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STATIONARY REGENERATIVE SETS AND SUBORDINATORS!

By P. J. FITZSIMMONS AND MICHAEL TAKSAR
The University of Akron and Florida State University

In this paper we give a simple construction of the general stationary
regenerative set, based on the stationary version of the associated subordina-
tor (increasing Lévy process). We show that, in a certain sense, the closed
range of such a Lévy process is a stationary regenerative subset of R. The
distribution of this regenerative set is o-finite in general; it is finite iff the
increments of the ' ..y process have finite 2xpectation.

1. Introduction. A regenerative set is a random subset of R with the
property that any stopping time in the set splits the set into two independent
pieces, the right-hand piece (as viewed from the stopping time) having a
distribution independent of the particular stopping time. Such sets arise natu-
rally as the set of times when a strong Markov process visits a particular point in
its state space. For background on regenerative sets the reader can consult [2, 5,
6, 8-11, 13 and 14].

It is known [8, 10 and 11] that any regenerative subset of [0, + o[, defined on
a probability space, can be realized as the closed range of an appropriate
subordinator (an increasing process with stationary independent increments). We
propose to extend this correspondence to cover the case of stationary regenera-
tive subsets of R. Such regenerative sets have been considered by Taksar [13]
and by Maisonneuve [10]. These authors confine themselves to the case where
the increments of the associated subordinator have finite expectation. (Note
however that the methods used in [10] carry over to the general case.)

In recent years a theory of stationary Markov processes on o-finite (typically
infinite) underlying measure spaces has been developed. The fundamental paper
in this regard is Kuznetsov [7]. See also [3]. We use this theory to deal with
stationary regenerative sets. We consider a stationary subordinator Y and its
closed range M. Unfortunately the distribution of M is never o-finite. But if T is
an appropriate random time (say a passage time of Y'), then the pair (T, M) has
a o-finite law which factors as the product of Lebesgue measure and a second
measure P. The measure P is the (o-finite) distribution of a regenerative set
which is naturally associated with Y.

In the next section we set our notation and recall some basic facts about
subordinators and regenerative sets. In Section 3 we consider the range of a
stationary subordinator, as discussed previously. In the final section we use the
result of Section 3 to give a simple proof that if M is a stationary regenerative
set, then — M has the same distribution as M.
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2. Regenerative sets and subordinators. Our notation and the basic
definition (2.1) are inspired by [10] and [2]. The definition of 7, is slightly
different from that of [10] and [2]; this change was suggested to us by Bernard
Maisonneuve (private communication). See the note at the end of [2].

Let Q° denote the class of closed subsets of R. For ¢t € R, w® € Q°, define

d(w®) =inf{s > t: se w’}, r(w®) =d,(w°) -t
m(w?) =clf{s—t:s€w’n]t, +oo[} =cl((w® - ¢) N]0, + o).

Here cl denotes closure and inf¢ = +o0. Set ¥°=o{r;: s€R}, ¥° =
o{r,: s < t}. Clearly (d,: t € R) is an increasing cadlag process adapted to (¥¢,:
t€R),and d, > ¢ for all ¢t € R.

A random set is a measurable mapping M from a measurable space (2, %)
into (2%, ¢°). Associated to a random set M are several processes: D, = d, ° M,
R,=r,o M, M,=1,0 M.

Let (Q, #, P) be a o-finite measure space and let (%#; ¢t € R) be a right
continuous filtration in (R, #). Let M be a random set defined on (2, ).

DEFINITION 2.1. M = (R, #, #,, M, P) is a regenerative set provided

(i) (D,) is adapted to (%,);

(i) P(D,= +0) =0,V t € R;
(iii) R,(P) = P(R, € ‘) is a o-finite measure on [0, + oo[ for each ¢ € R;
(iv) there is a probability measure P° on (2°, °) such that for all ¢ € R,

(2.2) P(f(Mp) %) =P(f), Vie(9°)".

In this case P° is called the regeneration law of M.

REMARK 2.3. (a) Definition 2.1(ii) means that M is unbounded on the right,
a.e. P. This hypothesis is made to-simplify the exposition and could be dispensed
with.

(b) Since o(R,) € %, Definition 2.1(iii) implies that P restricted to %, is a
o-finite measure. Thus the conditional expectation required in Definition 2.1(iv)
is well defined.

Let M° denote the identity map on Q° It is easy to check that
(2°,9°,9%  M° P°) is a regenerative set (with regeneration law P°). In ad-
dition P° satisfies

(2.4) P(M°c [0, + ) =1.

It is well known that any such regenerative law P arises as the distribution of
the closed range of some subordinator (see [8, 10 and 11]). That is, on some
probability space there is defined a subordinator X = (X,: ¢ > 0) (an increasing,
right continuous R-valued process with stationary independent increments) such
that the distribution of the random set cl{ X, — X: ¢ > 0, X, > X} is precisely
P Note that because of Definition 2.1(ii), P°(M° is unbounded) = 1; it follows
that X,1 + oo as ¢1 + oo, almost surely. Let P~ denote the law of X under the
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condition X, = x (x € R). Clearly P* is the same as the law of (X, + x: ¢ > 0)
under P°. Because X has stationary independent increments, the laws P* (and
so also the regeneration law P°) are completely determined by

(2.5) P*e ) =e @POe X)) = exp(—ax — tg(a)), a>0,
where the Lévy exponent g is given by
(2.6) g(a) = Aa + f°°(1 — =) TI(dx).
0
Here A > 0 is the drift of X and II, the Lévy measure of X, is a measure on

10, + o[ such that the right side of (2.6) is finite for all a > 0. Let U(x, A)
denote the potential kernel for X, namely,

(2.7) Ulx, A) = P"( f "1(X,) dt).

Write U(A) for U(0, A); by spatial invariance U(x, A) = U(A — x). Using (2.5)
we have

(2.8) /we“’yU(dy) =1/g(a), a>0.
0
Now define a measure 7 on [0, + co[ by
(2.9) 7(A) = Aey(A) + fH(]x, +oo[)dr, AE€By .-
A

One checks that [* e™*n(dx) = g(a)/a. It follows from (2.8) that
(2.10) /ooe‘“"w(dx)/we‘“yU(dy) =1/a, a>0.

0 0
Inverting Laplace transforms in (2.10) we arrive at
(2.11) 7U(A) = / #(dx)U(x, A) = m(A N0, + o),

[0, + oof

where m denotes Lebesgue measure on R. Clearly = is a o-finite measure. It is
known (see, e.g., [10]) that = is an invariant measure for the “residual life”
process (7,: t > 0) which under P° is a strong Markov process. This fact is also
an easy consequence of the construction of the next section; see Theorem 3.5(i).
Note that by (2.9) we have

7[0, + o[ = A + /ooxH(dx).
0
On the other hand, by (2.5) and (2.6),
PO(X,)/t = A+ [ 2Tl(dx).
0
Thus 7[0, + o[ < o0 iff P%(X,) < oo for all ¢ > 0.

3. Stationary subordinators and regenerative sets. We shall say that a
regenerative set M is stationary provided M — t = {s — t: s € M} has the same
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law as M, for each ¢t € R. More formally, M is stationary if its distribution [a
measure on (2°, ¢°)] is invariant under the family of transformations 6, w° —
w'—t ter, w'eQl

In view of the relationship noted in the last section between subordinators
and regenerative subsets of [0, + co[, one might think that each stationary
regenerative set could be obtained as the closed range of the appropriate
stationary subordinator. Unfortunately the distribution of the range of a sta-
tionary subordinator is never a o-finite measure: If it gives an event positive
measure, then that event has infinite measure. This problem can be sidestepped
by means of a trick; the complete story is contained in Theorem 3.5.

To begin, let P° be the regeneration law of some regenerative set as in
Definition 2.1. Let X = (X,: ¢ > 0; P*: x € R) be the associated subordinator
with Lévy exponent g as in (2.6). Thus P? is the law [on (2°, ¥°)] of cl{ X, — X;:
t> 0, X,> X,} under any of the laws P*.

Note that the Lebesgue measure m on R is an invariant measure for X.
Proposition 3.1 is therefore a special case of a theorem of Kuznetsov [7]. See also
[3] for related matters. Let W denote the space of paths w: R — R which are
increasing and right continuous. Let Y/ (w) = w(t), 9=0{Y;: s€R}, 4, =
o{Y,: s < t}.

ProrosITION 3.1. There is a unique o-finite measure @ on (W,9) under
which Y = (Y;: t € R) is a strong Markov process with one-dimensional distri-
butions all Lebesgue measure m and with the same transition function as X.
More precisely,

() Y, €A)=m(A),teER, A€ %
(i) QUf(Yri%rs) = P(f(X,), 8§20, f€ B, whenever T: W -
R U {+ 00, — o0} is a stopping time of the filtration (9,,: t € R).

REMARK 3.2. (a) It is implicit in Proposition 3.1(ii) that @ restricted to
G;.N{T € R} is o-finite.

(b) @ is stationary in the sense that 0,(Q) = @, V ¢t € R, where (o,w)(s) =
w(t + s). Also, it is clear from Proposition 3.1(1)) and (2.5) that @ is invariant
under the spatial translations ¢, defined by (¢, w)(¢t) = w(t) — x.

Let M = M(w) = cl{Y,(w): t € R} denote the closed range of Y. Clearly M is
a random set on (W, ¢). We leave it to the reader to check that, a.e. @,

(3.3) lim Y= - lim Y,= —co.
t——oo t—+oo
Thus M is almost surely unbounded on both sides. Note that M(¢w) =
0.(M(w)), where .w® = w® — x as before.
Let us say that a %measurable random time T: W - R U {+ 00, — o0} is an
intrinsic time if Q(T ¢ R) = 0 and if

t+ T(ow)=T(w), VteR,VYweW.
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For example, the passage times L, defined by
(3.4) L,=inf{teR:Y,> s}
are intrinsic times. Note that L (¢w) = L, (w).
THEOREM 3.5. Let T be any intrinsic time. (i) Define a measure P on
(%, 9°) by
(3.6) P(A)=Q0<T<1; MeA).

Then (2°,9°, 9/, , M°, P) is a stationary regenerative set with regeneration law
PO In addmon, P(rt )= for all t € R, where = is given by (2.9). In
particular, P is independent of T.

(i) Q(T, M) € -)=m & P.

From (ii) we see that Q(M € A) = (+ o0)P(A) for any A € ¢°, justifying the
remark in the second paragraph of this section.

The proof of Theorem 3.5 requires a lemma. This lemma is a special case of a
“switching identity” of Neveu [12]. We give a short proof for completeness.

LEmMMA 3.7. Let S and T be intrinsic times, and let A € 9* be (o,)-
invariant. Let y and ¢ be positive Borel functions on R with 0 < m(y) =
m(@) < co. Then

Q(¥(S)A) = Q(9(T)A).
Proor. We use Fubini to compute

m(9)@(¥(S)4) = Q(\P(S) [o(T+w) duA)
= LQ(*P(S °0,)p(T o0, +u)Aco,)du
= fn Q(¥(S — u)p(T)A) du = m(¥)Q(e(T)A). O

ProOOF OF THEOREM 3.5. (i) By Lemma 3.7, the measure P is independent of
T. Taking T = L, we see that for t € R, A € 9,

P8, M°cA)=QO0<L,<1;6,o M A)
(3.8) =QO<Lye¢p,<1l;Mo¢,A)
=QO0<L,<1; Me A)=P(A).

This proves the stationarity assertion; also, since T M= YL ,v=P(r, € ) =
QO<L,<1; YL € -). But by formula 2.8 of [3], since Y is increasing and since
QL, = 0) =0= Q(Y =0),

WU=Q(Ly<0; Y, € )

=Q(Y,>0; %€ -) = m(-n]0,e0[) = 70,
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by (2.11). Thus v = #; in particular, P(r, € ) is o-finite. It only remains to check
(2.2) of Definition 2.1; since 6,(P) = P we need only consider the case ¢ = 0. But
Mp, =cl{Y, - Y, :Y,>Y, }and L, is a stopping time of (%,.). It follows from
Proposition 3.1(ii) that the conditional distribution of M, given ¥, . is the
same as the P distribution of cl{X, ¢> 0, X,> 0}, namely, P°. Now (2.2)
follows since M is ¢, ,/%,"-measurable.

(ii) The measure Q((T, M) € -) is easily seen to be translation invariant in its
first coordinate, and it is o-finite since P is o-finite. The assertion now follows by
the argument used for (2.4) of [3]. See also [4]. O

4. An application. As an application of the construction of the last section
we shall give a short proof of the distributional equality M = ;, — M, whenever M
is a stationary regenerative set.

Thus, let M be a stationary regenerative set with regeneration law P°. Let P
be the distribution of M on (2°, °). We claim that, up to a constant multiple, P
must be identical with the particular stationary regenerative set constructed in
the last section, starting from P°. Indeed, the residual life process (r,), which
under P° is a strong Markov process , is easily seen to be a finely recurrent
process with a single recurrence class. By [1], the process (r,) has a o-finite
invariant measure which is unique up to a constant multiple. But each of the
laws 7 = r,(P) and # = r,(P) is a o-finite invariant measure for (r,). Thus 7 and
7 are multiples of one another. It follows that P and P are multiples, as claimed.

THEOREM 4.1. Let (2, #, %, M, P) be a stationary regenerative set. Then
forany A € 9°, P(M € A)= P(—M € A). Thatis, M =,— M.

Proor. By the discussion preceding the theorem, we may work with the
canonical realization (2°,9° ¢% M9 P). Moreover we can assume that P
arises via Theorem 3.5. Thus let ) be the stationary subordinator and M the
closed range of Y, as in Theorem 3.5. Consider the process Y,= - Y_y, tER.
Clearly Y is increasing and right continuous. We leave it to the reader to check
that (Y) under @ has the same distribution as (Y,) under . Note that the closed

range M of Y is just —M. Moreover L = inf{¢: Y > 0} is an intrinsic time (of
Y). Thus

P(A)=Q0<Ly,<1, M A)
=Q0<Ly<1,MecA)
=Q(0<Ly<1,-M)

= P(4),

where A = {w®% —w° € A}. The identity P(A) = P(A), V A € 4° is a formal
version of the statement of the theorem, so we are done. O
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