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RATES FOR THE CLT VIA NEW IDEAL METRICS

By S. T. RacHEV! aND J. E. YUKICH

State University of New York at Stony Brook and Lehigh University

Let (B,|| |)) be a separable Banach space and %= Z(B) the vector space
of all random variables defined on a probability space (2, &/, P) and taking
values in B. It is shown that new ideal metrics for 2 may be used to obtain
refined rates of convergence of normalized sums to a stable limit law. The
rates hold uniformly in n and are expressed in terms of a variety of uniform
metrics on Z. In the Banach space setting the rates hold with respect to the
total variation metric and in the Euclidean space setting the rates hold with
respect to uniform metrics between density and characteristic functions. The
main result provides a sharp order estimate of the rate of convergence in local
limit theorems with respect to the uniform distance between densities. The
method is based on the theory of probability metrics, especially those of
convolution type.

0. Introduction. Let (B,|| ||) be a separable Banach space, # the usual
Borel sets and 2= Z(B) the vector space of all random variables defined on a
probability space (2, &7, P) and taking values in B. New ideal metrics for the
space Z are introduced and it is shown that they provide refined rates of
convergence of normalized sums to a stable limit law. The rates hold uniformly
in n and are expressed in ternis of a variety of uniform metrics on Z. In the
Banach space setting the rates hold with respect to the total variation metric,
improving and extending upon existing results. In the classical Euclidean space
setting the approach allows a determination of convergence rates with respect to
uniform metrics between density and characteristic functions. The main result,
Theorem 3.3, provides a sharp order estimate of the rate of convergence in local
limit theorems with respect to the uniform distance between densities. This is
done by extending the classic method of Bergstrom, which provides the rate of
convergence in the CLT with respect to the uniform metric [cf. Bergstrom
(1945)].

The method is based on the theory of probability metrics, especially those of
convolution type; for earlier work on convolution metrics see Rachev and
Ignatov (1984) and Yukich (1985). Here it is shown that convolution-type metrics
are particularly well suited for the rate-of-convergence problem. As indicated,
the metrics are ideal, which by itself is of interest since the only ideal metric
known thus far is the {,-metric discovered by Zolotarev (1976, 1977, 1979). The
properties of this metric have been analyzed in Ignatov and Rachev (1983). Ideal
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776 S.T.RACHEV AND J. E. YUKICH

metrics of the convolution type turn out to be extremely versatile and provide
rates of convergence with respect to a variety of metrics. In fact, each ideal
convolution metric on % can be used to provide rates of convergence in the
general CLT in terms of some uniform metric corresponding to the proposed
ideal metric. This remark constitutes one of the central themes in this article.
That the method works is essentially due to the fact that ideal convolution
metrics satisfy crucial smoothing inequalities not available for {, (see especially
Lemmas 2.6 and 2.7). Moreover, the convolution metrics are weaker with respect
to all known pseudomoments appearing in the right-hand side of the Berry-
Esseen-type estimates [see Senatov (1980) and Maejima and Rachev (1987)]. The
construction of the new ideal metrics yields sharp estimates of the rate of
convergence in the local limit theorem (see Theorem 3.3).

1. Metrics and their properties. Let #(Z) be the space of all laws Py,
X € Z(B). The metrics p on .Z(X) used in this article take the form

I’«(ley sz) = ”(PX, - sz),

where » is a subadditive [0, «c]-valued functional on the space . = .#(B) of
bounded signed measures on B. In the sequel put

P‘=le_Px2,

[tdo = E(1(X)) - f(X,)),
F(x) = Fy(x) — Fy(x),
where Fy(x) = P(X <x), X € Z(R"),and if n =1 let

F (x):= /_xx-(:r_—_ti)'—dﬁ;(t), r=1,2,....

A subadditive [0, «o]-valued functional » on .# is called ideal of order r if the
following two conditions are satisfied:

(i) Regularity: »(p*p,) < v(p)|p,| for all p, p, € #, where |p,| is the total
variation of p,,.
(ii) Homogeneity of order s > 0:

v(p9) = |cI*»(p) forc # 0,

where p € A and p'“)(-) = p(- /c) [cf. Zolotarev (1976) and Maejima and Rachev
(1987)].

Zolotarev (1976) showed the existence of an ideal metric of a given order r > 0
and defined the ideal metric

(1) (o) = sup]|f1ap|s 1) = 1) < 1 =0,
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where m € N* and B € (0,1] satisfy m + B8 = r; f™ denotes the mth Fréchet
derivative of f for m > 0 and f©(x) := f(x). He also obtained an upper bound
for §,, k € N7, in terms of the so-called difference pseudomoment «,, where for
r>0,

c(p) o= supf | [ 1o 1) = 1) < Il = 51507

If B = R, then ||x|| = |x| and
(1.2) k(o) =r[ R (x)dr, >0,

In this article new ideal metrics are introduced on the spaces £ and Z*(R™),
where Z*(R"™) denotes those random variables with densities. It is shown that
the metrics provide improved rates of convergence for CLTs in Banach spaces
involving a stable limit law.

More precisely, let Y, denote a strictly stable symmetrical random variable
with parameter « € (0,2], that is, Y, =, — Y, and Y/ + --- + Y/ =, n'/*Y,,
where Y, 1 <i<n, are iid. random variables with the same distribution
as Y, Letting X, X, X,,... denote iid. random variables and S, :=
n~ %X, + -+ +X,), we use ideal metrics of convolution type to describe the
rate of convergence S, -, Y, with respect to the following uniform metrics
on A.

Total variation metric:

Var(p) = sup{‘/fdp’: f: B = R is measurable

and |1, = supl(x)| < 1}

=2sup |p(A), peEA(B).
Ae®

In .#(R") we have Var(p) = [| dF,).

Uniform metric between characteristic functions: x(p) = sup,|@,(¢)|, where P,
denotes the characteristic function of p.

Uniform metric between densities [ p, denotes the density for p € #(R™)]:

I(p) = esssup|p,(x)|.

The metric x is topologically weaker than Var, which is itself topologically
weaker than ! by Scheffé’s theorem; see Billingsley (1968), page 224.

For any f: B - R, ||f||,, denotes the supremum, and when B = R", Nl
denotes the L? norm. Let | f||, = sup{|f(x) = f(¥)|/llx — ¥|: x # y} be the
usual Lipschitz norm.
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We use the following metrics on /.

Kolmogorov metric:
K(p) = sup|Fy(x)l, peA(R).

x€ER

L? version of §,,:
(m+1) 1 1 +
Sm,p(p) = supl | [fdpl: I ™)), < 11, St LmeN®.

[If gm p(p) < o0, then §m p(p) ” m+1, p”p! alSO{ ,1(p) = {m(P)J
Generalized Kantorovich-Wasserstein metric:

W (p) = SuP{‘fdexl + [gdFy, | Ifll + 111l < o,

8]l + 1181l < o0 and f(x) +&(y) <llx - yI? Vx,y€ B}z p=1l

If A denotes a metric on .#, then assume throughout that A(X,, X,) =
A(Py, Py ) forall X,, X, € Z.

2. Ideal convolution metrics and their properties. Associated with Var,
x and ! we define the following metrics of convolution type.

(i) Let 8 € Z(B), r > 0 and define [cf. Rachev and Ignatov (1984)]

Vﬂ,r(p) = Suplhlrvar(p*FhO): p G./”(B).
heR
Thus each 0 generates a metric v, ,, r > 0.
(ii) Define for r € N¥,

x-(p) = f:l':ltl_'l%(t)l, p € A(R).

X, has a convolution-type structure, since with a slight abuse of notation
xAp) = x(p* p,), where p(t):=¢t"/r!I,. is the density of an unbounded
positive measure on [0, c0); see Zolotarev (1981).

(iii) Let € Z(R™), r > 0 and define

po,(p) = Suplhl'l(p*Fha), pEMR").

Lemma 2.1 below shows that v, ,, x, and p, , are ideal. In general, », , and
Lg, » are actually only pseudometncs but this distinction is not important in
what follows and so we omit it.

When 6 is an a-stable random variable we will write », , and [, » (Or simply
v, and p, when it is understood) in place of », , and g, ,. Also if 8 has a density
&, then p, . represents a generalization of the convolution metric d (p) =
Up*Fy) used in Yukich (1985).
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LemMMA 2.1. (i) For all § € ¥ and r > 0, v, , is an ideal metric of order r.
(ii) For all r > 0, x, is an ideal metric of order r.
(iii) For all 6 € X and r > 0, p, , is an ideal metric of order r — 1.

The proof of this lemma is straightforward. The following lemmas show that
both v, . and p, , may be bounded above by the difference pseudomoments.
Moreover, these lemmas show that », , and p, , are weaker than the Zolotarev
metrics §, and {,, ,, respectively. Thus rates in terms of the convolution metrics
are superior to rates in terms of {, and §,, .

LEMMA 22. Let r € N*, p € #(R) and suppose that [x’dp =0 for j =
1,...,r— 2. Then for every § € Z(R) with a density g which is r — 1 times
differentiable,

187 Pl
po,-(p) < (r—_l)—,Kr_l(P)-

The next lemma is a refinement of Lemma 2.2. We defer the proof to the
Appendix.

LEMMA 2.3. For every 8 € £*(R) with a density g which is m times differen-
tiable and for all X,, X, € Z(R),

ro,(p) < C(m, p, &)$m_1,(P),
wherer =m+ 1/p, me N*, p € [1, ) and

Il
—

C(m,p,g) =18l

|-
Q|

The proof of the following lemma follows from straightforward modification
of the techniques of Senatov (1980).

LEMMA 2.4. Under the hypotheses of Lemma 2.3

V0,r(p) < C(r, g){r(P)’
where C(r, g) is a finite constant, r € N*.

LeMMA 2.5 [cf. Theorem 2 of Maejima and Rachev (1987)]. Letm € N* and
suppose [x/dp = 0 forj=0,1,..., m. Then for p € [1, ),

K%/p(p): m=0,

$m,p(p) < ( T(L +1/p)

1
— 7 —m+ =, m=1,2,....
Ta+r) P r=mtoim
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Next we show that the ideal metrics satisfy crucial smoothing inequalities
with respect to the corresponding uniform metrics (see especially Lemmas 2.6
and 2.7); such inequalities are not available for {,. These smoothing inequalities
will yield sharp order estimates for the rate of convergence in the CLT. Through-
out, recall that Y, (or Y) denotes a strictly stable symmetrical random variable
with parameter a € (0,2]. If Y, € Z(R), then assume that Y, has the character-
istic function @y(¢) = exp{—|¢|*}, ¢ € R.

LeEMMA 2.6. (i) For any p € #(B) and ¢ > 0,
Var(p * P,y) < 67"5,(p).
(ii) For anyp € #/(R), 0 > 0 and r > a,
r

r/a
x(p* Py) < Co"x,(p), Cr==(—) .

ae
(iii) For any p € #(R™) and o > 0,
Wp*Py) <0 n(p).
ProoF. (i) Since Y and — Y have the same distribution
Var(p * P,y) < h™"suph” Var(p * P,,) = b "3(X;, X,).
h>0

(ii) We have

x(p* Py) sup {I9,(2) }exp{ —|ot|*}

IA

sup |o¢| ~"|o,(¢)| supu'e ™
teR u>0

= CGo7'x.(p),
since C, = sup, . ou’e”*" by a simple computation.
(iii) lp* P,y) = 07"0"l(p* Py) < 0 "1, (X,, X,). O

Lemma 2.6(i) resembles Lemma 1 of Senatov (1980) for the metric §,. Lemma
2.7(i), which follows, resembles Lemma 2 of Senatov (1980) proved for B = R™.
Estimates of this sort have been used by Sazonov (1972) and Sazonov and
Ul’yanov (1979).

LeEMMA 2.7. (i) For any p € #(B) and U,V € Z(B),

Var(p * P;;) < Var(p)Var(U,V) + Var(p * P,).
(ii) For any p € #(R) and U,V € Z(R),
x(p*Py) < x(p)x(U,V) + x(p* Py).

(iii) For any X,, X,, U,V € Z*R"),

l(p* Py) < U(p)Var(U,V) + I(p* Py).
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Proor. We only prove (i), since (iii) is similar and (ii) is trivial. To prove (i),
use the triangle inequality to obtain

Var(p* Py) = sup{|(p* Py)(f)I: I fll < 1)
<sup{lp(f): Ifll, <1} + Var(p* Py),
where f(x) == [pf(u + x)( Py — Py) du. Since || f||,, < 1 and

170 = sup [+ 2P, = Py)

<

< Var(U, V),

/B f(u)(Py — Py) du

we see that sup{|p(f)|: || f|l, < 1} is bounded by

< sup(lp(&)l: llgll., < Var(U,V)}
= Var(p)Var(U, V). O

We conclude the discussion of the properties of p, and », by noting that they
satisfy the same weak convergence properties as do the Kantorovich—Wasser-
stein distance W, and the pseudomoments «,.

THEOREM 28. Letk € N*,0 < a <2 and X,,,U € Z(R) with EX] = EU/,
J=1,...,k — 2. If k is odd, then the following are equivalent as n — oo:

(l) ,“a, k(Xn’ U) - 0,
(i) (@) X, >p Uand (b) EX*' - EU* 1,
dii) W,_(X,,U) -0,
(iv) k,_(X,,U) > 0 and
™) ¥y 2 X, U) = 0.

The proof may be found in the Appendix.

3. Main results. By exploiting the homogeneity and special structure prop-
erties of ideal metrics, especially Lemmas 2.6 and 2.7, we show that each ideal
metric on & provides rates of convergence in terms of the corresponding uniform
metric. The first result (Theorem 3.1) shows that », may be used to obtain a
refined convergence rate in the CLT with respect to Var. The method for the
ideal metric », is simple and yet general enough to extend to other cases of
interest. For example, x, describes the rate of convergence in the CLT with
respect to the uniform metric x (Theorem 3.2). More importantly, p, and »,
when taken together, describe convergence rates in terms of the uniform metric
(Theorem 3.3).

In stating the results we adhere to the notation of Section 1.
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THEOREM 3.1. Let Y be an a-stable random variable in ¥ (B). Let r > a,
A = 2271 + 37%) and a == 277*A. If X € Z(B) satisfies

(8.1) 1= 1(X,Y) = max{Var(X,Y), », (X,Y)} < a,
then for alln > 1,
(3.2) Va.r(Sn, Y) < A,,.Onl—r/a < Q- r/apl-r/a

REMARKS. (i) A result of this type was proved by Sazonov and Ul’'yanov
(1979) for the case B = R” and a = 2; similar results have also been obtained by
Zolotarev (1976, 1977), Paulauskas (1973, 1976) and Senatov (1980).

(ii) Concerning hypothesis (3.1), note that the estimate (3.2) necessarily
implies 7, < oo; if (3.2) holds for a = 2, then k,(X,Y) < oo [using the inequality
2K < Var and Theorem 3.4.1 of Ibragimov and Linnik (1971)] and if r = 3, then
vy (X,Y) < o0 by Lemma 2.4. For general a, see also Hall (1981) for two-sided
bounds for K.

The next result provides rates of convergence in terms of x.
THEOREM 3.2. Let Y be an a-stable random variable in Z(R). Let r > a,

C. == (r/ae)”/® B:=max(37% 2C,27* '+ 37/%) and b:=1/2"°B. If X €
Z(R) satisfies

(33) r=1(X,Y) = max(x(X,¥), x,(X,Y)} < b,
then for alln > 1,
(3.4) x(8S,,Y) < Br.nl~7/* < 27 /epl1/e,

REMARKS. (i) In comparing conditions (3.1) and (3.3) it is useful to note that
the metric x is topologically weaker than Var, that is, Var(X,,Y) — 0 implies
x(X,,Y) — 0, but not conversely. Also, it is easy to show that if r =m + 8,
m e N7 and B € (0,1), then

(3.5) Xr < Ggf,, where Gy := sup|tA(1 — e')[;
¢

if r=m, m e N*, then x, <{,.

(ii) Banys (1976) has obtained a result similar to Theorem 3.2 but weaker; he
only considers the sup norm difference between characteristic functions over
finite intervals depending on n. Additionally, his result is expressed in terms of
the so-called rth absolute pseudomoment

7 Xy, Xy) = [lxl"| dFy(x)].

Since x, is weaker than 7, (more precisely, there are constants C; and C, such
that x, < C{, < C,7,), the estimate (3.4) is more refined.

(iii) The estimate (3.4) may be used to obtain strong approximation theorems
for sums of random vectors, see, for example, Theorem 2 of Berkes, Dabrowski,
Dehling and Phillip (1986).

The main result provides rates of convergence in terms of /. For 1 < a <2
Basu (1976) obtained density convergence results but without rates; see also
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Basu and Maejima (1980) for 0 < a < 2. For a = 2 Theorem 4.5.1 of Ibragimov
and Linnik (1971) provides rates of l-convergence, but only up to unspecified
constant factors.

THEOREM 3.3. Let Y be an a-stable random variable in Z(R™). Let r > a,
A = 20U +D/0-1 4 3r+D/ay g =1 /27/°A and D = 3/°2"/*. Let X € ¥* and
mi=7(X,Y) = max{{(X,Y), py ,+ (X, Y)} < c0. If

(3.6) 7 = 1o(X,Y) = max{Var(X,Y),», (X,Y)} <1/AD,
then for all n > 1,
(3.7) I(S,,Y) <Amn!~7/=

If, in addition, v < a, then (trivially)
I(S,,Y) <2 7/*pt~"/=,

REMARKS. (i) Condition (3.6) describes the domain of attraction of a stable
random variable Y; in fact it guarantees I-closeness of order n'~'"/* between Y
and the normalized sums S,.

(ii) From Lemmas 2.2, 2.3 and 2.5 we know that p,,(X,Y), r=m+ 1/p,
m € N*, can be approximated from above by k, whenever X and Y share the
same first m moments; also, if r is integral, then the same is true for »(X, Y) by
Lemma 2.4. Thus condition (3.6) could be expressed in terms of difference
pseudomoments, which amounts to conditions on the tails of X.

(iii) As explained above, if (3.7) holds for a = 2,2 < r < 3,then k (X, Y) < o0
and p,,,(X,Y) < o by Lemmas 2.2 and 2.3; additionally, if r = 3, then
v, (X,Y) < 00 by Lemma 24.

(iv) The metrics p, and », may also be used to obtain rates of convergence in
the local limit theorem on the group of random motions on R”; see Rachev and
Yukich (1988) for details.

4. Proofs of main results. We provide the proofs of Theorems 3.1, 3.2 and
3.3. Actually, from the method of proof for Theorem 3.3 it will become clear how
to prove Theorems 3.1 and 3.2 and so we only provide the details for Theorem
3.3. The proof of Theorem 3.3 is achieved by combining Theorem 3.1 with
the smoothing Lemma 2.7(iii). Throughout, Y,,Y,,... denote ii.d. copies of
Y and V,=n"Y%Y; + -+ +Y,). For 1<m<n, let V, =1V, , =
nVHY, + - +Y)and V==V, . ==n %Y, + --- +Y,). Define S, and

S,, similarly in terms of X.

Proor oF THEOREM 3.3. We proceed by induction; for n = 1 the assertion
of the theorem is trivial since I(X,Y) < Al(X,Y) < A7(X,Y). For n = 2 the
assertion follows from the (—1) ideality of [,

l(S2’Y) = 21/al(X1 + X, Y + Y2)
< 2(1+r)/a,r21—r/a < A1.2l—r/a.
A similar calculation holds for n = 3.
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Proceeding by induction, assume that
(4.1) I(S;,Y) < Arjt=77e

holds for all j < n.
By Lemma 2.7(iii) for any n > 4 and m = [n/2], where [ ] denotes integer
part,

(4’2) l—l( ns n) l( n s n)<I+I +I3’
where

I, = I(S,,V,)Var(§,,V,),

L=US,+V,V,+V,),
L=UV,+8,V,+V,)

We first estimate I, and I,. Using the relation V, =, Y;, Lemma 2.6(iii) and
the ideality of p,,, we obtain

n—m\va n—m\l/«
12=l(§m+( ) Y,‘_/',,,+( ) Y)

n n

n—-m —(r+1)/a
< ( ) I"‘r+1( m’__n)

n
< 2(r+1)/amur+l(n—l/aX1’ n—l/aYl)
< 2((r+1)/a)—1n1—r/a“r+l( X, Y).

Analogously,

m\1l/a m\1l/a
I3=l(§n n-m T (_) Y’Yn n-m T (_) Y)
’ n ’ n

(r+1)/a
< (_n_) I"’r+1(_n n— m’Vn,n—m)

< gir+D/ay1- r/a 1(X Y)
Combining, we deduce
(4.3) I+ I, < (2U+V/@-1 4 3e+0/e)y (X Y)pl="/e,
To estimate I;, we use the (—1) ideality of / and (4.1) to obtain

m 1/a m 1/a
l(sm,ym)=l((—) s, ,,,,(—) Y, m)
n ’ n ’

n 1/
(44) = (_”;) l( Om,m> m m)
1/a
< (_n_) Arm! 7"
m

< 31/a2r/a—1141.n1—r/a.
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By (3.6), 1, < a and thus Theorem 3.1 allows us to estimate the second factor
in I, by the upper bound

Va‘r(§n—m, n—m? Yn—m, n—m) < ATO(n - m)l—"/ﬁ

<Ar<1/D.
Combining (4.4) and (4.5) and using the definitions of A and D, we deduce

(45)

A A
Il < E:.:;1/012r/m,,.n1—r/ot = E,.,.nl —r/a.
This estimate, together with (4.3), yields

lS %_‘_ 2(r+1)/a—1 + 3(r+1)/a Tnl—r/a

< Arn'~7/%, O

The proof of Theorem 3.1 (respectively, Theorem 3.2) is very similar to that of
Theorem 3.3 and makes critical use of Lemmas 2.6() and 2.7(i) [respectively,
Lemmas 2.6(ii) and 2.7(ii)]. The details are left to the reader.

APPENDIX
We provide the proofs of some of the unproved results.
Proor oF LEMMA 2.3. For any r > 0 and X, X,, we have, using integration
by parts and Holder’s inequality [cf. Rachev and Ignatov (1984)],
Ko, A X, X)
= suph”sup le1+h0(x) - Px2+ho(x)|

h>0 x€R
_ © x =Yy
= suph’ 1supf g( 7 )fﬂ'}(y)'
h>0 x€R|¥— o0

= suph” 2 sup
h>0 x€R

I g“’(x ;y)F;,(y) dy‘

— 00

= suph”™ ™ ! sup
h>0 x€R

00 i 4
I e =2 010

® x=y\|7 TV o /p
‘g‘"‘)( 5 )‘ dy] [ / IFm,p(y)I"dy}
— 0o

< suph™ ™ ! sup [f

h>0 x€R -
= sup A" W/D| gt IF, ]l
h>0

By Theorem 1 of Maejima and Rachev (1987), {,_, ,(X;, X;) < oo implies
$m—1, (X1 X3) = ||F,, |l », completing the proof of Lemma 2.3. O

Proor oF THEOREM 2.8. We note that (ii) < (iii) follows immediately from
Theorem 4.1 of Rachev (1985), Theorem 1 of Rachev (1984b), Theorem 2 of
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Rachev (1984a) and the identity EX*~! = E|X|*~! for k odd. Also, (ii) < (iv)
follows from Rachev (1982); (iv) = (i) follows from Lemma 2.2 and (iv) = (v)
from Lemmas 2.4 and 2.5; thus the only new results here are the implications
(i) = (ii) and (v) = (ii).

Now (i) = (ii)(a) follows easily from Fourier transform arguments since the
characteristic function ¢y, never vanishes. Similarly, if (v) holds, then
X,+Y->5,U+Y and thus (ii)(a) follows. To prove (i) = (ii)(b), we need a
lemma.

LEMMA. Let 0 < « < 2 and for all k let p,, == p, ,. Then there is a constant
B = B(a, k) < oo such that for all p € #(R),

(*) ri(p) 2 B f_wooFk—z,p(Z) dz‘

Using equality of the first £ — 2 moments and applying (*) to X, and U
yields .

B~ ui(p) =

[o0]
[” Feso)
— 00

0 00
=" O+ [7( )dz'
o b
= |Il + IZly
where p := Fy — F;. To compute I, and I,, we first note that
Fyos, (@) =E(z - X,)" * - E(z- U)* " =0.

Using this equality and Fubini’s theorem gives

I, —f f"( il 2dzdF;,(t)=Fk_l’p(0).

(k- 2)!
Analogously,
Combining the above gives
1
B ri(p) = ———IE(X - U*Y),
(k—1)!

which gives the desired implication (i) = (ii)(b).
To prove (v) = (ii)(b), integrate by parts to obtain

(o) 2| [ o) e lE(xE - 0%,

thus completing the proof of Theorem 2.8. It only remains to prove the lemma.
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PRrOOF OF LEMMA. Integration by parts shows that

B 'up(p) = B71 sup

x€ER

[ Bafx=2) Jim (Waly (2)

[>2]
= sup f F, 5 (x - z)dz'
x€ER|"—
since
2alhipfly (2)| = |R* [ (i) Tewer dt’
— 00
A
— 00
and

1 o ‘
B =B(a, k) = 2—/ lit/*~le~11" dt < oo. O
T~
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