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DYNAMIC, TRANSIENT AND STATIONARY BEHAVIOR OF
THE M/GI/1 QUEUE VIA MARTINGALES

BY FRANGOIS BACCELLI' AND ARMAND M. MAKOWSKI?

Institut National de Recherche en Informatique et en Automatique and
University of Maryland

An exponential martingale is associated with the Markov chain of the
number of customers in the M/GI/1 queue. With the help of arguments from
renewal theory, this martingale provides a unified probabilistic framework for
deriving several well-known generating functions for the M/GI/1 queue,
such as the Pollaczek-Khintchine formula, the transient generating function
of the number of customers at departure epochs and the generating function
of the number of customers served in a busy period.

Introduction. An exponential martingale is associated with the Markov
chain that describes the number of customers at departure epochs in the
M/GI/1 queue. Basic regularity properties of this martingale and standard
arguments from renewal theory are shown to provide a unified probabilistic
framework for deriving three well-known analytical formulas which, respectively,
characterize the dynamic, transient and stationary behavior of this queue. The
main theoretical ingredient of this new approach lies in a general equivalence
relationship between the law of the embedded Markov chain and the law of the
forward recurrence time of a discrete-time renewal process associated with this
chain (Theorem 3). This equivalence produces several results which appear to be
new, at least to the best of the authors’ knowledge. For instance, a new
probabilistic representation is established for the generating function of the
number of customers at the nth departure epoch (Corollary 6). The usual

" representation of the transient generating function of this quantity, in terms of
its double generating function, both in time and space, is derived from this
probabilistic representation.

The paper is organized as follows. The exponential martingale is introduced in
Section 1 and its definition is followed by a summary of its key regularity
properties, already established by the authors in a previous paper [1]. Section 2
contains the derivation of the analytical results mentioned above, with some of
the calculations collected in Section 3. The generating function of the number of
customers served in a busy period is obtained in Section 2.1. The generating
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function of the number of customers served in a busy period is obtained in
Section 2.1. The proof of this first result is very much in the spirit of the
derivation of the Laplace transform of the length of the busy period via
martingales given in [7]. The full power of the equivalence relationship men-
tioned above becomes apparent in Sections 2.2 and 2.3, where the
Pollaczek—Khintchine formula and the transient generating function.of the
number of customers are shown to be mere rephrasings of basic formulas from
renewal theory.

It should be emphasized that the authors’ aim was not to give here a
comprehensive list of the applications of this new approach, but rather to
illustrate its usefulness and versatility. For instance, the results on the transient
generating function are limited to the analysis of a simple particular case.
Similarly, only the hitting time to the zero state (i.e., the number of customers
served in a busy period) was considered in the study of the dynamic properties of
the chain. However, it is easy to see that most known formulas concerning the
transient dynamic behavior can be obtained through similar arguments. These
techniques are of independent interest and apply to other queueing systems, like,
for instance, queues in random environments [2].

1. Preliminaries.

1.1. Notation. All the random variables (RV) and stochastic elements occur-
ring in this paper are defined on some fixed underlying probability triple
(2, #, #). Throughout, the characteristic function of any event A in % is
denoted by I[ A]. The collection of all nonnegative integers is denoted by N and
R (resp. R ) denotes the set of (resp. nonnegative) real numbers.

Consider an M/GI/1 queue with Poissonian arrival pattern of intensity A.
. The consecutive service times form a sequence of i.i.d. RV’s independent of the
arrival process. Throughout, the common probability distribution of the service
times and its Laplace-Stieltjes transform are denoted by S and S*, respectively.
The initial queue size is given by an N-valued RV = which is independent of
both the arrival and service processes.

1.2. The embedding. At time ¢ = 0, a dummy customer is assumed to com-
plete service and by leaving the system, generate the Oth departure. For n =
0,1,..., denote by X, the number of customers in the system as seen by the nth
departing customer and by A, ,; the number of arrivals during the (n + 1)st
service period. With these definitions, the queue size sequence {X,,, n = 0,1,...}
is readily seen to satisfy the recursion

Xn+1=Xn+An+l_I[Xn¢0]x n=0,1,...,
1
(1) X, = E.

Under the enforced assumptions, the RV’s {4, ,,, n =0,1,...} are ii.d. RV’s
independent of the initial queue size = and its underlying probability generating
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function a is given by
12) a(z)=E[2%]=8*(AM1-2)), 0<z<1,n=0,1,....

It is then clear from (1.1) that the N-valued process {X,, n =0,1,...} is an
irreducible Markov chain with countable state space [4, 5].

1.3. The martingale. For all n=0,1,..., the RV’s {£, A,, 0<k <n}
generate the o-field of events %, and set % =V,%, with the standard
notation. In view of (1.1) the RV’s {X,,..., X,} are all % -measurable. Given an
arbitrary %, -stopping time o, define the N-valued RV »(0) by
(1.3) »(o) = {mf{n >1: X,,,=0}, ifo< 0 and this set is nonempty,

0, otherwise.
For 0 < z < 1, the %,-measurable R -valued RV’s {M,(2), n=0,1,...} are
defined by
z2%o, ifn=0,
(1'4) M (z) - ZZZZAI[X,,-#O]

——, forn=1,2,....
a(z)

The following result was established in [1], Theorem 2, pages 181-186.
THEOREM 1. For all 0 <z <1, the RV’s {M,(z), n=0,1,...} are inte-

grable and form a positive Z,-martingale. If p < 1, the stopping time v(o) is
regular for this martingale and the relation

(15)  E|I[o < oo, v(o) < w]{azz) ]M)

Z] =1I[o < w0]z%=0z% g5,

holds for all 0 < z < 1.

The relation (1.5) is a simple consequence of the regularity of the stopping
time o and of Doob’s optional sampling theorem ([6], Corollary IV-2-6, page 67).
Moreover, under the condition p < 1, z < a(z) for 0 < z < 1 by Takacs’s lemma
([8], page 46) and letting z 71 in (1.5) yields

(1.6) Plo < o0, v(0) < 00|#] =I[o < 0] as.
as an immediate consequence of the bounded convergence theorem.
2. Transforms. Let {r,, n =0,1,...} be the sequence of %, -stopping times
defined by the recursion
(2.1) Ta="1+v(,), n=01,..,
with 7, = 0. With ¢ = 0, (1.6) specializes to
(2.2) P[r, < o|%] =1 as.
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LEMMA 2. If p<1, the RV’s {7,, n=1,2,...} form a possibly delayed
recurrent renewal process.

ProoF. It is plain from (1.5) that the RV »(7,) and the o-field % are
independent for all n =0,1,..., so that the RV’s {r,, n=1,2,...} form a
renewal process if = = 0 a.s. and a delayed renewal process otherwise. For p < 1,
the recurrence property is immediately obtained from (1.6). O

The forward recurrence times {u(n), n = 0,1,...} of the recurrent renewal
process {7,, n = 1,2,...} are defined by

23) u(n) = {inf{m >0: X,,,, =0}, if this set is nonempty,  _ 0.1,....
00, otherwise,

It turns out that the generating function of the number X, of customers at the
nth service completion is very simply related to the generating function of the
forward recurrence time p(n). The key relationship is provided in the next
theorem. For every 0 < z < 1, it is convenient to introduce the quantity £(z) as
the ratio

z

4 = .
(2.9 =) = o0

THEOREM 3. Assume p < 1. For all 0 < z < 1, the relation
(2.5) E[z%] = E[t(z)""], n=0,1,...,
holds.

Proor. Note from (1.2) and (2.3) the easy facts
(2.6) [X,=0]=[p(r)=0], n=0,1,...,
and
(2.7) v(n)=p(n) on [X,+0], n=0,1,....

It is then plain that for each y > 0, the relations
(2.8) y*™I[p(n) #0] =y*™I[X,# 0] =y"™I[X,#0], n=0,1,...,

hold.
Specialize (1.5) to ¢ = n and multiply both ides of the resulting equation by
I[X, # 0]. For all 0 < z < 1, the relation

29)  E[I[»(n) < », X, # 0]£(z)" 1% = I[ X, # 0]% as.
readilﬂy follows since the RV X, is %,-measurable and, therefore,
(2.10) E[I[v(n) < o0, X, # 0]&(2)"™] = E[I[ X, # 0]2%]
after taking the mathematical expectation of both sides of (2.9).
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Starting with a simple decomposition argument, it is now plain that for all
n=20,1,..., the relations

E[z%] = P[X,=0] + E[2%I[X, # 0]]
(2.11) = Plu(n) = 0] + E[I[v(n) < o0, X, + 0]£(2)"")
= P[u(n) = 0] + E[I[v(n) < oo, p(n) = 0]&(2)*™]

hold. The second equality is a consequence of (2.6) and (2.10), while the last
equality follows from (2.8). Under the foregoing assumptions, P[r(n) < «|4%,] =
1 as. by virtue of (1.6), whence pu(n) < oo as. since 0 < p(n) <»(n) as a
consequence of (2.6) and (2.7). This remark readily validates the passage from
(2.11) to (2.5). O

The aim of the remainder of the section is to recover various known trans-
forms from (1.5) and (2.5), thus avoiding the usual analytical calculations.

2.1. Generating function of the number of customers served in a busy period.
Denote by {f(rn), n=0,1,...} the point mass distribution function of the
number of customers served in a busy period of the M/GI/1 queue. On the
event [ X, = 0], the number of customers served in the first busy period coincides
with »(0), so that the generating function F* of {f(n), n = 0,1,...} is given by
the relation

(2.12) F*(y)=E[y9X,=0], O0<y<l.

In other words, F* is also the generating function of the interevent times of the
discrete-time renewal process {7,, n = 1,2,...}. It is now shown that F* can be
obtained as an immediate consequence of (1.5).

LEMMA 4. Assume p < 1. For each 0 < ¢ < 1, the equation in the unknown
variable z,

(2.13) z = ¢a(z2),
has a unique solution Z(§) in the interval [0,1]. The generating function F* of

the number of customers served in a busy period, or equivalently of the in-
terevent times of the discrete-time renewal process {7,, n = 1,2,...}, is given by

(2.14) F(y)=2Z(y), 0<y<l,
and the mean value m of this distribution function is given by
1 .
(2.15) m=E[0)X,=0]={1=p" ¥P=Db
K : 0, lf p=1.

ProoF. The first statement concerning the solutions of (2.13) follows from
classical convexity arguments ([8], Lemma 1, page 47) and its proof is therefore
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omitted for the sake of brevity. Specializing again (1.5) to o = 0, it is plain that
forall0 <z <1,

(2.16) E[£(2)"?1X,=0] =2 as.

Let £ be a real number such that 0 < £ <1 and let Z(§¢) denote the unique
solution to (2.13) in [0,1]. It is now immediate from (2.16) and from the
definition of Z(¢) that

(2.17) F*(¢) = E[£®1X, = 0] = Z(¢) as.

and (2.14) is obtained. Equation (2.15) is now obtained by differentiating (2.16)
with respect to z in a left neighborhood of 1 and by letting z 11 in the resulting
expression. The differentiation step is validated by well-known properties of
uniform convergence for generating functions. O

2.2. Generating function of the number of customers at steady state. The
next step consists in establishing the Pollaczek—Khintchine transform.

COROLLARY 5. Assume p < 1. For all 0 < z < 1, lim,, E[2%"] exists (when
n goes to o0) and is given by

(2.18) lim E[2%] = (1 - p)(la;zz)—)f(:)'

PrROOF. From the key renewal theorem ([9], Theorem 2.3, page 18), the
forward recurrence times {u(n), n = 0,1,...} of a discrete-time renewal process
with interevent generating function F* and finite mean m satisfy the conver-
-gence property
11-F(y)

3 (n)| = —
(2.19) limE[y®] = = ——

)

this independently of the initial condition. Using this fact and (2.5), it is now
plain that lim,{E[z*»] exists, is independent of the initial condition and is
given by
1 - 2(§(2))

1-¢(2)

Equation (2.18) follows immediately from (2.20) since Z(£(z)) = 2. O

(2.20) lim E[2%] = li'xlnE[ﬁ(z)"(")] =(1-p)

2.3. Transient generating function for the number of customers. For the
sake of brevity, the discussion is liited to the case of a stable queue, namely
p <1, when the initial queue size is zero, namely = = 0 a.s. The proposed
approach extends easily to the other cases by following arguments very similar
to the ones reported below. Details are left to the interested reader.
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The renewal kernel R: N — R associated with the discrete-time, nondelayed
renewal process {7,, n = 1,2,...} is given by

o0

(2.21) R(n)= Y P[n,=n], n=0,1,....

k=0
Moreover, let the function g: [0,1] X N — R be defined by A
E[yn ™[, >n]], ifnx>1,
1, if n=0.

As indicated in the next corollary, the transient behavior of the queue size
process can be fully characterized by means of these two functions.

(2.22) g(y,n) = E[y*™I[r,>n]] = {

COROLLARY 6. Assume p <1 and E = 0. For all 0 < z < 1, the relation
(2.23) E[2%] = )} R(m)g(¢&(2),n—m), n=0,1,...,
m=0
holds with £(z) defined by (2.4).

Proor. The forward recurrence times process {u(n), n =0,1,...} of the
discrete-time, nondelayed renewal process {7,, n = 1,2,...} is also a discrete-time
N-valued regenerative process ([3], Chapter 9). As is well known ([3], Chapter 9),
this regeneration property translates into the renewal equation

’ n
224)  E[y™] =E[y*™I[r,>nr]] + L f(m)E[y™],
m=0
valid for all 0 <y <1, where {f(n), n=20,1,...} denotes the point mass
distribution characterizing the nondelayed renewal process {7,, n =1,2,...}.
The solution of the renewal equation (2.24) is given by [3], Theorem 2.3, page
294,

(2.25) E[y*™] = }'f, R(m)g(y,n—m), n=0,1,...,

m=0

and the representation (2.23) follows immediately from (2.5) and (2.25). O

Classically ([8], equation (59), page 70), the transient behavior of the queue is
given in terms of the double transform N* defined as

o0
(2.26) N*(z,t) = Y t"E[2*], 0<z2<1,0<t<]l.

n=0 N
In order to recover the classical expression for this function from (2.23), it is
convenient to introduce the generating functions

2.27) R*(t) = ¥ R(n)t"
n=0
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and
o0
(2.28) G*(y,t) = X &(y,n)t™
n=0
These generating functions are expressed in term of the root function £ — Z(§)
of Lemma 4 through the relations

1
(229) R*(t) = 1_—Z(t)
and
(2.30) Gy 1) =1+ 2 720

y—t
defined for 0 < ¢ < 1. The derivation of (2.29) is immediate from (2.21), while the
derivation of (2.30) from (2.22) is established in Section 3. The well-known
formula for N*(z,t) given in [8], equation (59), page 70 can now be directly
recovered from these relations.

COROLLARY 7. Assume p <1 and Z = 0. For all 0 < z < 1, the relation
2(1-Z(t)) — (1 — 2)ta(z
o) Ne(o, ) 2L 2O) (1~ 2yaz)
(1 - 2(t))(z - ta(2))
holds with Z as defined in Lemma 4.

Proor. Taking the generating function in n of both sides of (2.23) readily
yields the relation

(2.32) N*(z,t) = R*(t)G*(¢(2),t), n=0,1,...,
and (2.31) is a now a direct consequence of (2.29) and (2.30). O
3. Derivation of (2.30). It is plain from (2.22) that the relation

(3.1) g(nn)=E[y"I[n>nll= 3 f(k)y*"

k=n+1
holds for all n = 1,2,... and 0 < y < 1. With C denoting the unit circle in the
complex plane, the integral representation

39 L F*(u)
(3:2) f(k) = E/qu, k=0,1,...,
can be used in (3.1) to readily yield the relation
y F*(u) du
(3.3) gly,n —Zi'rrfcu—yu"“’ n=12,...,

after standard algebraic manipulations. It is now plain from (2.22), (2.28) and

(3.3) that
F*(u) & (t\"du
* =14 — - =
G*(1) 2mfcu—-yn§l(u) u

F*(u)
2mf (u—y)u(u-1t) du,

(3.4)
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where the passage from the first to the second equality follows from standard
facts on geometric series. Finally, substitute the decomposition

3 1 1 + 1 1 1
Nue—1) (-0 y-06  (u-t) Ht-y) = uty

in the last expression of (3.4) and note by a straightforward application of
Cauchy’s formula that

(38) o=

tF*(y) — yF*(2)

(3.6) G*(y,t) =1+ pop + F*(0).
The identity (2.14) and the fact that Z(0) = 0 imply that

Z(y) — yZ(t
(3.7) Gﬂ%ﬂ=1+—L%t%il

and (2.30) is obtained by some elementary algebra after using (3.7) in (2.32). O

Observe that N*(z, t) also admits an integral representation in the form
z)t Z
1+ it ; ) f () dul,
1 - Z(t) 2im Jo(u—&(2))u(u—t)
which follows from (2.32) and (3.4).

(3.8) N*(z,t) =
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