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Let {X(¢): t€ R* or I} be an (aperiodic) irreducible Markov process
with a finite state space S and transition rate g;;(¢) = p(i, ))(A(2)Y® 7,
where 0 < U(i, j) < o and A(¢) is some suitable rate function with
lim, ,  A(t) = 0. We shall show in this article that there are constants
A(i) = 0 and B; > 0 such that independent of X(0), lim,_, ., P(X(¢) = i) +
(A(#))" = B, for each i€ S. The height function h is determined by
(p(i, 7)) and (U, j)). In particular, a limit distribution exists and concen-
trates on S = {i € S: h(i) = 0}.

1. Introduction. Let {X(¢): t € R* or I"*} be a continuous time or discrete
time irreducible Markov process with a finite state space S = {1,2,..., a} and
transition rate (g;;(t)). We assume it is aperiodic (see Remark 1, Section 5) in
the discrete time case. In the case (g,;(¢)) = (g;;), { X(¢)} becomes homogeneous
and it is well-known [Chung (1967)] that X(¢) has a limit distribution indepen-
dent of X(0). The main purpose of this article is to show that a similar result
holds for the inhomogeneous Markov processes whose transition rates are of the

type

p(i, H(A(E)"” ifj+ i,
(1.1) 2:,(t) = 1 giscrote time) — Y aq(t) ifj=i
ki

where A(t) is a suitable rate function with lim,_ A(t) =0, P = (p(i, j)) is a
‘matrix with p(i, j) = 0 for i # j, and U: S X S — [0, 00] is a “cost” function
which measures the degree of “reachability” from one state to another. Without
loss of generality we may assume U(i, i) = 0 and U(i, j) = oo iff p(i, j) = 0.
Note that it is clear from (1.1) that p(i, i) is irrelevant and can be arbitrarily
defined. We require {X(¢)} be irreducible in the sense that any state j can be
reached from any other state i, that is, there exists a sequence of states
ig=1,i..., 0, =j such that p(iy, iz,;) > 0 [or equivalently, U(i, ix,,) < o]
for each 0 < k < n. In this case both U and P are also called irreducible. (See
Remark 2, Section 5.)

Markov processes of the above-mentioned type appeared in problems of
simulated annealing [Geman and Geman (1984) and Kirkpatrick, Gebatt and
Vecchi (1983)], where U(i, j) = (u(j) — u(i))* is determined by a potential
function u and T(t) = (—log A(¢))™! is called the “temperature” at time ¢. In
this special case it is shown in Chiang and Chow (1988) that under some natural
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conditions on P and A, there exist positive constants B;, 8, ..., 8, such that
(1.2) lim P(X(¢) = i)/(A(2))“P ™™ =B, foreachi e S.
t— o0

In particular, for the global minimum set S = {i: u(i) = min u}, one has [Gidas
(1985) and Hajek (1988)]

(1.3) tlim P(X(t)eS)=1.

For a general cost function U, the situation becomes much more complicated.
One first has to define a function in place of u(i) — min « that appeared in (1.2)
and then impose suitable conditions on A(£) so that the limit theorem (1.2) holds
for the general case as well. We employ a generalized cycle method (see Remark
3, Section 5) in this article to tackle these two problems. After having found the
correct quantities, we then show that some of the techniques in Chiang and
Chow (1988) can be pushed through to yield all the necessary estimates for (1.2).
The concept now is basically very simple and deals with the balance of mass flow
among different cycles. We, however, think it is worthwhile because it is more
natural and general than the ones existing in the literature. (See also Remarks 5
and 6, Section 5.)

For the convenience of discussion, we assume all the cost functions to be
integer-valued. It should be apparent from the discussion that this is only for
technical reasons. .

We start by introducing some definition and notation. Let S be a finite set
and U a cost function on S. For any two states i, j € S, we say that i >j
(relative to U) if there exist i, = i, i,,..., i, =J such that

U(i,,i,,,) = min U(i,, z) foreacho,
i,#2€8S

v

and i > j at level & if, in addition, U(i,, i,,,) < k for each v. A state i is called
minimal at level & if j > i at level £ whenever i > j at level k. Two different
states i, j € S are said to be equivalent at level & (i ~ ,j) if (i) i is minimal at
level % and (i) i >/ and j > i both at level k. We always assume i ~,i. An
equivalent class of S under the equivalence relation “ ~ ,” is called a kth-order
cycle of S (relative to U), and a nontrivial kth-order cycle of S if it has more
than one element. (See Remarks 3 and 4, Section 5.)

For S={1,2,...,a) and U given in (1.1), we can successively define
(8", U™ V™, n=0,1,2,..., as follows: Let (S°,U®% =(S,U) and V°(i)=
min;, ;c soU(i, j) for each i € S°. Having defined 8™~ !, U” ! and V"1, let
8™ = {(n — 1)th-order_cycles of S':‘l (relative to U "~1)} and for any C" =
(crcrtecmy, Cr=(Cr: Crte Cr)in S let

d,_,(C") = maxV"Y(CP7Y),
: R(cn) — {Cin—l e Cn: Vn—l(Cin—l) — dn—l(Cn)}’
(1.4) Un(Cn, C“n) — dn—l(Cn) + n.-lin{Un—l(cin—l,C"jn—l) _ Vn_l(Cin_l)},
i, J

v*(C")= min U™C",C").
cr+Cres®
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Note that U™(C",C") =0 and U™ is irreducible on S™ by the irreducibility
assumption on U. We say that cri, Cr ) € Ix(C", C™), if (1.4) is attained at
(CI™1, CP1). Otherwise,
(1.5) U"_I(Ci"_l,qn_l) + dn—l(Cn) _ Vn_l(Cin_l) > Un(Cn,én) +1.
The double arrow “C™ = C"” means U(C", C*) = V"*(C™). Hence,
(1.6) u™cr,C") = vyC") +1 ifC"= Cn.
In the sequel, the symbol C” or C* will always denote an element in S™.
A notion of height is required to describe our results. Since U is an irreducible

cost function on S, there exists a smallest number N such that {CN: CN € SV)
forms a single Nth-order cycle under U, that is,

SN+l =1 but |SN| > 2.

For each i € S, there exist uniquely C*€ S" 0<n <N+ 1, such that
i=C%eC'e ... € CN*L, Define the kth-order height of C/ as

k
(1.7) hy(C7) = Ej(dn(cnﬂ) - Vn(cn)) i <k,
0 if j> k.

In particular, the (overall) height of a state i € S is given by
N

(1.8) h(i) = hy(i) = X (d(C™*) = VH(C™)).
n=0
Note that
. 0 if n+l) —
(19) ha(C") = HICT =1
n— V*C™) if C"*!is nontrivial,

and represents the height of C" relative to R(C™*!). The constant A,(C”) has a
similar interpretation. Define the set S as

(1.10) S={ie8: h(i) = 0}.

We shall show that S is the candidate for the “global minimum set” and A(i) is
the “height” of state i relative to S. In accordance with our intuition, it is not
hard to show under the weak reversibility condition [Hajek (1988)] that A(i) =
u(i) — min u if U(, j) = (u(j) — u(i))*. Hence S defined above is the same as
the one given in (1.3).

Let i
(1.11) 8 = maxmin V¥(C*), T = max min V*(C*),
¢S jes ] teS jeS§, j*i
where & is the smallest integer such that i=C%e Cle -.- e Cke Ct*'le

...eCN*land j=C€(C'eC?e --- € C* e C**1. Roughly speaking, &
is the minimum cost required for any nonglobal minimum state to reach S, and
I is the minimum cost for both above and any two states in S to reach each
other. Thus § = T if |S| = 1. We remark that § is related to the convergence
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rate to 0 of the second eigenvalue of (g;;(¢)) as t — oo. See Chiang and Chow
(1987) and Ventcel (1972) for details.

In the following, we introduce three kinds of regularity condition on A. In
each case E is a nonnegative parameter.

(A1; E) fo P(A()E dt [or té)()\(t))E] = .

(A2; E) N(t) [or At + 1) = A(2)] = o((A(2))*").

N(¢) [or Ait+1) - A(t)} _ {O((A(t))E) for E > 0,
A(2) At) unrestricted for E = 0.

The main result of this article can be stated as follows.

(A3; E)

THEOREM 1.1. Let {X(t): t€ R* or I*} be an (aperiodic) -irreducible
Markov process with state space S and transition rate (q;;(t)) given in (1.1). Let
h(i), S, 6 and T be given as in (1.1)-(1.11). Assume (A.1; T) and (A.2; §) hold.
Then there exist positive constants B;, i € S, such that

(1.12) Tim P(X(t) = i) J(M(8))"® = B, foreachic€ 8.
In particular, (1.3) holds.

Our method of proof is to consider the Kolmogorov forward equations associ-
ated with X(¢), that is, for each i € S,

(1.13) F/(t) [or F(t + 1)] = ¥ a:(t)F(2),
JES
where F(t) = P(X(¢) = i) and (g;;(?)) is given as in (1.1). It will be apparent
from the proof that the limiting constants B; can be obtained through solving
systems of linear equations in ( p(i, §)).
If one is only interested in (1.3), the assumptions in Theorem 1.1 can be
weakened as follows.

THEOREM 1.2. (i) (1.3) holds under the assumptions (A.1; 8) and (A.3; ).
(i) Assume (A.1; 8) and (A.2; §) hold. Let b = min, 4 g h(i). Then

P(X(t)e8) =1+ O((A(¢))?) ast— .

Theorems 1.1 and 1.2 will be proved in Section 3, after we obtain some
preliminary results in Section 2. Two examples will be given in Section 4 to
demonstrate the basic ideas behind the proofs. Finally, we make some remarks in
Seétion 5.

2. Some preliminary estimates. As mentioned in the Introduction, we
intend to analyze the system of differential (or difference) equations in (1.13).
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Obviously,

Y F(t)=1and F(t) = 0(1) fort>0andi€S.

ieS
The ultimate estimate (1.12) for each state cannot be obtained in one step, but
through successive improvements of order O(A(%)), O(A\%(¢)),... and so forth. It is
clear that all terms of order A**! or higher on the right-hand side of (1.13) can be
neglected, if we only want to claim that F.(¢) = O(N¥(t)). The following lemma
plays an important role in our approach.

LEMMA 2.1. Let f(t) be a complex-valued function and a a complex number
with Re a > 0. Suppose

(2.1) f7(2) [or f(¢ + 1) = f(£)] = —aA®(£)f(2) + ANT(2),
where A = o(1) or O(A(t)). Then

(2.2) f(t) = ANE(t) ast— oo,

if

(23) { (i) (AL; E) and (A2; E) hold, or

(ii) A=o0(1), F=E and (A.1; E) holds.
Lemma 2.1 can be used to yield some estimates for states in a cycle.

LEMMA 2.2. Let SC T be finite sets and U: T x T — [0,00] be a cost
function on T. Suppose that (2.3) holds and for each i € S,

(2.4) f/(t) [orf(t+1)] = Zflji(t)fj(t) + ANE(¢),

JjeS
where E is a nonnegative integer, A = o(1) or O(A(t)), 0 < f(t) <1 fori e S;
and (§;(t)) is of the type given in (1.1) with U and (p(i, J)) there replaced by U
and ( p(i, J)), respectively.

@ If S does not contain any nontrivial cycle of order < E, then for each
teSandt— oo,

(2.5) f7(2) [or fi(t + 1) — f(2)] = ANE(¢),
(26) (M2)"(2) = 8N(2),  where V(i) = minU(i, J).
(i) If S is an Eth-order nontrivial cycle and contains no nontrivial cycle of

less order, then there exist positive constants 0(i), i € S, such that (2.5) holds
and

2.7) (M) O1(6) = 0N ()| T 1(0) + a)

jes

Formula (2.7) means that within an error of order A, states in S are compara-
ble in probability and can be merged into a single one. If it is known in addition
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that ¥, ¢f; = O(X¥), then it is reasonable to expect that the estimation error in
(2.7) can be improved.

LemMA 2.3. In addition to the assumptions in Lemma 2.2, we assume that
L, csfi(t) = O\ (¢)) and for each i € S,

(2.8) f/(8) [or f(t+ D] = X q;(6)f,(£) + ANT*4(2).

JES

If S is an Eth-order nontrivial cycle and contains no nontrivial cycle of less
order, then for eachi € S,

f/(¢t) [Orfi(t +1) - fi(t)] = ANEHK(¢),
(29) (AN(8)7F(2) = 06)NE(o)| T 18) + Mx(t)),

jes
where the constants 6(i)’s are the same as those in (2.7).

As states in S are merged into states in S”, we always encounter matrices of a
special type called transition rate matrices.

DEFINITION 24. An m X m matrix A =(a;;) is called a transition rate
matrix if

(i)

IR

a;; <0 foreach j
1

12
and

(ii) a;>0 foralli=+j.

The next lemma is essentially a consequence of the Perron-Frobenius theorem
[Seneta (1973)] and we omit its proof.

LEmMMA 2.5 [Chiang and Chow (1988)]. Let A = (a;;) be a transition rate
matrix of order m. If A~' = (b;) exists, then:

(i) All the eigenvalues of A have negative real parts.
(i) b; < (min; a;)" and b; < b;; < 0 for all i, j.
(iii) b;; < 0 if and only if i is reachable from j, that is, there exist i, = i,
iyy-ees iy =Jsuchthata; ; >0 foreach0<n<k.

On the other hand, if A is noninvertible but irreducible, then:

(iv) 0 is an eigenvalue with multiplicity one and all other eigenvalues of A
have, negative real parts. '

(v) L a;;= 0 for eachl <j < m.

(vi) For any proper subset B of {1,2,...,m}, the principal minor
Ap = (a;; i, j € B) is an invertible transition rate matrix.
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ProOOF OF LEMMA 2.1. The continuous time case was treated in Chiang and
Chow (1988) by using the ’Hospital rule. In the following we shall sketch a proof
based on the integration-by-parts formula. It is the latter approach that can be
adopted, via the Abel partial summation formula, for the discrete time case.

For the sake of convenience, we assume A = O(A) and (2.3)(i) holds. The other
cases can be treated similarly. Let g(¢) = exp[ [/aAE(s)ds]. A simple computa-
tion shows ( f(£)g(t)) = g(t)O(N'*(t)). Thus '

(2.10) () =| 1) + ['s()000(s) a] /g(t>.
By using (2.3)(i),
(2.11) lim X(2)|g(¢)| = oo

holds for any L > 0. From (2.10) and (2.11) it suffices to show that

(2.12) G(t) < cNFFI7E(y),

where G(t) = (Re a)[/|g(s)|\F+(s) ds/|g(t)|. Write A+ = NEAF+1-E and use
the integration-by-parts formula. It follows from (2.3)(i) and (2.11) that

G(t) < N*17E(e) = (F + 1~ E) [lg(s) N1 5(s)(N /) ds/ (1)

< )\F+1_E(t) + Ltlg(s)l |O(AF+1(S))Id3/lg(t)|

= N*1-E(¢) + ¢G(t) if a is large enough.

Thus, G(t) < NF+1E(t) /(1 — &) for t large enough. This verifies (2.12) and then
(22).
In the discrete time case it is easy to show from (2.1) that

£+ 1)) <] F(a)IS(t, €) + kz NFH(R)S(t, B),

where S(¢, k) = ITi_, 4|1 — aA®(j)|. Since Rea > 0 and lim A(¢) = 0,

|1 — aAB(t)] <1 — (Re a/2)AE(t) holds for ¢ large, say t=> a. Let H(¢) =
t_.[1 — (Rea/2)AE(k)]~1. Then

|f(t+1)|<ec|l+ Zt‘, H(k)AF“(k)]/H(t).

k=a

This is the analog of (2.10) for the discrete time case. It can be checked similarly
that (2.11) holds with g(¢) replaced by H(t). Since

H(k)X?(k)/H(t) = (2/(Re o))(H(k) — H(k - 1)) /H(t),

the Abel partial summation formula can be applied to do the “integration by
parts.” Equation (2.2) can be verified the same way as in the continuous time
case. The details are omitted. O
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ProoF oF LEMMA 2.2, We consider only the case t € R* and A = O()A). The
other cases can be proved similarly.

The lemma is proved by using induction on E. For the sake of convenience we
omit the symbol “ ~ ” throughout the proof. We first introduce some notation.
For any subset A C S and any two different nonnegative integers m, n, let

fa = (f(¢); i € A)T is a column vector,

fd = (f(t); i € A,

A,= (i€ S V() =n),

Qm, n= (l(U(i, j)=m}p(i7 .,); i€ Am, ] € An)T is an IAnI X IAmI matrix,
Q,=(q,i j); i,j€A,) T is an |A,| X |A,| transition rate matrix, where

1(U(i,j)=n}p(iy 7) if j # i,
%) ={- ¥ p(i,k) ifj=i
keS, UG, k)=n

Qn,A = (qn(i7 j); i’ j € An N A)T‘

Step 1. E = 0. It is enough to show that (2.5)-(2.7) hold for states in A,
Once it is done, (2.5)—(2.6) can be checked easily for any other state. This is
because V(i) > 1 for i & A,. After collecting all terms of order O(A) or higher,
the differential equations in (2.4) for i € A, take the matrix form

(2.13) fd, = Qofa, + O(X).

In case (i) @, is an invertible transition rate matrix. By Lemma 2.5 all its
eigenvalues have negative real parts. Let a be an eigenvalue of @, with u, as its
corresponding left eigenvector. Multiplying (2.13) from the left by u,,

»(2.14) (urfa,) = a(u; fa,) + O(N).
'By Lemma 2.1 and (2.14), we have
(2.15) u fs,= O(N),  uf, = O(A).

If u,@, = au, + u, then, with the help of (2.15),
(s on)' = “(uzon) + (ulon) +O0(A) = a(.u2fA0) + O(A).

By the same reason (2.15) holds with u, replaced by u,. Repeating the same
procedure and using Jordan’s decomposition theorem, we can get a basis
{4y, Uy, ..., U} of CHl such that (2.15) holds for each u;. Thus

(2.16) f=0(), £, = O().

This proves (2.5) and (2.6) for case (i) and E = 0.

In case (ii) @, is noninvertible but irreducible. It follows from Lemma 2.5 that
all eigenvalues of @, have negative real parts except 0, which is an eigenvalue
with smultiplicity 1 and having e = (1,1,...,1) as its left eigenvector. By the
same technique (2.14) becomes ef,, = O(A) and we can get generalized eigenvec-
tors {uy, ug,..., U} such that (2.15) holds for each u;, 2 < i < |A,|. Since
{e, us, ..., u,} forms a basis of C 140l (2.5) is proved. For the remaining part, we
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fix a state i, € A, and let B = A\ {iy}. The following linear equation can be
obtained from (2.13) and (2.5):
Qo, 5fs = —(plio, i); i € B)"f;, + O(A).
By Lemma 2.5(vi) and (iii) @, » has an inverse and all elements of (- @Q, 5)*
are nonnegative and the diagonal ones are positive. Since
fa=(=Qo,8)"'(p(io, i); i € B)"f, + O(N),

it is clear that there exist constants (i, i;) > 0 such that f; = 0(i,, i)f;, + O(\)
and by Lemma 2.5(iii), 8(i,, i) > 0if p(iy, i) > 0. Since S is irreducible and i, is
arbitrary, (2.7) follows easily. This completes the proof for E = 0.

Step 2. Case (i) and E > 1. Without loss of generality we may assume S is
connected. Certainly O(A¥*1) is O(AF). By the induction hypothesis,
(2.17) f./ = O(Nf) and MOFf = O(NF).

Since AOf, = O(AE*Y) for V(i) > E + 1, it follows from (1.6), (2.4) and (2.17)
that

E
(2.18) 4, =XQifa,+ X NQufa, + O(N*Y), iz0.
k=0, ki

We claim that for each 0 < i < E, there exist an invertible transition rate matrix
@} and nonnegative matrices @7, k£ > i, such that

E
(2.19) fd, = NQfs, + . 2 NQfifa, + O(N°HY) = O(NH).
=i+l
Suppose temporarily that (2.19) holds. Then
(2.20) Nfs, = O(NF*1) foreach0<i<E.

Letting i = E in (2.19), we obtain (2.20) for i = E. Applying this result to (2.19)
with i = E — 1, we obtain (2.20) for i = E — 1. Thus (2.20) can be proved by
repeating the same argument.

Equation (2.6) follows immediately from (2.20). Note that (2.6) holds automat-
ically for any state i with V(i) > E + 1. As to (2.5), that it holds for any state i
with V(i) > E + 1 follows from (2.18) and (2.6). The remaining cases are already
shown in (2.19). Thus Step 2 is finished, except that we have to check (2.19).

Equation (2.19) can be shown by using induction on i. First observe that each
Q; is an invertible transition rate matrix. This is because S does not contain any
nontrivial cycle of order < E. Thus Lemma 2.5 is applicable. We start from
i = 0. Let a, u, be the same as in (2.14). Define

E
(2;'21) & =Ufs, t h, where h = O‘_11‘1(1;2 }‘kaOfAk)'
=1

Under the assumption (A.2; E), A'/A = O(A¥) = O(M). By (2.17),
(2.22) R = O(AF+Y),
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Multiplying (2.18) from the left by u, and using (2.22),
g =ag + O(NF*1),

As in (2.15) we obtain that both g, g’ = O(AF*!). Combining with (2.21) and
(2.22),

E
(2.23)  (uyfa,) = | Qofa, + kz NQuofa, | + O(NETT) = O(AEHY),
=1

By the same technique used in the proof of (2.16), we can obtain a basis
{uy, ug, ..o 0} of C4l such that (2.23) holds for each u;. This verifies (2.19)
for i=0 Wlth QF =Q, and Q% = Q.o Suppose that (2 19) holds for all
i=0,1,..., j — 1. Then for each i < j,

E
(2:24) Nfo, = L M(=Q¥) '@kl + ON).
k=i+1
That is, ?\‘fAi can be expressed, within an error of O(AF*!), as a sum of
higher-order ones. Applying (2.24) to (2.18) and making some rearrangements, we
have

f _)\JQ*fA + E ;\ka,fA,, + O(AEH)
k=j+1
for some matrices @F and @j;. That each @} is nonnegative is clear from
applying Lemma 2.5(ii) to @;*, 0 < i <. The following facts about @* can be
shown:

() QF is a transition rate matrix.

(ii) For any two different states &, r in A; we have (Q}), ,> 0iff k> r at
level j, that is, state r can be reached from state k through states in Uj_ OA B
(iii) @} isinvertible unless {i: U(r, i) =j forsomer € A;} N (U, ;A,) =

In that case all column sums of @ are 0.

The details can be found in the proof of Lemma 2.5 in Chiang and Chow (1988)
and are omitted.

Since by assumption S does not contain any nontrivial cycle of order < E,
@} is invertible. By the same argument we can obtain fA = O(AF*1). This
verlﬁes (2.19) by induction.

Step 3. Case (ii) and E > 1. We claim that (2.17) holds for each i € S. Since
S\ Ag does not contain any nontrivial cycle of order < E — 1 and AV A)f, =
O(AF) for each j € Ag, Lemma 2.2(i) can be applied to S\ A. Thus (2.17) holds
for each i € S\ Ag. Applying this result to the equation for f,_ in (2.18), we
obtain immediately that f{ = O(A”). The claim is verified.

The same argument in Step 2 can be repeated to show that (2.19) holds,
except that now Q% in

f4, = N°QE fa, + O(X°*)
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is not invertible but irreducible. As in the case E = 0, we can find a basis
{e=(@1,1,...,1), u,,..., U,a,}> Which consists of generalized left-eigenvectors of
Q%, such that

all efA,E, uifA,E and uifAE are O(}\E+1),
and then there are positive constants (i), i € Ay, such that for each i € A B
(2.25) NOF, = 6(i)N(efy, + O(N)).

Applying (2.25) to (2.24) with i = E — 1, we can obtain positive constants 6(i),
i € Ag_,, such that (2.25) holds for each state i in A;_,. Repeat the same
argument to obtain (2.25) successively for states in Ag_,,..., A, and A,. This
proves (2.7) if one notes that ¥ ;. sf; = ef,, + O(A) by (2.17). O

ProoF oF LEMMA 2.3. As in the proof of Lemma 2.2, we consider only the
case t € R* and A = O(\). We assume for convenience that K is an integer.
The lemma is proved by using induction on K. The case K = 0 is established
in Lemma 2.2(ii). Suppose that the lemma holds for K — 1. Since O(AX*1) =
O( M%), (2.9) holds for K — 1 by induction hypothesis. Using the assumption
Y. csf; = O(XX), we then obtain

(2.26) fi's WVOf, = O(NE+X)  foreachi € 8.

Observe that U(i, j) > V(i) + 1if i = j, that is, U(i, j) # V(i). It follows from
(2.26) and (2.8) that (2.18) holds with O(AE*!) replaced by O(AF+X+1), Now
repeat the same procedure used in the proof of Lemma 2.2(ii) and (2.9) for K can
be obtained. O

3. Proof of Theorems 1.1 and 1.2. Recall that C” or C" represents a
* typical state in S™. For each C° € S° = S, there is a unique chain C° € C!
C?e ... e CN*! where C/ € S/ for0 <j< N+ 1. Let

0<m <my< --- <m, <N

be those indices j < N such that |C/*!| > 1. Certainly L and all m; exist by the
irreducibility assumption and depend on C°. Let OS(C™") = {i € S there exist
C’ € S/ such that i=C%°€ C' € --- € C"} be the offsprings of C". Define
Fin(t) = P(X(t) € OS(C™)). It is clear that

FC"’ = Z E = Z FCill—'l .
1€ 0S(C™) crlect

We first prove a lemma.

LEMMA 3.1. Let n>1 be fixed. The following r:esults hold as long as
Lemmas 2.2 and 2.3 are applicable to S.

(1) Either m, > n or there is a largest m, < n — 1. In the former case,
(3.1) NVCOF = NVOFy = oo = VDR = O(A).
In the latter case, there exist positive constants 6(C™), §(C™),...,0(C™) such
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that

AVm;-+l(Cmr+1)1;,(J”l’.+l — 0()\”)
ifm.<j<n-1,

AV HC Oy, = O(C™ )N ( Fgmysr + ANERC™™D)
ifm,_ <j<myandl<k<r,

(32) AR, =

where, in general, H,(C’) = h,_(C’) + (n — V*(C™))*. In both cases,

(3.3) Fyi = O(NECD)  forj<n—1,
(34) NV@IF = AN foreach (i, j) € (0S(C™), S\ 0S(C™)),
(3.5) AVCOR,, = ANTL,

(i) An irreducible |S"| X |S™ matrix P,= (p(C", C™)) with nonnegative
off-diagonal elements can be constructed recursively from the matrix (p(i, j))
given in (1.1), such that for each C" € S,

(3.6) Fin(t) [or Feu(t + 1)] = Zqén,cn(t)Fén(t) + ANY(2),
Cn
where
p(Cn, Cm)N"C™EM(¢) if C*+ C™,
qc",é"(t) = l(discretetime} - ~E qC",é"(t) if (jn = C".
Cn*cn

ProoF. We consider only the case £ € R* and A = O()\). The other cases
can be treated similarly.

We start by noting that Fg, = Fgsi, V{(CY) = VI¥YCI/*Y) if |C/*Y = 1.
Moreover, by (1.7),

0 ifm >norm, <j,
hn_1(C7) = Y (m,—-Vm™(C™)) ifj<m,.

Jj<mp<n-1

The lemma is proved by using induction on n. Take n = 1. Write S° =
(UM ch u (UM C}), where all C}’s and C}'’s are zeroth-order cycles except that
|Ci| > 1 and |C}| = 1. Since V(C}) = 1 it is clear that (3.3)~(3.5) hold for n = 1
and C° € C}. Thus in the differential equation (1.1) for.i = C° € C}, the contri-
butions from states in UMC} are all O(M). Applying Lemma 2.2(i) with S =
S\UMC} and E = 0, we obtain

(3.7) NG DR, < V@R, = O(M).

This proves (3.1) and also completes the proof of (3.3)—(3.5) for n = 1. Using (3.7)
and then applying Lemma 2.2(ii) with S = C} and E = 0, we obtain positive
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constants 0(i), i € Cj, such that
(38) F, = 0(i)(Fg; + O(N)),

which is (3.2) for n = 1.

It remains to show (3.6). As the notation suggests, C; will be treated as a
single state in S'. This is achieved by using (3.8) to merge, within an error of
order O()), together the states in C;. For example, the contributions from C} to
C} = {j} can be written as

Y (i, HVEIE = | ¥ 0()p(, j)’\U‘i’j’](Fc,l, +0(\))

ieCl ieC}

(3.9) ={ )) 0(i)p(i,j)]x”‘<ci’él‘>(1+O(A))}

G, HEIXCE,CH

X (Fg + O(N)),

because by (1.5), the uncounted terms in the summation are at least one order
higher. Similarly, the contributions from C} to a different nontrivial C; satisfy

Y. p(i, j)NEIF,
ieCi, jeC}
={[ y o(i)p<i,j>]xv‘<0i’0f>(1+oa»}(wom)
i, NE(CL, C)

and the contributions from €} = {i} to a different zeroth-order cycle C* satisfy

Y p(i, j)NEIF, = {[ r G, J')]?\U"é"’c"(l + O(A))}Fé;-

ject G, Hex(C},Ch
Since UY(C}, - ) > 1 and (3.5) holds, (3.6) follows by letting
p(C',C") = Y 0G)p(, J)-

G, HelxC, CY

Here and throughout the proof, we take the convention that #(C/) =1 if
C/ e C/*! and |C/*!| = 1. Note that the diagonal elements of matrix P, as
those of ( p(i, j)), are unimportant and can be arbitrarily defined. This remark
also applies to all subsequent P,, k£ > 2. This proves the lemma for n = 1.

Suppose the lemma holds for n. We now show that it holds for n + 1. As in
case n = 1, we decompose S™ = (UMC*1) U (UMCr*1) into a union of nth-order
cycles with |C2*| > 1 and |C**}| = 1. By (3.5) for n and (1.6),

(3.10)  NUCHOOF,, = O(N**Y) if (C",C) e (Cpt, 8P\ CpTY).

Then (3.5) for n + 1 and C"*! = C?*! can be proved by using (L.4). (34) for
n+1and C**' = Cp*! follows from the same argument by using (3.4) for n.
@33)forn+1land C/ € --- € C"*! = C*! automatically holds, because (3.5)
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holds for n and
(8.11) H, (C’)=H,/(C/) forj<n.

Consider the differential equations in (3.6) for C" € S™\ uMcp+1, Using (3.10)
and then applying Lemma 2.2(i) with § = S*\ UMCZ*! and E = n, we obtain

(3.12) )\Vnﬂ(é;m)Fcnﬂ - )\Vn(cn)FCn — O(An+l) if {Cn} - é'ln+l’

~l
which completes the proof of (3.5) for n + 1. Note that (3.12) improves (3.5) for

n. In view of (3.1) or (3.2) for n, it is not hard to check (3.3) and (34) for n + 1
and C/ € --- € C"*! = C/"*. Note that in this case,

(3.13) H, . (C/) =1+ H,C’) forj<n,

iff V*(C") < n. In fact the same argument also shows that if |C"*!| =1,
V*C™) < n and m, < n exists, then for k < r,

O(Nm+1+HC™h) - jf (e & C™+*1 and C™ = C™,
O(X™+2+HAC™™)  otherwise.

Or, quite equivalently, for j=C°€C'€ --- € C™"! and i= C’eCle
= ka’

AUmHEh CmOR

O()\"‘””H"(Cm"“)) if 6™ e ¢™*1 and
(€1, 071 e Ix(C, CY)
forl <l<m,,

O(N™+2+HAC™™)  otherwise.

(3.14) ANVGIF, =

In summary, we have shown so far that (3.3)—(3.5) hold for n + 1.

Next, consider the differential equations in (3.6) for C" € Cr*l (3.10) and
(8.12) imply that the contributions from any C" & CP*! are O(N**"). Applying
Lemma 2.2(ii) with S = C*!, U = U™ and E = n, we obtain positive constants
6(C™), C™ € C;*1, such that

(3.15) W CFy, = §(C)NY Fgper + O(N)).

We now prove (3.1) and (3.2) for n + 1. By (3.12) and (3.15) it suffices to
consider j < n. If m, > n + 1, then (3.1) follows from (3.12). So we may assume
there is a largest m, < n and want to show (3.2).

Case 1. m, = n. That is, C* € C*! for some k. Since d (Cy*') = n, it is
easy to check (3.11) and we are done.

Case 2. m, < n.If V™+{(C™*1) = V*(C™) > n'+ 1, then we are done by
(3.11). Suppose V*(C™) < n. Then (3.13) holds. By (3.3), which is just proved,

Figmps = O(MHni©™%*D) = O(N+HAC™™D) 1<k <.,

Note that the estimate above is the same as the error estimate in (3.2) for n. It is
reasonable to expect that the error estimate can be improved by order O(X).

w
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Since Fm = L, c og(cms)Fy'» it follows from (3.14) that for each C™ € C™*1,
Fom= X qom,cml(t)Fgm + O(Nm+2-HiCTHD)

ém*ECm”+l
Applying Lemma 2.3 with § = ™+, U = U™, E = m, and K = +1(C"‘*“)
we obtain

AV ™), = B(C™* )X Fgmyer + O(NF HreaC™)),

This proves (3.2) for n + 1.

Equations (3.4) and (3.5) for n + 1 imply that any contribution from a
different C"*! to C"*! is O(N**1), and thus by (1.6), is O(N**2) if C**! = C**1.
As did in (3.9), we can obtain (3.6) for n + 1 by neglecting all terms of order
O(N**?). Note that we have

p(Cn+l’C~n+l) — E B(Cn)p(cn,én)
(C",é")EIx(C"+1, C"n+1)
with the convention that §(C*) = 1 if C" € C"*! and |C"*}| = 1.
This completes the proof of the lemma. O

Define R*(C") = {i € OS(C™): C/ € R(C/*') for 0 <j < n, where i = C° €
C'e ... € C"} tobe the “root” of C™ in S. It is clear that if Lemma 3.1 holds
for n, then

Fan f ER*Cn’
(316) {l C or 7 ( )

F,=o0(1) otherwise.

We now proceed to the proof of Theorems 1.1 and 1.2. In the following we
assume 8 > 0. The case § = 0 can be treated more easily in the same manner.
Suppose (A.1; §) and (A.3; §) hold. Since (A.3; 8) is stronger than (A.2; § — 1),
Lemma 3.1 is applicable for n < 8 and A = O(A). Therefore, for C° € Ss

(3.17) Fs(t) [or Fe(t + 1)] = chs () Fs(8) + O(N+Y(¢)).

We want to show that F, = o(1) if i & S. Suppose i € OS(C?). If i & R*(Cs)
then, since (3.16) holds for n =38, F,= o(1). Otherwise, replacing O(N°*?) in
(3.17) by 0(A?%) and applying Lemma 2. 2 with A = 0(1), we obtain F, < Fgs = o(1).
This proves Theorem 1.2(i).

If (A.2; &) is assumed instead of (A.3; §), we want to show

(3.18) F,= O(N®) fori¢S,

which implies Theorem 1.2(ii). By (1.11), if a nontrividl cycle exists in the chain
CeC® e ... € CN* say |C™ > 1 for some n > §, and V*~{(C"1) > §,
then C"' € R(C™). Moreover, R*(C" Y c R*(C*) ¢ --- ¢ S. Thus
h (C" 1y = 0 for C*' € R(C™). We claim that under (A.1; 8) and (A.2; )

(3.19) (3.3)-(3.5) hold for 8 + 1 < n < Nand A = O()).
Once it is proved, (3.18) follows by letting j = 0 and n = N in (3.3) and using
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the equality Hy(C%) = hy(C°) = R(CO). 1t is clear from (3.17) that Lemma 3.1
now holds for n =8 + 1 and A = O()). Thus (3.19) is true for n = § + 1 and

Fsi(t) [or Foon(t + 1)] = Z qC~a+1,Cs+1(t)FC‘.'s+1(t) + O()\8+2(t)).
C"6+1

Write S%*1 = UMCE+?) U (UMCP*?) with |C8*2| > 1 and |CP*? =1. By
(3.19) for n =8 +1 and (1.6), (34) and (3.5) hold for C}*% and A = O(X).
Applying Lemma 2.2() with § =UC?*2, U= U%"!, E=8+ 1 and A = O()),
we obtain (3.4) and (3.5) for C}+2 Then (3.3) for n = § + 2 can be proved by
using the results just obtained and repeatmg the proof of Lemma 3.1(i) with
n=238+2 and S replaced by S\ U ,R*(R(C{*?)). This verifies (3.19) for
n = 8 + 2. Note that in the argument above, we cannot apply Lemma 3.1 to S to
get (3.2) for all j <48 + 2. This is no harm. Because R*(C°*!) c S for any
C%*1 € R(C§*?) and F,= 0(1) is the desired estimate for i € S. In a similar
way, (3.19) can be verified successively for n = 8 + 3,8 + 4,... and N. We omit
the details. This completes the proof of Theorem 1.2(ii).

Suppose (A.1; T') and (A.2; 6) hold. Lemma 3.1 is first applicableforn =T + 1
and A = O(M), and then for n = N+ 1 and A = o(1). Note that ' < N by
definition. Let i=C°e C'e€ --- € CN*! and m,, m,,..., m; are those in-
dices j such that |C/*!| > 1. It follows from (3.2) that

= (lf[lo(cmk))xh(i)(l + o(1)).
This proves Theorem 1.1.
4. Examples.
ExampLE 1. Let S={1,2,3,4). In Figure 1 only those U(i, j)’s with
U(i, j) = V(i) are shown. All the other U(i, j)’s are unimportant and can be

neglected. This claim can be verified via Lemma 2.2. In fact, by using Lemma 2.2
six times, we can show that for each i € S,

(4.1) Fy(¢) = O(X(t)) and NO(£)F(t) = O(X(2)),

/\
\/

Fic. 1.
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where F(¢) = P(X(t) = i). Thus
(42)  F() = O(X(2)), Fyt) = O(M(¢)) and Fy(¢), F(t) = O(1).
Note that in this example § =3, T =7, A1) = 7, h(3) = 4 and A(2) = h(4) = 0.
Once we have the desired order estimate (4.2), Theorem 1.1 can be proved by
using Lemma 2.3. We remark that (4.2) implies (4.1) by improving successively
the order estimate for F.’(¢) from O(1), O(A), ..., to O(X). It follows easily from
(4.1) that
F/(¢) = =p(1,2)F(2) + p(4, )N(8)E(t) + O(X(2))
= 0(X%(¢)),
Fy(t) = —p(3, 9N (t)Fy(2) + p(2,3)X(¢)Fy(2) + O(N(t))
= 0(¥(2)),

which means that F,, F; can be expressed, within an error of O(A%), in terms of
F, and F,. Substituting (4.3) to the differential equations for F, and F,, we have

B\ (-p@3)  p@1)\. (BB
(4.4) @no) p(2,3) —man%“%auﬂ*o““”

Denote the 2 X 2 matrix above by A. Then p= —(p(2,3) + p(4,1)) is an
eigenvalue of A with u = (—p(2,3), p(4,1)) as one of its corresponding left-
eigenvectors. Multiplying u from the left to both sides of (4.4),

(4.5) g'(t) = uN(t)g(t) + o(N(1)),

where g(t) = u(Fy(t), F(t))". Note that O(X®) is replaced by o(X) in (4.5), so
" that (2.3)(ii) holds with E = 7 and Lemma 2.1 can be applied to get g(¢) = o(1).
Since lim(Fy(t) + Fy(t)) = 1 by (4.2), we immediately have

lim Fy(¢) = p(4,1)/(p(2,3) + p(4,1)),
lim F,(t) = p(2,3)/(p(2,3) + p(4,1)).

(4.3)

Then by (4.3),
lim F(¢)/N(t) = p(4,1)p(2,3)/[p(1,2)(p(2,3) + p(4,1))],
lim Fy(¢)/M(¢) = p(4,1)p(2,3)/[ p(3,4)(p(2,3) + p(4,1))].

Since (4.2) is the key estimate for Theorem 1.1, it is interesting to give it a
heuristic argument. Because all g;,(¢)’s are powers of A(?), it is reasonable to
guess that F.(¢) = A%)(¢) as ¢t - 0. As in the homogeneous case, we expect that,
within a tolerable error, a certain “equilibrium” is reached as ¢ - co. Thus the
amount of flow-in mass to any stadte i should “balance” the amount of flow-out
mass from state i. [This is in fact the contents of (4.3) and (4.4).] Taking
i=1,2,3,4 and comparing the order of A(¢), we obtain

7+a(4)=a(l)=7+a(2)=3+a(3)=7+a(4).
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Since L{F,(¢) = 1, we have

mi i) =0.
1si24a( )

Thus a(1) = 7, a(3) = 4 and a(2) = a(4) = 0. This justifies (4.2).

ExaMPLE 2. Let S = (1,2,3,4}. All the finite-valued U(i, j)’s are shown in
Figure 2. A boldface arrow there means a cost with U(i, j) = V(i). It is clear
that states 3 and 4 will be merged into a state in S®, and states 1 and 2 into a
state in S, The structure of (S®,U?) is shown in Figure 3. By (1.8),
h(1) =0, h(2) =1, h(3) = 3 and A(4) = 10. The correct order estimates

(4.6) F(t) = O(N*®(t)), i€S,

can be obtained through many steps. Take i = 3,4 for example. Lemma 2.2(i)
implies that as ¢ — oo,

NO(£)F(t) = O(NE*Y(2)), i=3,4,
hold successively for E = 0,1,...,6. Note that V(3) = 7 and V(4) = 0. Lemmas

12

F1G. 3.
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2.2 and 2.3 imply that for i = 3,4,

W(e)(Fy(1) + F(1) = 0(¥**1(1)),
NO()F(2) = 8()N(B)[(F(2) + F(8)) + O((A£) "))

hold successively for E = 7,8,...,11. Now let E = 11 to get the estimate in (4.6)
for F, and F,.

The limiting constants B; in (1.12) can be obtained in a similar way. We omit
the details.

5. Remarks.

REMARK 1. The aperiodic assumption usually holds automatically. Because
lim g;;(¢) > 0 for a certain state i € S, unless {X(¢)} is in fact homogeneous,
which is not our concern in this article.

REMARK 2. The irreducibility assumption is for convenience only. If the
process is reducible, then one can classify each state as an essential or inessential
state exactly the same way as one does in the homogeneous case. We can readily
obtain a limit theorem like (1.12), but the description of the B;’s will be messy
and usually depends on the initial distribution X(0).

REMARK 3. The concept of a cycle has appeared in Freidlin and Wentzell
(1984), where a small random perturbation for a dynamical system is considered.
The more general form which is used in this article appeared in some equivalent
form in Hwang and Sheu (1986) and Karp (1972). Note that it is related to the
minimum cost spanning tree problem in graph theory. A complete analysis of
this concept is developed in Chiang and Chow (1987). Here, we only extract from
it some of the necessary definitions and refer the readers to Chiang and Chow
(1987) and Lawler (1976) for motivation and other applications.

REMARK 4. The reason for introducing a “cycle” is because the probabilities
of the process being at two different states in a cycle are comparable, that is,
lim,_,  P(X(t) = i)AVO(¢t)/(P(X(t) = ))NV)(¢)) exists for i, j in one cycle. [The
interpretation of P(X(¢) = i) when i is a cycle should be obvious.] This is partly
the content of Lemma 2.3. The integer £ that appeared in “kth-order cycle”
seems cumbersome. Actually, it plays no role in the mathematics of this article
and was introduced only to smooth the description of an induction argument.
. One can tacitly assume % = oo, bearing in mind the hierarchic structure of the
cycles developed at different stages [see (1.4)].

REMARK 5. A continuous analog of our problem takes the form

dX,= —b(X,) dt + 2T(t) dW,,
Xo=x,

(5.1)
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where b(x) is required to resemble a gradient function in a strong way. The best
result for the limiting distribution of (5.1) known to us is in Hwang and Sheu
(1986), where a weak limit like (1.3) was obtained. We would like to see an
estimate of the convergence rate (1.12) in this setup.

REMARK 6. It is clear from (1.1) that the transition rate functions {q,;(¢)}
considered in this article are of a special type: powers of A(¢). In particular,

0 or
(5.2) tlin:oqz'j(t)/%z(t) ={c>0 or
00

holds for any i, j, &, [ with i # j and k& # I. From the viewpoint of balance of the
mass flow, which is explained in Section 4, it is not hard to see that Theorems 1.1
and 1.2 hold as well for general transition rate functions satisfying (5.2) and some
technical conditions like (A.1; E)-(A.3; E). A more general case that ¢,eV " <
g;(t) < c,eV7) has been considered in Tsitsiklis (1985).
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