 1, 2 and 3
reduce to the formulas of Plancherel-Rotach type for the Laguerre polynomials
L$/? (e.g., [11], Theorem 8.22.8, page 200, [13], Chapter VI, Section 2, and [12],
Chapter III) via (1.1), (1.2) and Stirling’s formula, A refined analysis in the proof
of Theorem 3 gives the better error bound O(k~?%?) precisely in the case a =
which is consistent with the known results of the just mentioned literature.
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Finally, we investigate f(*)(x) for large x in

THEOREM 4. Suppose that r < 1/2a, 6 = min(1,1 — ar) and k/x = O(k").

Then
3 B\ R+
100 = o (vt 5) e
k a k 2a a2
(3.26) Xexp{—(;) cos am + (;) —2-Zcos2aw}
k a k 2a a2
X{sin((;) sinam — (;) 2~k—s1n2a7r + O(k~ )}

as k — oo.

PROOF. Again we use ideas in [11], 8.72, pages 225-227, and start with
Lemma 1(ii) which can be rewritten in the form

(3.27)  fM(x) = (_i_)_i(;)k+l

Next, let 0 < § < 1,

e"’Imfm(tel")ke'(’k/x)“‘?""x dt.
0

k a
(3.28) - —(;) eirs,
and
ks ks
(3.29) Jy = [1 -l _‘/f]'

The aim is to apply a modified version of the method of steepest descent to
(3.27). An approximation of the saddle point is located in <J5. Therefore we split
the integral in (3.27) as

(3.30) f()w(tel-f)”eit“dt= fJ + [ =H,+R,
8 8

say. First we verify R, is a remainder term.
(i) Suppose that 0 < a < 3. Then Re { < 0, by (3.28), and

|R|<f1 k/‘/—(tel £yt dt+f ks/‘/_ (te'~1)* dt = R}, + RY,

say. A straightforward estimate yields R}, = O(e ), k = o0, for some ¢ > 0
and the very same bound for R} is derived by writing

o)

and using the estimate (2.14) in [7], page 70, for the incomplete gamma function.

—ck?

Ry = ekk—k—lr(k +1,(1+
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(ii) Suppose that 1 < a < 1. Then Re £ > 0 and

IR, < fl—ks/\/g(tel—t)ke|cos¢x1r|(k/x)“t"‘ dt
0

+f°° (tel—t)ke|cosa1r|(k/x)"‘t"‘ dt = R;e + R;e/’
1+k/VE

say. Further, as above this gives
R;e < e—ck25+(k/x)“ < e—c’k”’

provided § is sufficiently close to § which is possible, since r < 1/2a. For R} we
write
Ry < ek/w the=RA=+1D) gy
1+k8/VE
with f,(¢) == —etk + (k/x)*t% Choosing ¢ = a(k/x)%(1 + k°/ VE)*~1/k, f, at-
tains its maximum at the left endpoint. Thus it follows that

ks k8 o
tke‘k(l‘e)‘dtexp{k - ek(l + W) + (k/x)%|1 + ﬁ) }
Substituting 7 = (1 — ¢)tk the latter integral becomes an incomplete gamma
function which may be treated by the very same estimates as above finally
leading to

o0
Rys |
1+k/VE

Ry =0(e=*"), k- o
(¢ > 0). Hence for every a € (0,1) in (3.30) we have
(3.31) R,=0(e *"), k- .

Next, we evaluate H, asymptotically, which is supposed to be the leading term
in (3.30). To this end for ¢ € J; [see (3.29)] we put

]
t=1+ —, —-k®<p < k?,

3

and obtain the expansion (note that 8 < 3)

(ter~t)* = exp{ki———(_ly) _ (t- 1)”}

oo 3]

= e“’z/z{l +

1
3
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as k — oo, where u, is a polynomial independent of k. Similarly, we get

et =exp{¢+£(Q+¢t—-1)"-1)}

el 7

The argument of the latter exponential is of order O(k*"*2%~1) = o(1). Hence

et = es+sap/¢'{1 + gLO(I)}

where again we have used the fact that £p?/k = O(k*"*2°~1) = o(1).
Substitution in (3.30) yields

o3

1 © u,p
s TE R

/ e P /2+zap/f(
g 2
X (1 + ;p 0(1)) dp

1 2 2 © ) ¢ 1
= _pbtEat 2k —p°/2 — —
‘/};e f e dp(1+0(k)+0(k)).

— o0

In the last step observe that ¢/ V& = O(k*"~*/%) = o(1). Now choosing § close to
1(3.27), (3.28), (3.30) and (3.31) imply (3.26) and the proof is finished. O

Again Theorem 4 can be looked at as an extension of known results for
Laguerre polynomials (cf. [11], Theorem 8.22.1 of Fejér, page 198, [13], page 220
and [12], Chapter 3.3), however with a less precise remainder term. Finally, we
mention that our error terms also can be equipped with a uniformity condition
and the asymptotic formulas easily can be extended to complete asymptotic
expansions. But we do not pursue this question in this paper.
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