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THE AVERAGING PRINCIPLE FOR DIFFUSIONS WITH A
SMALL PARAMETER IN THE CASE OF A
NONCHARACTERISTIC BOUNDARY!

By Ross PINsKY
Technion— Israel Institute of Technology

Let L, =eLy + L,, where L, is a nondegenerate elliptic operator on R?
and L, = LA(r,0)3%/30% + B(r,0)3/36. We assume that for fixed r, L,
generates a positive recurrent diffusion on the circle with invariant measure
p(d8). Let X*(t) = (re(t), 0%(¢)) denote the diffusion generated by (1/¢)L,
and let u, be the solution to the Dirichlet problem L.u=0on D and u = f
on 9D, where D= {x:r, <|x|<r,} and f is continuous. Then u(x)=
E, f(X*(1H)), where 75 is the first exit time from D. By the averaging
principle, the process r%(¢) converges weakly to the process r’(t) generated
by L,, the operator obtained from L,, by restricting to functions depending
only on r and averaging the coefficients with respect to p,(d6). Furthermore,
P(6%(1p € db|7;, < 77) converges weakly as ¢ = 0, to a measure which can be
calculated in terms of p,(90) and the diffusion matrix of L,, where 7
denotes the hitting time of the circle of radius r and (i, Jj) = (1,2) or (2,1).
The above information allows one to evaluate the limiting distribution of
(ré(75), 05(75)) and thus also the asymptotics of u(x). Call 6 the fast
variable and r the slow variable. In this paper we investigate what happens
to the averaging principle in the case that the boundary of D is no longer
characteristic for the equation slow variable = constant.

1. Let
d a2 d
L, =el,§:=1a,]a oz, +eZb,—— + ZB
in a smooth bounded region D C R? and consider the Dirichlet problem
Lu=0 inD,
(1) ulasp =1,

where f is continuous. Then the solution u, has the stochastic representation
u(x) = E, f(X*(75)), where X (t) is the diffusion process generated by L, and 75
is the first exit time of X*(¢) from D. Thus, studying the asymptotic behavior of
u, is equivalent to studying the asymptotic behavior of the exit distribution
x%(15). The methodology employed to study this problem differs radically for
each of three “extreme” cases. The general case, which may be very complicated,
is, in essence, some combination of the three extreme case with the possible
addition of certain degeneracies.
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560 R. PINSKY

We describe very briefly two of the cases and then go into a little more detail
with respect to the third one, the one that is relevant to the present paper. [See
Freidlin ([1], Chapter 4) for a good survey and for references.]

CaSE 1. Assume that starting from each x € D, the solution X, (¢) of
X'(t) = B(X(¢)) with X(0) = x exits D in a finite amount of time. Call T(x) the
exit time of X (¢) and let D= {X(T(x)), x € D}. 9D is called the regular
part of the boundary. Also assume that (n(X(T(x))), B(X(T(x)))) > 0, for all
x € 3D, where n(z) denotes the outward unit normal at z € dD. If the above
occurs. B is said to fulfill the Levinson condition and lim__, qu(x) = u(x), for
all x € D U 9D, where uy(x) solves

B-vu,=0 inD,

ulsp=f-
This is the simplest of the extreme cases.

CASE 2. Assume that there exists a unique stable equilibrium point x, € D,
such that X (¢) as given above approaches x, as ¢ = oo for every x € D. To
handle this case, one must turn to the large deviations theory of Wentzell and
Freidlin for small parameter diffusion. This case is the most difficult one.

CASE 3 (The averaging principle). Whereas in the above two cases, the drift
B either aided or hindered the process with respect to exiting from D, we now
assume that the drift is neutral in this regard. For example, let D =
{x € R%: r, <|x| <1y} and let

2 2 32

1 d
L =¢ au(r 0)3 5 + ay(r, 0)a 30 a22(r 0)— e

(1.2) +by(r, 0) -+ by(r, 0)

92
962’

where B >0 on the set {(r,0)el_): A(r,0) = 0}. [Note that the term
1A(r,0)0?/96% actually makes the L, here more general than before.] Then for
small ¢, the process will loop around many times in the @-direction before
it moves much in the r-direction. In this case, an averaging principle occurs.
For any r € [r,r,], consider the process on the circle generated by
1A(r,0)d?/d0® + B(r,0)d/d6 and call its invariant probability density
p(r, 8). Let X<(t) = (r%(¢),0%¢t)) denote the process generated by L, and
let X(t) = (F4¢),0 J%(¢)) denote the process generated by 1/eL.. Then the
process 7¢(t), frozen upon exiting D, will converge weakly to the process

ad 1
+B(r, 0)55 + EA(I‘, 0)
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7(t), frozen upon exiting D, generated by
2

1 4
(13) L= —2-au(r)—c—l75 + bl(r)a,

where

au(r) = [ an(r, 0)u(r, 0) df

and

B(r) = [by(r, 0)(r,6) db.

0

Thus, it follows quite readily that the probability that #%(¢) reaches r, before
r, converges to the probability that r(¢) reaches r, before r,. Since 7%(¢) and
ré(t) are really the same process run at different speeds, in fact we can also
conclude that the probability that r¢(¢) reaches r, before r, also converges to the
probability that r(¢) reaches r; before r,.

Consequently, in the case that the boundary function f depends only on r, it
is easy to obtain lim, _, qu(x) = u(|x|), for all x € D, where u(r) satisfies

Lu, =0, rn<r<r,
uy(r) =f(r), i=12.

In the general case that f may depend on 8, the explicit exit distribution on each
circle is required. Khasminskii [2] has shown that

(1.4)  limP(X(rp) & (1, d0) ||X(r5)| = 1)) = %,(6),  i=12,
where »,(0) is given by
(1.5) v (8) = p(r,0)a,(r,0)

g CTp(r, s)ay(r,s)ds’

Consequently, it follows easily that lim,_ ju(x) = uy(|x]), for all x € D,
where u, solves

L,=0, r<r<r,

u(r) = [*"1(r, 0)r,(0) do.

We will refer to r as the “slow” variable and to § as the “fast” variable.

For the general formulation of the averaging principle and its proof under
certain simplifying assumptions, one may consult Freidlin’s book. The theorem is
due to Khasminskii and its complete proof maybe found in [3].

Now, in general, one can make a small perturbation of the boundary without
destroying the property of belonging to Case 1 or Case 2; this is manifestly false
for Case 3. Indeed, the formulation depended on the boundary being characteris-
tic for the equation: slow variable = constant. In this paper, we will study a
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Fia. 1.

situation which is actually a combination of Cases 1 and 3; however, it will be
more natural to regard it as a case of the averaging principle when the boundary
is noncharacteristic.

We will consider a region D as in Figure 1. D is a smooth annular region
which has been perturbed by two depressions which cause the outer boundary to
be noncharacteristic with respect to the equation slow variable = constant. To
be more precise, we formulate

AssuMPTION 1. D is a bounded C'-domain lying outside the ball of radius
R, and satisfies the following conditions (see Figure 1): (i) 7, = inf, > Ryl %D
(i) (ry,0;) € dD, i = 1,2, and if x € dD and x # (r,, 6,)), then |x| > r,.

We will consider the operator L, as in (1.2). For convenience, we will assume
that all the coefficients are defined on all of R% We will also require

AsSUMPTION 2. (i) YA and all the coefficients of L, are uniformly Lipschitz
on compacts; (ii) B> 0 on {(r,8): A(r,0) = 0} and (iii) a,,(r,0) is positive
definite for each r > 0 and § € S™.

Assumption 2(ii) guarantees that the process on the circle generated by
1A(r,0)d?/d6% + B(r,0)d/db is positive recurrent for all r.

We will now analyse the asymptotics of the distribution of X*(r5), starting
from z € D. First consider 2 =x, or z=x, as in Figure 2. Our intuition
concerning the fast and slow variables should lead us heuristically to the
following conclusion:

PROPOSITION.  Starting from x;, i = 1,2, the exit distribution X%(15) con-
verges weakly as ¢ —> 0 to p;8, + (1 — p,)8, , where p, is given as follows. Let
¢ project x = (r,0) onto the unit circle S*. Then p, = P¢(xi)(7¢(y’l) < To(y))s
where ﬁ¢(x,~) is the measure on paths associated with the process on the circle
starting from ¢(x;) and generated by }A(|x,|,0)d?/d6% + B(|x, 6)d/d8, and
7, denotes the first hitting time of c.
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F16. 2. |xi| = |yl = |nal > 1o and |x5] = | 35| = | 32| > 7.

The proof of the proposition follows the same methodology that we employ to
prove that starting from (7, ), the support of the exit distribution converges
weakly to the two points (r,, 8,) and (r,, 8,) (see the proof of the theorem); thus
we leave it to the reader. With this proposition, one can determine the limit of
ux;) as ¢ > 0, where u, solves (1.1) and L, is as in (1.2).

Now consider what happens starting from a point x with R, < |x| < r,. From
the averaging principle, it follows that the probability that X (¢) reaches the
circle of radius r, before reaching the inner circle of radius R, converges to the
probability, p(|x|), that the radial process, 7(¢), generated by (1.3) and starting
from |x| reaches r, before reaching R,,. For later use, we note this as

(1.6) p(r) = P(7(¢) reaches r, before R,).

It also follows from (1.4) that, starting from R, < |x| < r,, the distribution of
0%(7f), conditioned on r<(t) reaching r, before R, (R, before r,), converges to
¥,(0) d6(vg (0) db). Now, again using the intuition of the fast and slow vari-
ables, one is lead heuristically to the conclusion that the limiting support of the
exit distribution is the circle of radius R with the two points (7, 8,) and (r,, 6,)
adjoined and that the limiting probability of exiting D through the inner circle
is 1 — p(Jx]). What is not clear is how the limiting probability p(|x|) is dis-
tributed over the two points (7, 8,) and (7, 6,). The main result of this paper is
to identify this limiting distribution. This will in turn allow us to identify
lim,_, u (x) for R, < |x| < 1.

THEOREM. Let D satisfy Assumption 1 and let L, be as in (1.2) with
coefficients satisfying Assumption 2.

(i) Let x € D satisfy R, < |x| < r, and let X%(t) = (r<(t), 9%(t)) denote the
process starting from x and generated by L.. Define 15 = inf{t > 0: X%(t) ¢ D).
Then the distribution of X%(1f) converges weakly as ¢ — 0 to

(1- P(|x|))8Ro(d")”Ro(0) do + p(|x|)8,0(dr)(p801(d0) +(1- P)802(d0)),

where p(r) is as in (1.6), v(0) is as in (1.5) and p is given as follows. Let (e, 0)
denote the diffusion on the circle starting from 6 and generated by



564 R. PINSKY

1A(ry, 0) d2/d0% + B(r,, 8) d/d8 and represent 6(t, ) by

6(t,0) =06+ f()“/A(ro,é(s,o)) dé(s) + fO‘B(rO,é(s,a))ds

where &(t) is a Brownian motion on a probability space (2, #, P). Define the
stochastic integral

7y(2) = f “(o2(ry, 8(s,8)) + 02(ry, (s, 0)))"* d(s),

where ¢ = {o;;} is the positive square root of a = {a;;} and &(t) is @ Brownian
motion on (&, %, P) independent of &(t). Then p = 2" h(0)v, (0) do, where
h(0) = P(0('r 0) = 0,) and v = inf{t > O: 0(t 0)=26, or 02 and ro(t) > 0}.

(i) If x = (r,, 0,) for some G,, then the dzstnbutzon of x%(tf) converges
weakly as e > 0 to §,(dr)(h(8,)8,(d0) + (1 — h(6,))5,(db)).

From the theorem, we immediately obtain

CoOROLLARY. (i) For R, < |x| < r,, the solution u, of (1.1) satisfies

lim ue(x) = uy(|x|),

where u, satisfies Luy=0 in Ry<r<r, with the boundary conditions
u(Ro) = [f(R,y, 0)"R (0) dé and uo("o) = pf(r5, 0)) + (1 — p) (75, 65). Here L is
the averaged operator appearing in (1.3).

(ii) For x = (r,,0), lim__, o u(x) = h(0)f(ry, 6,) + (1 — h(0))f(ro, b5).

REMARK 1. The corollary and the proposition allow us to evaluate uy(x) =
lim, _, qu(x), for all x € D. In particular, note that in general uy(r, 6),

Iim uy(x
,Jm o(x)
|x|<r

and
Iim wuy(x
,m o(%)
|%|>ro
x€D

give three different values. At (r,, 6,) in fact,

uy(r,,0,), hm uy(x), lim uy(x) and lim u(x)
—(ry,0;) x—(ry, 0;) x— (1, 0;
|x|<"o |x|=ro |x|>ro
x#(1,6;) x€D

give four distinct values in general. [Note that lim, _, o 2(0) is decidedly not 0 or
1; there are discontinuities in A(#) at 6, and 6,.] Of course uy(x) is also
discontinuous as a function of the domain D. If we slightly perturb one of the
two depressions so that (r, 6,) becomes (r, + 8, 6,), then depending on the sign
of 8, p will now be either 0 or 1.
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REMARK 2. Note that #(¢) is quite simple. For each fixed &, it is a
deterministic time change of Brownian motion, i.e., it is Gaussian with indepen-
dent increments.

REMARK 3. h(0) (and thus p) is considerably simpler in the case that A = 0.
Then 6(t) is deterministic and thus the hitting times of 0, and 0, are determinis-
tic and discrete. Furthermore the integrand appearmg in the stochastlc integral
deﬁmng fy(t) is now deterministic. [This latter point is actually minor since even
in the general case the integrand is independent of w(t), as noted in Remark 2.]
Thus h(6) can be represented as an infinite sum of multiple Gaussian integrals.
To be more concrete, for each 6 € S, there exist 0 < [,(8) < I,(8) < --- such
that (depending on the position of 6 relative to 6, and 6,) [,(8),140),..., are
the successive hitting times of 8, and 1,(8), [,(6),..., are the successive hitting
times of 6, or vice versa. For the sake of concreteness, assume that the former
holds. Note that 7(t) is simply a time changed Brownian motion. Then A(6) =
P(J is odd), where J = inf{j > 0: 74(1;(6)) > 0}.

REMARK 4. It should be clear from our proof that the same type of theorem
may be proved for more general regions D. For example, we could consider n
protruding points {r,, 6;}7_, on dD or allow for intervals of the form {(r,, 8):
0 € (a, B)} to lie on dD. We could also similarly perturb the inner boundary;
nor need one restrict to dimension d = 2.

2. Proof of the theorem. The theorem will follow from (1.4), (1.6), the
strong Markov property and the discussion in the paragraph immediately pre-
ceeding the statment of the theorem if we show that

(2.1) ro ((r(TD) 0 TD)) ) = h(o)s(ro oy T (1- h(o))s(ro 0,)

as ¢ > 0, for all § € S'. We represent the process (réit), 0%t)) =
(r<«(t, r,0),0%¢t,r,0)) generated by L, and starting from (r,0) € R*x S! as
follows. Let (2, #, P) be a probability space on which live three independent
Brownian motions w,(t), wy(¢) and &(¢). Then

re(t) =ret,r,0)
=r+ief 0u(r(s), 6%(s)) dwy(s)

+‘/;f0t012(r5(s), 8%(s)) du(s) + efo‘bl(re(s), 8%(s)) ds,
= 0%(t,r,0)
-0+ ﬁfo‘om(re(s), 0%(s)) dey(s)

Ve [lon(ri(s), 0%(s)), dan(s) + e [ by(r(s), 0°(s)) s

+ /0 ‘B(re(s), 04(s)) ds + fo A(r<(s), 0%(s)) dé(s),

22) %
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where o = {o;;} is the unique positive definite square root of a. Of course §%(t) is
now defined on R instead of on S*. However, the coefficients are all periodic and
thus, with a slight abuse of notation, we will identify 6%(¢) with §%(¢) mod 2. We
will also identify d(¢, 8), which appears in the statement of the theorem, with
d(¢, 0) mod 2.

In general, we will denote probabilities corresponding to ri(¢,r,8) and
0%(t, r,0) by P since they are in fact functions of w,, w, and &. However, for
cases in which an equation holds for a specific value of (r, 8), and this would not
otherwise be clear, we will write P, ,
By a standard martingale 1nequahty, it follows easily that
(2.3) Esup sup |ré(s,r,0) — r|? < c(et + £%t%),
S 0<s<t

for some constant c¢. Thus

(2.4) lim sup sup |r¥(s,r,8) — r|=0, in probability.

e—0 98! 0<s<t

Thus, by the Borel-Cantelli lemma,

(2.5) lim sup sup |r*(s,r,0) —r|=0, as.,
n—o S 0<s<t

on all sequences {¢,}>_, which decrease to 0 sufficiently rapidly.

Using the same martingale inequality again and the Lipschitz continuity of A
and B, we have that

Esup sup |0%s,,,0) — d(s,0)?
fesSt O<s<t
< c(et + e’%) + (ct + ct>)Esup sup |r<(s,ry,0) — r,)?
0eS' 0<s<t

+(c+ ct)/tE|05(s, ry,0) — 0(s,0)|%ds,
0

where (s, 0) is as in the statement of the theorem.
Thus, by Gronwall’s inequality and (2.3),
Esup sup |0%(s, 1y, 0) —8(s,0)|% < c,e,
fesS! 0<s<t
for some constant ¢, depending on ¢. Consequently,
(2.6) lim sup sup |0%(s,r,,8) — 8(s,0)]>=0, in probability,
e—0 0eS!' 0<s<t

and, by the Borel-Cantelli lemma,
(2.7) lim sup sup |8%(s,7,,0) —8(s,0)|=0, as.,

n—oo €S 0<s<t
on all sequences {¢,}7_; which decrease to 0 sufficiently rapidly.

We now want to show that the distribution of r<(j, r,, 8) converges weakly
tod, ase— 0,forall § S!, that is, that

(2.8) lim P(|ré(7$, r5,0) — ry| >8) =0, forall§ > 0.
e—0
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To show (2.8), it is enough to show that

(2.9) lim P(|r*(7, 1o, 8)| = Ro) = 0

and that

(2.10) lim P(|r*(75, 7,,0)| > r, + 8) =0, forall § > 0.
g0

Let Aj = {r<(-, ry, 0) hits r, + & before hitting R,}. Then lim,_, ,P(4f /) =1
and in fact
(2.11) lim inf P(A3,,) = 1.

n—>o0 e>0
(2.11) follows from the fact that one can pick an appropriate Liapunov function
independent of & which in turn follows from the form of the generator L,—namely
that all the terms involving r differentiation are multiplied by ¢ which can thus
be factored out. By (2.11) and the strong Markov property, to prove (2.9) it is
enough to show that

(2.12) 1in(1)P(|r€('r{,, r,+8,0)|=R,) =0,
for all sufficiently small 6 > 0 and all 6.

Using the notation 7° = inf{¢ > 0: r%(t) = r}, we have by the strong Markov
property that

P(re(tf,1,0) > 1, +8) = P(Trz+8/2 <, r(15,1,0) > 1o + 8)

(213) < sup P(ré(t5,ro + 8/2,8) > ry + 8).
fes!

Now (2.9) and (2.10) will follow from (2.12) and (2.13) if we show that

(2.14) lim sup P(ry < r(vg,ro+8/2,0) <ry+8) =1,

e—>0 fe8t

for all sufficiently small & > 0.

Fix & > O sufficiently small that (r, + 0, 6,) € D°forall0 <n < dand i = 1,2.
This is possible by the smoothness of D. Now, from (2.4) and (2.6) and the
positive recurrence of (s, 8), it follows that for any y > 0, there exists a T}, and
an g, > 0 such that for any 0 < ¢ < ¢,

(2.15) sup P(inf{t > 0: 6%(¢, r,,0) = 6,01 6,} < T,) > 1 — g
gest
and
(2.16) P( ( +80)' ( +8) 8) -t
. sup sup |[rfls,r -, -\ r —ll<=1>1- =
pes \0ss<T, ° 2 2] 2 2

(2.14) now follows from (2.15), (2.16) and the constraint placed on §. This
concludes the proof of (2.8).

From (2.8) it follows that the support of the exit distribution for the process
starting from (7, #) converges weakly to the limiting support consisting of the
two points (7, 6,) and (7, 6,). To complete the proof, we must show that the
limiting distribution on these two points is as in (2.1).
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In the sequel, we will use the notation
= inf{¢ > 0:(r*(¢,r,0),0%t,r,0)) ¢ A}, for A cC R2

Also recall that by (2.2) and the fact that the coefficients are defined on all of R?,
it follows that the process (r(¢, r, 8), 0%¢, r, 0)) is defined for all ¢ > 0, that is, it
may enter D¢,

We note that by (2.8), we immediately obtain

LEMMA lime_,osup o(T(DcnU)c < 'T(DcnU )c) ls lndependent Of U C Rd
long as (DN U;)) N (D° N Uy) = @ and D°N U; includes a relatwely open
neighborhood of (ry, 8,) in D¢, i = 1, 2.

In fact, it is then clear from (2.8) that (2.1) will be proved once we show that
(2.17) 1im Pro,o(”'&)cnul)c < T(EDcnU2)°) = h(0),

for some pair U, U2 as above. Define U, ; = {(r,0):r>r, and 0 € [0, -
9; + 81}, for 8 > 0. Then for 0 < 8 < 1|6, — 6|, the U, ; may serve as the U,
i = 1,2, described above.

For 0 < & < 3|6, — 6,|, we have the inequality

B (10e 0, e < T0envy ) < Proyo7ds, < Tpernt, pr)-
Although it is not necessarily true that U, , C D° (refer to Assumption 1, not to
Figure 1), from (2.8) we can conclude that ‘'similar to Lemma 1,
lim sup Pro,ﬂ("'vf_s < 'r(DcnU“)c) < 11ms(l)1p Pro,ﬂ("'vf,s < 7,55’0),
£

e—0

since, by the smoothness of D, [r,, ry + »] X {6,} € D° for sufficiently small
v > 0. The above inequalities give

: €
lim sup P’o,o(T(sDcﬂULs)c < T(Dcnvz,s)c)

e—0
2.18
(2.18) < limsup Pro,o('rle/f.s < 'rf,zco).
e—0 ' '
We will show that
(2.19) lim lim B, ,(r o, < Tk ) =h(6)

8§50 n—>

on all sequences {¢,} decreasing to 0 sufficiently rapidly. By switching the roles
of 6, and 6,, we obtain analogous to (2.18),
]j.m Sup P"O’ 0( 'T(eDc n U2,8)c < 'T(eDc n Ul,s)c)

e—0
(2.20) .
< limsup Bo,o("le?is < Tgﬁo).

e—0

By interchanging 6, and 6, in the proof of (2.19), we obtain analogous to (2.19),
(2.21) lim lim B, (TUC < ) =1-R(6),

8->0n—o0

on all sequences {¢,} decreasing to 0 sufficiently rapidly.
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Now we can complete the proof as follows. From the lemma, it follows that
the left-hand sides of (2.18) and (2.20) do not depend on & as long as 0 <
8 < 110, — 6,|. Thus, from (2.18)-(2.21), it follows that

(2.22) lim sup By o(75ent, o < TBenvy ) < B(6)
— 0
and
(2.23) lirllriszp Pro,a(”'(ez'ivnuz_s)c < T(EI';CHUI,&)C) <1-h(9),

for all sequences {¢,} decreasing to 0 sufficiently rapidly.

Since the sum of the left-hand sides of (2.22) and (2.23) is greater than or
equal to unity, it follows that in fact (2.22) and (2.23) are equalities. It is also
clear that if

hlr:laiol:f Pro‘a(T(el’;cnUl‘s)c < T(%cnUz,s)c)
were strictly smaller than A(8), then

lim sup R’o‘o(q-(eDcnUz,s)c < T(EDcnUz,s)c)

n—oo
would be strictly greater than 1 — h(#), contradicting (2.23). Thus, in fact,
(2.24) lim B o(15ens, e < TBenns ) = B(0)-

Since (2.24) holds for all sequences {¢,} decreasing to 0 sufficiently rapidly, it
follows that

(2.25) P_I}(l).P'.o,o(T(ebcnlJl,B)c < T(EDCHUZ_g)c) = h(0).

This gives (2.17) and proves the theorem. Thus, it remains to show (2.19).
Write the condition r«(t) >r, as (r(t) — r,)/ Ve > 0 and note that for
0<8<3l0,—6)and ¢ >0,

. re(t) — r
ooy N Thgo = 1nf{t >0:0%¢t) [0, -6,0,+8] U {6,} and G > 0}.

From (2.2), we have
M - [ou(r(s),0%s)) des(s)

+ [[oa(r(s), 0°(s)) dug(s) + Ve ['b:(r(s), 0°(s)) ds.
Define 7(t) = #(t, ) by

(2.26) #(t) = /ou(ro,ﬂ(s )) dewy(s) + joam 7o, 0(s)) dwy(s).

[Note that 7(¢) depends on 8 through 8(s) = d(s, 8).] It follows readily from the
assumed Lipschitz continuity that

~ re(s) = r
r(s) - ——\/—;——

E sup sup
feS! O<s<t

< ctE sup sup |r®(s) — ry|% + cet?,
feS! O<s<t
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for some ¢ > 0. By (2.3), we obtain

. ri(s) — 1 . .
lim sup sup |F(s) — —=——| =0, in probability,
e—>0 0S8 0<s<t ‘/;
and, by the Borel-Cantelli lemma,
ree(s) —r,

(2.27) lim sup sup

n—oo e8! 0<s<t

=0, a.s,

?(s) - T

for all sequences {¢,} decreasing to 0 sufficiently rapidly.
Now define, analogous to 77, and 77, ,

s =inf{t>0:0(¢t) €[6,— 8,6, + 8] and 7(¢) 2 0}, ford >0,
and
750 = inf{¢ > 0: 6(t) = 6, and 7(t) > 0}.

For ¢ > 0 and & > 0, define A%® = {rf;., < 7 } and, for § > 0, define A%® =
{05 < 720}. We claim that

hm P, o(A2) = B, ,(A%?), ford >0,

and all sequences {¢,} decreasing to 0 sufficiently rapidly. In the interest of
brevity, we will only prove that
(2.28) limsup P, ,(A™s) < P, 4(A%°®), ford >0,
and all sequences {¢,} decreasing to 0 sufficiently rapidly, since this is in fact
enough to prove the theorem. Using (2.28), we will be able to show instead of
(2.19),
(2.19) lim limsup P, olrie, <mp,) < R(6).
As before, by interchanging the roles of 6, and 8, we obtain analogous to (2.19’),
(2.21) lim limsup P, (T;,nf <, ) <1 - h(8).
820 ;.00

However (2.22) and (2.23) follow just as well from (2.18), (2.19’), (2.20) and (2.21").

Denote the generic point in £ by w. To show (2.28), we will show that for
arbitrary T > 0, if w € (A%®)° and 7, < T, then E (A®#)° almost surely for
sufficiently large n. Thus assume o € (A% 8)0 and 77, < T. Define y = inf(s >
0: (r('r2 o+ 8) 0(72 ot 8)) €[0,00) X [0, — 8,8, + 8]}. Since (7(¢), 6(t)) almost
surely never hits (0, 0,), we have F(rdo) > 0 almost surely, and thus one can pick
an n = n(w) > 0 satisfying =0, + 5 < rmn(72 o +v/2, T + 1) and such that

(2.29) 7(t) >0, forallze (10— n,70,+n), as.
Furthermore, there exists a » = »(w) > 0 such that
(2.30) inf 0(t) <6,—», as.

te(m o=, mo+n)
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and
(2.31) sup 0(t) > 0,+», as.
te(o—n, 1o +1)

In the case A(r,, 6,) > 0, (2.30) and (2.31) follow from the law of the iterated
logarithm. In the case A(r, 6,) = 0, by assumptlon B(ry, 6,) > 0. Using this, one
can show that 4(¢) > 0, almost surely for ¢ > 1-2 o and b(t) < 0, almost surely for
t< 72 o- [A comment is in order concerning the above Recall that 0(t)is actually
defined on R, but we have agreed to identify 0(t) with 0( t)mod 27. Up until
(2.30), we have been considering #(¢) on the circle. For (2.30) and (2.31) and the
statement following them to be true, one should consider (¢) on R.]

Now it follows from (2.7), (2.27), (2.29)—(2.31) and the fact that 72 ot m<
min(r), + v/2, T + 1) that

(2.32) g, <min(ro +v/2,T+1), as,

for sufficiently large n.
To complete the proof that w € (A*#) for sufficiently large r, suppose to the
contrary that w € A®? for infinitely many n. Without loss of generality, we may
suppose that « € A*¢ for all n. By (2.32), ""lg < min(7)y + v/2, T + 1), for
sufficiently large n. Let {7  Jo-1 denote a convergent subsequence with limit
to < min(r)y + v/2, T + 1). Then by (2.7) and (2.27) and the fact that ¢, < T +

1, one has
i [22)

k— o0 8"1:

0o r enks)) = (7(to), (t,))-

Now,

€ ng

( ren ( 7(“’;1!‘{:8)

06»,,( ng )) € [0,00) x [, — 8,6, + 8]

by the definition of 're"k. Thus (7(¢,), 0(t0)) € [0,0) X [0, — 8,0, + 8]. This
means that ) g <t < 1-2 o T v/2. But by the definition of vy, this implies that
in fact7?s < 1), and consequently that w € A%3, contradicting the assumption
that w € (A% 8)” Thus in fact w € (A%%)° for all sufficiently large n. This
completes the proof of (2.28).

We will now show that

(2.33) lim P, ,(4°?) = h(0).

Then (2 33) and (2.28) give (2 19’) to complete the proof of the theorem. Since
(F(-), 8¢, T, ?) [or more explicitly (7(-, 8), (-, ), 720)] and (Fy(+), -, 0, T) are
distributed 1dentlcally [see the statement of the theorem for the definitions of
fo(+) and 7], (2.33) will be proved once we show that

(2.34) m P, ,(A™?) = B 4(A°).

It is clear from the definitions of 7; and 7, that A%° c A%? for § > 0.
Thus to prove (2.34), it suffices to show that if w € (Apo)°and §,|0as n — oo,
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then w € (A%2%»)° almost surely for sufficiently large n. Assume » € (A%°)¢, that
is, 7,y < 7. Then there exist a » = »(w) > 0 and a 7 = n(w) > 0 such that

(2.35) sup F(t) < -1, as.
t:0(tye[8,—v, 0, +v]
t<mo

To prove (2.35), assume to the contrary that there exists a sequence {¢,}7_, with
t, < 1-2 o> 7(t,) > —1/n and hmn_mﬂ(t ) = 0,. Then there ex1sts a subsequence
L, and a t, such that lim,_ ¢, =¢, and thus 6(t,) = 0,, 7(t,) >0 and
ty < 759 This contradicts the assumption w € (4,,). From (2.35), it follows
that w € (A%%)° almost surely for sufficiently large n. This proves (2.34) and
completes the proof of the theorem.
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