The Annals of Probability
1988, Vol. 16, No. 4, 1496-1508

LARGE DEVIATIONS FOR THE EMPIRICAL MEASURE OF A
MARKOV CHAIN WITH AN APPLICATION TO THE
MULTIVARIATE EMPIRICAL MEASURE!

BY RiIcHARD S. ELLIS

University of Massachusetts

The main theorems in this paper prove uniform large deviation properties
for the empirical measure and the multivariate empirical measure of a
Markov chain that takes values in a complete separable metric space. One
contribution of the paper is that, in contrast to previous large deviation
results for the empirical measure, we do not assume that the transition
probability of the Markov chain has a density with respect to a reference
measure.

1. Introduction. Let X, X, X,,... be a Markov chain on a space £ with
stationary transition probabilities 7(x, dy). We assume that the Markov chain
takes values in a complete separable metric space . For each starting point
X, =x € %, = induces a probability measure P, on {. For each w € , positive
integer n and Borel set A in %, define the empirical measure

n—1

1
Ln(w’ A) = ; Z 8X,(w){A}'
j=0

We denote by #(Z) the space of Borel probability measures on £ with the
topology of weak convergence. For each positive integer n, L, maps { into
M(E).

The pioneering work on large deviations for the empirical measure of a
Markov chain is that of Donsker and Varadhan (1975, 1976). Our first theorem,
Theorem 1.2, and the work of Stroock (1984), on which it is based, prove uniform
versions of results in Donsker and Varadhan (1976). As an application of
Theorem 1.2, we derive in Theorem 1.4 a uniform large deviation property for a
natural generalization of the empirical measure, called the multivariate empirical
measure. Theorem 1.4 cannot be proved from the special case of Theorem 1.2
given in Stroock (1984).

We next state the hypotheses needed for the large deviation theorems.

HyPOTHESIS 1.1(a). #(x, dy) is a Feller transition probability on Z.

HypoTHEsIS 1.1(b). For some B8 € Z*, some M € [1,), all x,x’ € Z and
all Borel sets A in &,

7P(x, A) < MaB(x’, A),
where 78(x, dy) denotes the B-step transition probability of the Markov chain.
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The next theorem, Theorem 1.2, is proved in Stroock (1984) in the case where
7(x, dy) satisfies Hypotheses 1.1(a)—(b) for 8 = 1. The extension to 8 > 2 is new.
Theorem 1.2 is proved in Section 2.

The large deviation theorems in Donsker and Varadhan (1975, 1976) require
that 7(x, dy) have a density 7(x, y) with respect to a reference measure A(dy).
The large deviation theorems in the present paper do not require the existence of
a density of w(x, dy).

THEOREM 1.2. Let % be a complete separable metric space. We assume that
7(x, dy) satisfies Hypotheses 1.1(a)—(b). Define for p € #(X),

u(x)
J, sup
(n) = ueUx) j;r(vru)(x)”( )
where U(Z) denotes the set of u € 4(X) such that u>¢ on % for some

e = g(u) > 0. The following conclusions hold.

(a) J,(p) is a lower semicontinuous convex function of pEME).
(b) For any L > 0, the set {n € #(X): J(p) < L} is compact.
(c) For each closed set F in #(X),

lim sup ;log(supP{w L,(w,-) eF}) < - me(p)

n—oo

(d) For each open set G in M(X),

hmmf—log( mfP{w L(w,:) € G}) > - 1nf J(p,)

n—oo

REMARK 1.3. Extensions. With additional work one may show that the
conclusions of Theorem 1.2 remain valid under the following weaker hypotheses.

(a) Hypothesis 1.1(a) may be dropped; i.e., 7(x, dy) need not be a Feller
transition probability.
(b) Hypothesis 1.1(b) may be replaced by the following weaker hypothesis.

HypoTHESIs 1.1(b"). Forsome B and N inZ*,some M € [1,0),all x, x’ € &
and all Borel sets A in &,

N

(1.1) 7h(x, A) < %{— Elﬂ"(x’, A).

In particular, Theorem 1.2 is valid for a finite-state Markov chain that is
irreducible.

Remark 2.1 at the end of Section 2 will indicate why these extensions of
Theorem 1.2 hold.

We now apply Theorem 1.2 to prove a uniform large deviation property for
the multivariate empirical measure. The latter is defined for each w € Q,



1498 R. S. ELLIS

positive integer n, positive integer a > 2 and Borel set A in the product space
Z* by
n—1

1
n a(w A) Z 8]{, a(w){A}’
n 0 '

j=

where
y},a("") = (Xj(w)’ +1((0) j+¢! 1("")) € %"a
ie, Y; (o is that element of ' with coordinates

(Y (w)) +k-1 fOorl<k<a.

For each positive integer n and each positive integer a > 2, M, , maps Q into
M (X *), the space of Borel probability measures on & °.

The multivariate empirical measure arises naturally in a number of contexts
in statistical mechanics and in statistics. For the former, see Ellis (1985),
especially Appendix C.6, and Szulga, Woyczynski, Mann and Tjatjopoulos (1987);
for the latter, see Example 5 in Section 2.2 of Pollard (1984).

In order to state Theorem 1.4, we need some definitions. Denote by X s
Jje {1 2,..., a}, the coordinate functions on £ i.e., for x = (x, x,,...,x,) €
e X (x) = x;. Let p be a Borel probability measure on % We denote by
o (xl, X,_,, dx,) a regular conditional distribution of X, given X, =
Xpyenns Xa 1 = Xq_1. We denote by p,(dx; X --- dea v the (a — 1)-
dimensional marginal of u which is the distribution of X,,..., X,_, and by
p(dxy X «++ Xdx,) the (a — 1)-dimensional marginal of g which is the distri-
bution of Xz, ceey X'a. Given » and p Borel probability measures on %, we define
the relative entropy of » with respect to p,

I(v,p)=f10g (x)v(dx), if v <p,

= + o0, otherwise.

The following theorem is proved in Section 3 of this paper by applying
Theorem 1.2 to the process {Y; ,, j =0,1,...}, which is a Markov chain with
state space % °.

THEOREM 1.4. Let ¥ be a complete separable metric space. We assume that

m(x, dy) satisfies Hypotheses 1.1(a)—(b). For a € {2,3,...} and p. a Borel prob-
ability measure on %*, define

I«rr,a(l") = _/;ra_l'l(”*(xl"“:xa—b ')’”(xa—h '))nul(dxl X dea—l):

ifnul=nua’
= +o00, oy # Py
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Denote by p, ® w the Borel probability measure on ¥ * defined by
”’1 ® ”(dxl X e dea) = ,"I(dxl X oo dea—l)w(xa—l’ dxa)'
The following conclusions hold.

(@) I, (p) is a lower semicontinuous convex function of p € M (X ).
(b) For any L > 0, the set {p € #(Z*): I, (p) < L} is compact.
(c) For each closed set F in M (% *),

1
lim sup —log( supP{w: M, (w,") € F}) < - int 1, ().
e

noow NI x€X

(d) For each open set G in M (X*),

hmmf—log( inf P{w: M, (o, ") € G}) = - inf I, (k).

n— oo n

(e) Forall pe H(X*),
I (p)=1I(p,p, & 7).

REMARK 1.5. Extensions. As in the case of Theorem 1.2, the conclusions of
Theorem 1.4 remain valid under the weaker hypotheses given in Remark
1.3(a)—(b). Remark 3.5 at the end of Section 3 will indicate why this is true.

In the case of finite-state Markov chains, large deviations for the multivariate
empirical measure have been studied by a number of authors, including Csiszar,
Cover and Choi (1987), Ellis (1985) and Natarajan (1985, 1986). In future work,
we will apply Theorem 1.4 to prove a uniform large deviation property for the
empirical process of a Markov chain that takes values in a complete separable
metric space [Ellis and Wyner (1987)]. The proof is based on an approximation
argument that uses the uniform large deviation property of the multivariate
empirical measure.

2. Proof of Theorem 1.2. Theorem 1.2 is proved in Stroock (1984) under the
assumption that =(x, dy) satisfies Hypotheses 1.1(a)-(b) with 8 = 1. The proof
consists of two parts. Part 1, given in Section 6, shows the existence of a rate
function I,(p) such that the P,-distributions of L, (w, ) have a uniform large
deviation property with this rate function. Part 2, given in Section 7, identifies
I (p) with J(p). We now indicate the minor modifications needed in order to
prove Part 1 under the assumption that «(x, dy) satisfies Hypotheses 1.1(a)—(b)
with B8 > 2. Part 2, which proves that I (p) equals J,(p), then follows as in
Theorem 7.18 and Corollary 7.21 of Stroock (1984).

Given positive integers n and i and a point w € 2, we define

ln 1+i

Li;(‘*’a )= Z 3X(w){ }

Jj=i

and denote by @}, , the P,-distribution of Li(w,-). Hypothesis 1.1(b) implies
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that

(2.1) sup@f .{-} <Minf @} {-}.
x€X xeX

Define #,{-} = inf, . 4@}, ,{-}. As in the proof of Lemma 6.4 in Stroock (1984),
for any convex set A in M (%) and all positive integers m and n,
(22) Bl A} = P,(A) - 2(A).

However, we must modify the other arguments given on page 117 of Stroock
(1984) since it is no longer clear that if A is open and convex, then £, {A} > 0
for some m € Z* implies that #,{A} > 0 for all sufficiently large n€ Z™.
Analogous complications arise in Stroock’s treatment of continuous time
processes (see pages 121-131).

Let ® denote the Lévy—Prohorov metric on #(%). It follows from (2.2) that
if A is convex and £,{A} > 0 for some m € Z*, then there exists § > 0 such
that 2,{A®} > 0 for all sufficiently large n € Z’r where

A® = {pe #(X):Iv € A satisfying ®(p,») < 8}.
For p € #(%) and r> 0, we denote by B(p, r) the open ball
 B(p,r)={re#(Z):0(,r)<r}.
1t follows that for p € # (%) and r > 0, the quantity

1
(2.3) g(l"y r) == nli—»n:o ;log‘@n{B(["‘a r)}a if supgz’,,{B(p, 7/2)} >0,

nx>1
= 00, otherwise,
is well defined. For p € #(%), we define
(2'4) ﬂ{""} = Sup"?("’y r) = hm"?(p" r)
r>0

Part 1 of the proof of Theorem 1.2 consists in showing that the conclusions of
Theorem 1.2 hold with <J (n) replaced by I.(u).

(a) That I (p) is a lower semicontinuous convex function of p € #(%) is
proved as in Lemmas 3.15 and 6.12 of Stroock (1984).

(d) The uniform lower large deviation bound with rate function I (p) is
proved as on pages 118-119 and 128-129 of Stroock (1984).

(b) First assume that «(x, dy) satisfies Hypothesis 1.1(b) for 8 = 2. For
i = 0,1 we define the processes

0:(n)

L?.,i(“’y 0(1) Z xz,ﬂ(w){ }s

where if n is odd, then 6(n) = (n + 1)/2 and 8,(n) = (n — 1)/2, whereas if n is
even, then 0y(n) = 8(n) = n/2. Just as in the proof of Lemma 6.5 in Stroock
(1984), one can show that for each L > 0 there exists a compact set K; in
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M (Z) such that K; is convex and for each i = 0,1,

1
lim sup —log(supr{Lﬁ’1 € K,ﬁ}) < -L.

n— o0 x€X

These bounds imply that

1
lim sup —log(supQ,Z, x{K,ﬁ}) < -L.
n-w N xE€X ’
In a similar way one shows that if #(x, dy) satisfies Hypothesis 1.1(b) for 8 > 3,
then for each L > 0 there exists a compact set K; in (%) such that K; is
convex and for each i = 0,1,

1
(2.5) lim sup —log(supr x{K,ﬁ}) < -L.
nooo N xe¥
Since inf, . 4 QF ,{-} > inf, .4 @, ,{*}, the proof that I has compact level sets
follows the proof on page 119 of Stroock (1984).

(c) Using (2.1), we may prove as on pages 120 and 129-130 of Stroock (1984)
that for F a nonempty compact set in A4 (%),

1
(2.6) lim sup —log(suprf JE{F}) < — inf I(p).
n ¥ nEF

n— oo
Since for each L > 0 there exists a compact set K; in #(Z) such that (2.5)
holds, (2.6) is also valid for any nonempty closed set F in .#(%’). For § > 0, let
F® denote the closure of the set F(®, Since

supQ(LL(w, ')a Lf(wa )) < ESIB——_B’
we n

we have

1 1 -
lim sup —log( supQ, {F }) < limsup —log( sup Q# x{ F(‘”})
n xex n ’

n— oo n— oo xX€X

and so it follows from (2.6) that

1 R
lim sup ;lOg(ilg;Q"' JE{F}) < .lsii%[_inf{l"(“): pE F(S)}] = - Mirelgl,,(p).

n— oo

This completes the proof of Theorem 1.2. O

REMARK 2.1. The purpose of this remark is to point out why the conclusions
of Theorem 1.2 remain valid under the weaker hypotheses given in Remark
1.3(a)—(b). As we have seen, Theorem 1.2 is proved in two parts. Part 1 shows the
existence of a rate function I (u) such that the P -distributions of L, (w, -) have
a uniform large deviation property with this rate function. Part 2 identifies I,(p)
with J (p). We used Hypothesis 1.1(b) in the proof of Part 1. With some obvious
modifications in this proof, one may easily show Part 1 under the weaker
Hypothesis 1.1(b"). For the proof of Part 2, we referred to Stroock (1984). There,
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the Feller property of #(x, dy) together with Part 1 is used in order to identify
the form of the rate function (see his Theorem 7.18 and Corollary 7.21).
According to an observation of Stroock (1987), if =(x, dy) does not have the
Feller property, then Theorem 7.18 remains true by a modified proof that is
based on an approximation argument. Together with Part 1, Theorem 7.18 yields
Corollary 7.21, and thus Part 2 follows.

3. Proof of Theorem 14. The multivariate empirical measure M, (w,-)
equals the empirical measure for the process

Y (0) = (X(0), X;11(0),..., X;ran(®)),  Jj=0,1,....

The process {Y; ,} is a Markov chain that takes values in the complete separable
metric space £* and has stationary transition probabilities 7 (x, dy) given by

T(Xpyeens Xgy dyy X -+ - Xdy,)
=P{X; ., €dy,.... Xj €ElX;=x),..., Xjy oy = x,)
= Bxg(dyl)sxa(dyZ) e Sxa(dya—l)ﬂ(xa: dya)'

For each starting point Y, , = x € £, 7, induces a probability measure P_on
Q. In addition, for each point x € 2%, the underlying transition probability = on
Z induces a probability measure P, on @ such that P{(X,, X,,..., X,_,) =
x} = 1. It is clear that for any positive integer n and bounded measurable
F:(Z*)" - [0, o),

(1) EX{F(YyYiw-s Yy 14)} =EP{F(Y 0¥y Yora))-

In order to prove Theorem 1.4, we will first check that =, satisfies Hypotheses
1.1(a)—(b). It will follow from Theorem 1.2 and (3.1) that the P, -distributions of
{M, .} have a uniform large deviation property with the convex rate function

u(x)

J = su log————pu(dx), eM(XY).
(1) 0 e g(ﬂau)(x)n( ),  meA(Z*)

Since

inf EP(F(Yy gpeeer Yy y0)} < jg;Eﬂ{F(%,a,...,Y,,_l,a)}

xeZ”

< SupEP"{F(Yo’a)"" Yn—l,a)}

x€X

< sup ER{F(Yy ..., Y, 1 .)}
xex*
it will follow that the P-distributions of M, ,(w,-) have a uniform large
deviation property with the convex rate function J(1). We will then identify
J,(n) with the function I, (u) and with the relative entropy I(p,p, ® 7)
defined in Theorem 1.4.
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The proof of Theorem 1.4 involves four steps.

Step 1. =, is a Feller transition probability on £'* [Hypothesis 1.1(a)].

Step 2. For all x, x’ € £ and all Borel sets A in 2¢,

matPi(x, A) < Mag*hY(x, A)

[Hypothesis 1.1(b)].

Step 3. For all p € #(X*), J (1) = I, (n).

Step 4. For all p € #(Z*), I, (p) = I(p,p, ® 7).

Step 1 is an elementary calculation and we omit the details. Step 2 follows
from Hypothesis 1.1(b) and the fact that for any n € Z*U {0},

TETH(Xyyeeey Xy, dyy X -+ Xdy,) = 7" Y xy, dy)m( 31, d¥p) -+ T(Yor1s AYa)-

Step 4 is proved by routine manipulations involving Radon-Nikodym deriva-
tives and we omit the details. The heart of the proof is Step 3, which we carry
out for a = 2. The proof for arbitrary a > 3 follows by obvious changes in
notation. We show that for each p € #(%?),

B u(x)
Tw) = s [ JogrsiyH()

ueU(x? (qu

equals

IW,Z(P‘) = fﬂ!(l‘*(xl» ')’W(xv '))lh(dxl), if g, = po,
= o0, if p, # po.

Since my(xy, x5, dy; X dy,) = 8, (dy))7(x, dyp),

quz(l‘) = Ssup {Lﬂl‘)g u(x,, x;)u(dx, X dx,)

ueU(x?)

—L2[10gLu(x2, y)m(x, dy)]“(dxl % dxz)}

sup ){ .| f1o8 e 2", )|

ueUx?
__/ [logfu(xz, y)m(xy, dy)]l‘z(dxz)}'
£2 £2

We begin the proof of Step 3 with the next lemma.

LEMMA 3.1. If p, # py, then J, (p) = + co.

PrOOF. Let u(x,, x,) = v(x,), where v is any function in %(Z’). Then
(3.2) Io(1) = [log o(ax,)uy(dx,) = [log o(xy)n(dss)-

£2 £2

If p, # p,, then there exists a closed set F in & such that p,(F) # py(F). It is
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not hard to show that for any M > 0 there exists a function v = vy, » € %(%)
such that the right-hand side of (3.2) exceeds M. Since M > 0 is arbitrary, it
follows that oJ, (u) = +c0. O

We now assume that g, = p, and prove that Jo (1) = I, o(p). Since p, = p,,

(1) = sup f[flogu(x y)u*(x, dy)
(3.3) UEU(X*)

108 fulx, Y)n(x, dy)]ul(dx)-

We will use the following variational characterization of the relative entropy due
to Donsker and Varadhan (1975).

LEMMA 3.2. For v and p Borel probability measures on %,

I(v,p) = sup {flogv(y)V(dy) logfv(y)p(dy)}

vEUX)

According to this lemma, if g, = p,, then

Jo(1) < fg su% { f log u(x, y)p*(x, dy) — log f u(x, y)m(x, dy)}ul(dx)
ueu(x?

=fg sup {[;ogv(y)u*(x,dy)—logfgv(y)”(x,dy)}ul(dx)

vEYUX)
= L[I(p,*(x, '), ’ﬂ'(x; ))P‘l(dx)

= -n,2(l‘)-

We now prove that if p, = p,, then o ) = I o(p). If J,(p) = + o, then
there is nothing to prove, so we assume that J,(p) is finite. For any u € 4'/(.93‘ 2,
3.3) 1mphes

@) T () > [ | [logu(a, 3)u*(x, ) — Tog u(x, Y, ) ().

We define 7"(Z?) to be the set of bounded measurable functions z on 2 such
that u > e on 22 for some ¢ = &(u) > 0. By tightness and Lusin’s theorem, (3.4)
continues to hold for all u € ¥(Z?%). We need another lemma.

LEMMA 3.3. Let p be a Borel probability measure on %2 and define the set
A= (xe &) < n(x,)).
If J,(p) is finite, then p(A,) = 1.
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PROOF. For each x € & define the measure ¢(x, -) = p*(x, ) + 7(x, -). Since
m(x, -) < ¢(x, ), we may write

dn(x, ) :
By (e

According to a theorem of Doob [see Dellacherie and Meyer (1982), page 52], we

may choose & to be a nonnegative measurable function of (x, y) € 2. For any
Borel set E in &, we have

n(x, E) = [ k(x, 9)(x, ) = [ (x, y)u*(x, dy) + [ R(x, ), &)

k(x, y) =

or
(3.5) [, 2w (x, dy) = [ (1= k(=, y))7(=, dy).
E E
This implies that for each x € &, #(x, B,) = 0 and #(x, A,) = 1, where

B, ={yeZ:k(x,y)=0}, A,={yeZ:k(x,y)>0}.

It follows from (3.5) that the measure E — p*(x, B, N E) is the singular part of
p*(x, -) relative to #(x, -). To prove the lemma, it suffices to show that

fg#*(x, B, ) (dx) =

For A > 0 we define the function
u(x,y)=1, forxeZ,ycA,
=A, forxe %, y€<B,.
Since u(x, y) € ¥ (Z?%), we have by (3.4) that

T,(k) = (log ) [p*(x, B)wi(d).
Since by hypothesis o/, (p) is finite, it follows by taking A — co that
fyﬂ*(x, B, )u(dx) = 0.
This completes the proof of the lemma. O
In order to complete the proof of Step 3, we need one more fact.

LEMMA 3.4. We assume that w(x, dy) satisfies Hypotheses 1.1(a)—(b). Then
there exists a measure i € #(%?) such that

(@) J,(B) =
(b) a regular condztzonal distribution p*(x dy) is given by w(x, dy) and
(c) the one-dimensional marginal i, is an invariant measure for .
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PrOOF. Since 7, satisfies Hypotheses 1.1(a)—(b) (Steps 1 and 2), Theorem 1.2
implies that the P,-distributions of M,, , have a uniform large deviation property
with the convex rate function oJ,. It follows that inf{J, (p): p € A(Z?)} =0
and that there exists a measure p € #(Z %) such that J,(8) = 0. This proves

part (a). Parts (b) and (c) follow from the fact that g is an invariant measure for
@, [Corollary 7.26 in Stroock (1984)]. O

We assume that o, (p) is finite and prove that

(36) To(8) = L) = [T (x, ), m(x, Dl de).
Let u be the function

u(x,y) = ———(y), forxeA,6 yeq,
(3.7) Y= dn(x, ) w Y
=1, forxe.Q”\AF,yEQ’,
where A, = {x € Z: p*(x, -) < 7(x, -)}; according to Lemma 3.3, m{4,} =1
We prove (3.6) first under the assumption that ¥ > 6 on &2 for some 0 < § < 1.
For n a positive integer, the function u, = u A n is in ¥°(Z'?%), and so by (3.4)
applied to u, and monotone convergence (u, 1 u),

o) = 9 (0) + [ |tog [, )z, @) | ()
> [ | [l utz, 20 (5, )|

= L{I(p*(x, ), m(x, ))p(dx) = I, o(p).

We now remove the restriction that u > 6 on %2 Let i€ .#(%?) be a
measure satisfying the conclusions of Lemma 3.4. For 0 < § < 1, define the
measure

po= 05 + (1 - O)n € A(2?)
and the function

dpj(x,-) dp*(x, +)
©ug(x, y) = m(y) =60+ (1- 6’)E(x’—,)(y),
forxeA,, yeZ,

=1, forxe X\NA,yeX.
Thus uy = 6 + (1 — 0)u, where u is defined in (3.7). Since u, > 6 on Z'2, we may
apply the previous argument to the measure p,, obtaining

o) = I (0 + (1 — O)p)
2 Iﬂ,z(#a)

= [I(u3(x, ), m(x, ) [OR(dx) + (1= O)po(ar)].
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Since oJ,, is convex, J, (i) =0, and I(p}(x, ), 7(x, -)) = 0, we see that

To(8) 2 [I(n3(x, ), 7(x, ) ()
- jg [ fg ug(x, y)log uy(x, y)vr(x,dy)]pl(dx).
- j;r [0 [flog ug(x, y)m(x, dy)
+(1-98) L u(x, y)log ug(x, y)m(x, dy)] o)

>6logd+ (1— 0)2'[%[‘/;#(3:, y)log u(x, y)=(x, dy)]pl(dx).

The last inequality uses the fact that ¢ — logt is concave. Take 6 — 0 and
conclude

2.0 = [[ [, yMogut, n(, ) | (@) = 1 o).

In Lemma 3.1, we proved that o, (p) = + o0 if p; # p,. Thus if p, # p,, then

2(p) I, o(p) = +o0. Assuming p, = py, we have shown also that oJ,(p) =
I, «(p) This completes the proof of Step 3. The proof of Theorem 14 is
complete 0

REMARK 3.5. The purpose of this remark is to point out why the conclusions
of Theorem 1.4 remain valid under the weaker hypotheses given in Remark
1.3(a)-(b). As we have seen, Theorem 1.4 is proved in two parts. Part 1 shows
that the P,-distributions of M, (,-) have a uniform large deviation property
w1th the convex rate function o, (1). Part 2 identifies J, ( p) with the function

(1) and with the relative entropy I(p, p, ® ). Part 1 is proved by checking
that the transition probability function = (x,dy) satisfies the hypotheses of
Theorem 1.2 [Hypotheses 1.1(a)-(b)]. Since the conclusions of Theorem 1.2
remain valid under the weaker hypotheses given in Remark 1.3(a)—(b), Part 1 of
the proof of Theorem 1.4 also remains valid under these weaker hypotheses. Part
2 of the proof of Theorem 1.4 is then proved exactly as in the remainder of
Section 3 [Lemma 3.1 to the end].
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