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CHARACTERIZATION OF ALMOST SURELY CONTINUOUS
1-STABLE RANDOM FOURIER SERIES AND STRONGLY
STATIONARY PROCESSES!

By MICHEL TALAGRAND
University of Paris VI and The Ohio State University

We complete the results of M. Marcus and G. Pisier by showing that a
strongly stationary 1-stable process (X,);c defined on a locally compact
group has a version with sample continuous paths if (and only if) the entropy
integral [§° log*log N(K, dy, ¢) de is finite, where K is a given neighborhood
of the unit and dy is the distance induced by the process.

1. Introduction. Let G be a locally compact Abelian group with dual group
T'. Following Marcus and Pisier [5], we say that a (complex) random process
(X,);ec is a strongly stationary p-stable process (0 < p < 2) if there exists a

finite positive Radon measure m on I' such that for all ¢,...,¢, € G and
complex numbers ay, ..., a, we have
n n P
EexpiRe( zlantj) = exp — j; zlajy(tj) dm(y).
J= j=

We associate with (X,),.s a pseudometric dx on G defined by

Vs, teG, dy(s,t)= (_/FIY(S) = ()P dm(v))l/p-

We fix a compact neighborhood K of the unit element of G. Let N(K, dy, €)
denote the smallest number of open balls of radius ¢, in the pseudometric dy,
which cover K. For p > 1, Marcus and Pisier have shown that (X,),. x has a
version with as. continuous sample paths if and only if J(dy) =

(log N(K, dy, €))/9de < oo, where 1/p + 1/q = 1. They have also shown
that, when p = 1, a necessary condition for (X,),. x to have a version with a.s.
continuous sample paths is that

J(dy) = f0°°10g+1og N(K, dy, ¢) de < .

The contribution of the present paper is to show that the condition J(dy) < oo
is also sufficient for (X,), x to have a version with a.s. continuous sample paths.
The new method we introduce dispenses with the use of nonincreasing rearrange-
ment of the metric. It actually can be used to provide an alternative approach to
sufficient conditions in the case p > 1 (see [1] for the details).
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THEOREM. Let (X,),.; be a strongly stationary 1-stable process. Then
(X,); < x has a version with a.s. continuous sample paths if and only if J(dx) <
00. Moreover, there exists a constant L(K) depending only on K such that

L(K)™(J(dy) + m(T))
(1.1)
< supcP(suplX(t)l > c) < L(K)(J(dy) + m(T)).
c>0 teK
When G is compact and K = G, the constant L(G) can be taken independent
of G.

In particular (as explained in Marcus and Pisier [5]) this theorem can be
applied to random Fourier series X/(w) = £, cra,0,v(t), where (6,), . are iid.
1-stable r.v.’s.

2. Tools. The representation of p-stable processes as a suitable mixture that
was essential in the work of Marcus and Pisier will also be essential here. We
describe this representation in the case of strongly stationary processes. By
homogeneity, we can assume that m is a probability. Let W be a real positive
random variable satisfying P(W > A) = e~ *. Let (W,) be i.i.d. copies of W and
define T; = ¥, _ 'W,. Let {Y;} be an i.i.d. sequence of I'-valued r.v.’s distributed
according to m. Let (¢;) be a Bernoulli sequence. Let (w;) be a Steinhauss
sequence (i.e., i.i.d. uniformly distributed on {z € C; |z| = 1}). We assume that
the sequences {Y}},{T}}, {¢;},{w,} are independent of the others. Then for some
constant a( p), the process (V,),c given by

(2.1) vieG, V,=a(p)X (T;) " Pej0Y(t)

is equal in distribution to (X,), < 5- It will be convenient to assume that the basic
probability space is a product @ X @’ X Q" and that

Vi@, @, 0) = a(p) E (5j(6") " e()e(@)Y(0)(0)-

For a nonnegative sequence (x;);.,, we denote by x}* its nonincreasing rear-
rangement, i.e., x* = sup{u > 0; card{j: x; > u} > i}. Marcus and Pisier make
essential use of the random distance

d(s,t) = | (i (¥(0)(s) = ¥{) (1)) jn],, .0
where
. l/p .l/
1(,) 21l = (0027 card (s la,1 > £}) " = supj/7la ",
t>0 Jj=1
They show in particular that for p > 1, we have, for some constant b(p),
(2:2) Ed(s,t) < b(p)dx(s, ).

This unfortunately fails for p = 1. However, J. Zinn has given a transparent
proof of (2.2) and his argument (to be given shortly) shows that in the case
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p =1, the failure of (2.2) is due only to the largest term of the sequence
(J~V7| Yi(w)(s) = Y(w)(#)]);51- So, the obvious thing to do will be to control a
few of the largest terms of this sequence.

LEMMA 1 (J. Zinn; see Pisier [6], page 37). Let (X;);., be independent
nonnegative r.v.’s. Then for u > 0, P(X}* > u) < (ea/k)*, where

i>1

Proor. For A > 0, we have

EeXpA Z l{X,'Zu) = IlEeprl{XlZu)
1>

i>1

= [T(1 + (* - 1)P(X, > u))

i>1
<expa(e* —1).
We note that X;* > u is equivalent to X1,y . ,, > £, so that
P(X* > u) < exp(—Ak + a(e* — 1)).

The result follows with A = log(k/a) if 2 > a, and is obvious otherwise. O

COROLLARY 2. Let Z; be an i.i.d. sequence of nonnegative r.v.’s. Let
X; = Z;/i. Then P(kX}* > euEZ) < u™*.

Proor. From Lemma landsincel;, P(X;>u) =Y, ,P(Z;> iu) < EZ/u.
O

In particular, P(||(X,)|l,, , = 2euEZ) < u™! for u > 1. If EZP < o0, we have
P(I(X)l 5, = (2€)Pu(EZP)'/P) < u™P by applying the preceding inequality
to Z”, which proves (2.2).

We will use the following immediate consequence of Corollary 2.

COROLLARY 3. With the notation of Corollary 2, we have

P(X* <2"%eEZ;V i> 2" iX* <2eEZ) >1— 27",

3. Proof of the theorem. We denote by 0 the unit of G. For s € G, w € Q,
we set

Xi(0,8) =i"Y(w)(s) — 1] = i7"|¥;()(s) — ¥(«)(0)].
Since dx(s,0) = E|Y|(s) — 1], it follows from Corollary 3 that for any s we have
P(X*(w,8) <2 %dy(s,0);Vi> 2", iX*(w,s) < 2%dx(s,0))

>1-—277*L,

(3.1)
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Weset K' = K — K = {s — t; s,t € K}. We fix a Haar measure of G and we
denote by |A| the Haar measure of a set A. For £ > 0, we set B, = {s € K’;
dx(s,0) < 273} For k, n > 0, we set

Bino={s€ By X*(w,8) <2273 v i> 2" iX*(w,s) < 2373k}
It follows from (3.1) and Fubini’s theorem that if we set
Qi n = {95 |By, n, ol = |Bil/2},
we have P(Q, ,) > 1 —27""2 We set

Q= N Q%N N,
k<n k>n
We have P(Q,) > 1 — (n + 1)27"*2, The main part of the proof is to show that
a.s. conditionally on w € £, and on w” the process V, has a.s. continuous sample
paths, and that

(3.2) Ew,(sup Vi, o, w”)) < L(K)U(o")(n? + J(dy)),
teK

where L(K) is a constant depending on K only and where U(w”) =

sup;.,J/Ty(«"”). It then follows from Fubini’s theorem that (X,),c . has a

version with a.s. continuous sample paths. Also

(3.3) Ew,( sup V,(w, o', w”)) < U(w")W(w),
teK

where (EW?)!/2 < L(K )(1 + J(dy)) [for a new constant L(K )]. As pointed out
by Marcus and Pisier, it is easy to see that sup, . ;uP(U > u) < o0, so that (3.3)
easily implies the right-hand side inequality of (1.1). (The left-hand side is due to
Marcus and Pisier.)

Given two subsets A, B of K, we denote by N(A, B) the smallest number of
translates of B by elements of A that can cover A. We set K”” = K + K'. The
following is classical (see Marcus and Pisier [4], page 16).

LEMMA 4.
|K]|
i N(K,A) > ————.
(l) ( > ) = |A n K/l
|K"|
ii A-A e
(ll) N(K’ ) < |A N Kll

We now fix n and w € Q,,. For convenience, we set C, = B,, ,, , for k < n and
C, = B, , for k > n, so that we have |C,| > |B,|/2 for k > 0. It follows from
Lemma 4 that we have

2Kll
—l———lN(K,dX,2‘3k),

N(K,C,-C,) <
( k ) K|
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so that
(3.4) Z 2‘3klog+logN(K,Ck— C.) .<_L(K)(1 +J(dX)),
k>0

where L(K ) depends only on K. Actually, if K = G, we have |[K”|/|K| = 1, so
that in this case L(K) is a universal constant (this is the only place where the
constants involved in the proof depend on K).

The relation (3.2) will follow from (3.4) by the standard chaining argument
and a proper deviation inequality. The following, again, is standard.

LEMMA 5. Consider a sequence (a;) such that |a;|* < a/i fori > 1. Let (¢;)
be a Bernoulli sequence. Then for u > 4a,

A

where b =Y, _la,|*.

4a

ga;| =0+ u
¥ ea>b

i>1

u
< exp(—exp—),

Proor. There is no loss of generality to assume that the sequence (|a;|); ., is
nonincreasing. Let 7 = exp(u/2a). Let p = max(l, 7). We have ¥, _,_,la,| <
alog 7 < u/2. Thus

7
by the standard sub-Gaussian inequality [let us recall that this inequality is a
consequence of Chebyshev’s inequality and the elementary fact that Eexp ¢,A <
exp(N*/2)]. Now, £, la|® < a’%,;. 1/i® < a®/(r — 1). Since u/2a > 2, we have

u?/ia®(r — 1) > exp(u/4a). This completes the proof. O

Z £a;

i>1

Z £;a;

i>p

zb+u)sP(

> u/2) < exp(—uz/8 > |ai|2)

i>p

COROLLARY 6. Ifse€t+ C, — C,, then for all u > 0,

P(| L 15 (")) (@) (G(0)(8) = X(w)(0) | 2 U(e) by + u))

(3.5)
< 2exp(—exp 2%*~%u),

where b, = min(4(1 + n), 92n+3-3k)
PrOOF. We observe that, since Y;(w") is a character, the sets C, are symmet-

ric, i.e., s € C, if and only if —s € C,. It follows that C, ~ C, = C, + C,.
Hence, it suffices to prove that if s € ¢ + C,, we have

Pwl(

T T (@)e ()0 (@) (5(0)(5) = T(@)(8))| 2 $U(w")(B, + u)

Jj=1

< exp( —exp2%*~6u).
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We observe that the left-hand side is bounded by

2|

and that |w; (w)l = 1. We observe that |Y(w)(s) — Y(w)(#)| = |[Y(w)(s — ¢) —

1| and that since s — t € C,, the sum of "the first griin(n, £) largest terms of the
sequence | Y(w)(s — £) — 1|/j is less than or equal to b, /2 [there we use the fact
that |Y(w)(s —t)—1|/j < 2/7]. The result then follows from Lemma 5, used
with [ = 2mn% %) and u/2 instead of u. O

% J e @) ()(5()(s) ~ (e)(0)] 2 10+ u))

j=1

We note that the series b, has a sum less than or equal to Ln?, for some
number L independent of n. Then (3.2) follows from (3.4) and (3.5) by the
standard chaining argument, that we sketch now.

We fix «” and we set, for t € T,

Z,=U(e")"" Zl1“,-‘1(w")ej(w')w,-(w)Y,-(w)(t),
Jj=
so that by (3.5) we have,if s € t + C, — C,,
(3.6) P.(Z,— Z) = b, + u) < 2exp(—exp2%*~u).

For k > 0, consider a finite set N, C K such that card N, = N(K,C;, — C})
and K ¢ N, + C, — C,. For each t € K, we pick ¢,(¢) € Ny such that ¢ — ¢,(¢) €
C, — C,. Fix m > 0. For ¢t € N,,, we set t,, = t and by decreasing induction we
define ¢, = ¢4(¢;,,) for 0 < & < m. Since

t—to= Y ti—t= X bt~ dpy(ty)

O<k<m O<k<m

we have, letting z, = log™ logcard N,

PlateN,|1z,-2)> Y b,_,+ u( y 2'3k+9zk))
k>1 k=1

<Y P(EI tE Ny |1Z,—Zy, (ol Zbpr + u2‘3k+92k)
k=1

< Y 2card N,exp(—exp uz,)
k=1

by (3.6). Using (3.4) this implies (3.2) by a simple computation, letting m — 0.0

REFERENCES

[1] LEpouX, M. and TALAGRAND, M. (1989). Comparison theorems, random geometry and some
limit theorems for empirical processes. Ann. Probab. 17 596-631.

[2] LEPAGE, R., WOODROOFE, M. and ZINN, J. (1981). Convergence to a stable distribution via order
statistics. Ann Probab. 9 624-632.



1-STABLE STATIONARY PROCESSES 91

[8] MaRrcus, M. B. (1987). é-radial processes and random Fourier series. Mem. Amer. Math. Soc.
368.

[4] MaRcus, M. B. and PISIER, G. (1981). Random Fourier Series with Applications to Harmonic
Analysis. Ann. of Math. Studies 101. Princeton Univ. Press, Princeton, N.J.

[5] Marcus, M. B. and PIsIER, G. (1982). Characterization of almost surely continuous p-stable
random Fourier series and strongly stationary processes. Acta Math. 152 245-301.

[6] PISIER, G. (1986). Probabilistic methods in the geometry of Banach spaces. Probability and
Analysis. Lecture Notes in Math. 1206 167-241. Springer, Berlin.

EQUIPE D’ANALYSE, TOUR 46 DEPARTMENT OF MATHEMATICS
U.A. AU C.N.R.S. N° 754 THE OHIO STATE UNIVERSITY
UNIVERSITE PARIs VI 231 WEST 18TH AVENUE

4 PLACE JUSSIEU CoLuMBUS, OHIO 43210

75230 Paris CEDEX 05

FRANCE



