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The invariant density of diffusion processes which are small random
perturbations of dynamical systems can be expanded in W.K.B. type, as the
random effect disappears, in the set in which the Freidlin—Wentzell
quasipotential V(-) is of C*-class and each coefficient which appears in the
expansion is of C*-class. ‘

1. Introduction. Let X®(¢,x),¢ > 0, x € R%, £ > 0 be the solution of the
following stochastic differential equation:
dXe(t,x) = b(X*(t,x)) dt + e/2dW(t),
X¢(0,x) = x,
where b(-): R% — R? is Lipschitz continuous and W(¢) is a d-dimensional
Wiener process. The study of such stochastic processes is originally due to
Freidlin and Wentzell [cf. Freidlin and Wentzell (1984)].

Let p®(x) be the invariant density of diffusion processes X¢(¢, x), that is,
the solution of

(1.1)

eApc(x)/2 — div(b(x)pc(x)) =0 in R,

[ pr(x)de=1,
Rd

where A is the d-dimensional Laplacian. In our previous work, we proved the
following theorem by way of Malliavin calculus [cf. Watanabe (1987)].

(1.2)

THEOREM 1.1 [Mikami (1988), Corollary 1.6]. Suppose the following condi-
tions hold: ‘

(A1) b(:) = (BI(-)Z_, is of C*-class in a small neighborhood of o € R?.
(A.2) b(o) =o,lim,_, X°t,x) =o for all x € R? and

d d
sup{ Y. (db'(0)/dx;)e;e;| X (e,)% = 1} <0.
i,j=1 i1

(A.3) There exist €5, R > 0 and a nonnegative C>-function w(x) which
tends to » as |x| — «, so that

eAw(x)/2 + (b(x),Vw(x)) < -1, |x| =R, e <eg,.
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Then there exist continuous functions R,(+), k > 0, and ¢ > 0 such that

Ré(x) — Y e'R)(x)|e" ™™D < +o,
i=0

(1.3) lim sup

>0

for all n > 0, uniformly for all |x| < c¢. Here we put

(1.4) Re(x) = e?/?p*(x)exp(V(x)/e),

(1.5) V(x) = inf{foTlfﬁ(t) = b(e(2))1* dt/2; (0) =0, o(T) =x,T > 0}-

ReEmArRk 1.1. Although we assumed the Hélder continuity of the first
derivatives of 5(:) on R? in our previous work just to use Theorem 3 of Day
(1988), we do not have to assume it. In fact, in his paper, Day used only the
fact that the first derivatives of b(-) are Hélder continuous on a bounded
domain which contains the set {X°(, x); ¢ > 0, x € D}, where D is a bounded
domain under consideration. In our case, this condition is satisfied by (A.1)
and (A.2), since we take a sufficiently small neighborhood of 0 as D.

In this paper we prove the following results.

THEOREM 1.2. Under assumptions (A.1)-(A.3), the functions R,(*), k > 0,
are of C*-class in some neighborhood of o € R?.

Before we state another result, we give an additional assumption.
(A.4.r) b(-)is of C-class in the set Q" = {x € R¥|V(x) < r}.

THEOREM 1.3. Suppose that (A.2) and (A.3) hold. Then for any r > 0 for
which (A.4.r) holds, there exist C*-functions R,(-), k > 0, such that, for any
compact subset K of the set Q7 = {x € QO7|V is infinitely differentiable at x} and
anyn > 0,

n
(1.6) limsup [ sup|R°(x) — Y e'R,(x)le""* V| < +oo
e—0 xeK i=0

and that, for all k > 0,
(1.7)  (VRu(x), —b*(x)) + F(x)Ry(x) — AR, _((x)/2 =0, x € Q,

where we put R_(x) = 0, F(x) = AV(x) /2 + div(b(x)) and b*(x) = —VV(x) —
b(x). Moreover,

1/2

(1.8) E((0) = {(2m) “ID*V(o)I} ",

where |D?*V(0)| denotes the determinant of the positive definite matrix
D*V(o) = (8*V(0)/dx;0x;)¢ ;_; [cf. Day (1987), page 131, (4.2)].
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REMARK 1.2. Equation (1.7) can be obtained from the formal argument
0 = (VR*(x), — b*(x)) + F(x)R*(x) — e AR*(x) /2

(19  _ ioai{<VRi(x)’ —b*(x)) + F(x)R,(x) — AR;_(x)/2},

where we put R°(x) = L7_,&'R(x).

REMARK 1.3. (1.8) was obtained by Sheu by a method different from ours,
under stronger assumptions than ours [cf. Sheu (1986)].

As a corollary of Theorem 1.3, we get the following result about the system
of first-order partial differential equations. Before we state it, we give two
other assumptions.

(A.2) b(o) =0 and

d d
sup{ X (9b'(0)/dx;)ee;| X (e;)° = 1} <0.
i,j-1 i-1

(A5r) lim,_, X%t x) =0 for all x € Q.

CoroLLARY 1.4.  Suppose that (A.2') holds. Then for any r > 0 for which
(A4.r) and (A.5.r) hold and any sequence {C,);_ _,, there exist unique C*-
functions R,(-), k > —1, (R_(x) = C_,), which satisfy (1.7) and

(1.10) R,(0)=C,, k> -1.
- In particular, {R,()¥;_, is given by

R,(x) =C, exp(—j:F(z(s,x)) ds)
(1.11)
+/mARk_1(z(s,x))exp(—[sF(z(u,x)) du) ds/2,
0 0
forx € QL, k > 0. Here 2(t,x), t > 0, x € QO is the solution of
2(t,x) = b*(2(t,x)),
2(0,x) =x

(see Proposition 2.2). Moreover R,(-) can be represented as a linear combina-
tion of Ro(*),..., R,(*) fork > 0.

(1.12)

ReEMARK 1.4. When n = 0, the assumptions can be weakened [cf. Day
(1987), Theorem 3.

REMARK 1.5. Q in Theorem 1.3 exists [see Proposition 2.1(a)].
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REMARK 1.6. Assume that (A.2)-(A.3) hold and that b(-) is of C*-class in
R? Let D be a bounded domain in R¢ which contains o. Put T =
{x € dD|V(x) = min{V(y)|y € dD}}. If the exterior sphere condition is satisfied
on I, V is of C*-class in some neighborhood of T [cf. Day (1986), Theorem].
Put 73 = inf{t > 0|X°(¢, x) & D}. Let n, denote the normalized outer normal
at y €dD. Let f: dD — R be continuous. Denote by @°(dx) the measure on
dD defined by ‘

(113)  Q(de) = (e b(EDP (x) i [ (0, b()p° () .

If the inequality

[ fOVR(XA(5) = dy) = [ 1)@ ()| <0

aD 9D

holds for x € D, then we can obtain the asymptotic expansion of the exit
measure P (X°(7§) € dy) on 9D [cf. Day (1984) and (1987)]. But we have not

proven (1.14), although (1.14) holds when d = 1 [cf. Freidlin and Wentzell
(1984), page 121].

(1.14) limsup ¢ log
e—0

In Section 2 we give the propositions which are necessary for the proof of
our results. In Section 3 we prove the main results.

2. Propositions. In this section we state propositions which are neces-
sary for the proof of our results.

ProprosiTION 2.1 [Day and Darden (1985), Theorems 2 and 6 and Corollary
7]. Suppose that (A.2") holds. Then for any r > 0 for which (A.4.r) and
_ (A.5.r) hold:

(@) Q in Theorem 1.3 exists, contains o and is a dense subdomain of the

set (7.
(b) For any x € Q., there exists a unique function ¢(t), —» <t <0, such
that ¢(0) = x, lim,_, __, ¢(¢) = 0, ¢(¢) € QL, —» <t <0, and

(2.1) V(x) = [°16(t) ~ ble(t) dt/2,
(22) ¢(1) = b*(p(1)).

ProprosiTION 2.2 [cf. Hale (1969)]. Suppose that (A.2') holds. Then for any
r >0 for which (A.4.r) and (A.5.r) hold, any n = 0 and any compact sub-
set K of Q, there exist A, a, =a(n,K) >0 and compact set A = A(K),
K cA c QL such that

l0"2(t,x) /9x;, - 9x; | < a, exp(—At),
i1,--,i,=1,...,d,t=0,x €K,
(2.4) ‘ z(t,x) €A, t>0,xe€K.

(2.3)
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Proor. (When n = 0.) Take r, > 0 so that V is of C*-class in the set {x;
|x| < 2r,}. Since

z(t,x) = {exp(Bt)}x

(25) + [{exp( B(t — )} (b*(2(s, %)) — Be(s, %)) ds,

(2.6) l2(¢, x)| < |x|exp(— (21 — Cy)t) < roexp(—At), |x| < r(;, t>0,

for r, sufficiently small, where B = (3b*(0)’ /9% )¢ i1
C, = rod? max{|82b*(x)i/6xj 0,36, j,k=1,...,d, x| < ro}/2

and 2A > 0 is determined by the real parts of the eigenvalues of
(3b%(0)/9x;)¢ ;_; [cf. Day (1987), (4.2)].

Before we proceed further, we prove (2.4).

Proor oF (2.4). Take T = T(K) > 0 such that for all x € K, |2(¢, x)| <
ro for some t €[0,T] [cf. Freidlin and Wentzell (1984), page 110,
Lemma 2.2]. Suppose that there exist x, € K and ¢, € [0,T] such that
dist(z(¢,, x,), 9QL) — 0 as n — «. Then there exist x € K, |y| < ry, t €[0,T]
and a convergent subsequence {x, ), _; such that, as n’ - +o,

(2.7) sup |z(s, x,) —2(s,x)| = 0,
0<s<T

(2'8) Z(T’xn’) —>z(T,x) =Y,

(29) z(tn’, xn’) - Z(t, x) = 89;

[cf. Freidlin and Wentzell (1984), Chapter 4], which is a contradiction to
Proposition 2.1(b) and completes the proof of (2.4). O

From (2.4), (2.3) holds when n = 0.

(When n = 1.) Put B(x) = (8b*(x)'/dx;)¢ ;_;. Denote by e, the d-dimen-
sional vector whose i-component =1 and j-component =0 for j # i,
i=1,...,d. Let Y(¢,x) = (Y(¢, x)ij)gj=1 be the solution of
Y(t,x) = B(2(t,%))Y(t,x),

Y (0, x) = identity matrix.
Then in the same way as in the case in which n = 0 [take B(x) instead of
b*(x)l,

(2.10)

d 1/2
Y(t,x);; 2 < exp( —2At)exp(2¢,t
(211) (i,:%l( J) ) ( ) (‘ 0 )
< exp(—At), x| <ry,t>0,
for: r, sufficiently small. Since 9z(¢, x)/dx; = Y(2(¢t,x)e;, i =1,...,d, t > 0,
|x| < rO,

(2.12) |9z(t, x)/9x;| < exp(—At), i=1,...,d,t >0, |x| <ry,
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which implies that (2.3) holds when n = 1, since
d
az(t + T’x)/axi = Z az(t’y)/ayi|y=z(T,x) azj(T’x)/axi,
(2.13) Jj=1
i=1,...,d,t>0,x €K,
(2.14) sup{|azi(T,x)/3xj|; i, j=1,...,d,x K} < 4o

[from (2.4) and (2.10)].

(When n > 2.) Inductively we can show that, for any n > 2, there exist
functions F;  ; \(s,x), which is a polynomial of derivatives of z(¢, x) with
respect to x up to (n — 1th order of degree greater than or equal to 2 with
coefficients 9*B(z(¢, x))/dz; -9z, k=1,.. -1, jp.-dr=1,...,d
[from (2.10)], and C,, > 0 such that

"z(t,x)/dx; --- dx, = fB(z(s,x))6”z(s,x)/3xil...8xin ds
(2.15)

(216) 8"z(t,x)/6'xi1 axi,,= j(;Y(t7x)Y(s’x)_1Eil ..... in)(s7'x) d87
\F,,....i )t x)| < C, exp(—2At),
(2.17) . .
i, =1,...,d,t >0, |x| <ry.
Hence, forall n > 2,i,,...,i,=1,...,d,t > 0, |x| <r,
(2.18) l0"2(¢, x) /ox; -+ 0x; | < C, A" exp(—At),

which implies (2.3) in the same way as in the case in which » = 1. O

3. Proof of main results. In this section we prove our results. By
Theorem 3 of Day (1988), we can assume that b(-): R? — R?¢ has bounded
derivatives of all orders, which implies the smoothness of p®(-).

Proor oF THEOREM 1.2. Take r, in the proof of Proposition 2.2 small
enough so that 3r;, < ¢, where ¢ is a constant in Theorem 1.1. We change b*
outside the set {x; |x| < 2r,} so that b* has bounded derivatives of all orders.
Let z°(¢t,x), t > 0, |x| < ry be the solution of the following stochastic differen-
tial equation:

dz°(¢,x) = b*(2°(¢,x)) dt + £'/2dW(t),
z2°(0,x) = x.

Put o = inf{t > 0; |2°(¢, x)| = 2r,).
Suppose that ro(*),..., R, _{+) are C*-solutions of (1.7) in {x; |x| < r,}. Put

(3.1)

n—1
(3.2) R:(x) = | R°(x) — goaiRi(x) e
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Then from (1.7) and (1.9), by the It6 formula,

( )R ‘(x) = [ t(25(a A T))exp{ fUATF(zE(s)) ds}}
3.3
+E [IUAT(ARn_l(ze(s))/Z)exp{—j:F(ze(u)) du} ds].

Let ¢ = 0. Then for |x| < r,

R, (x) = Rn(z(T,x))exp{—j;)TF(z(s,x)) ds}
(3.4)
+fOT(AR,,_1(z(s,x))/2)exp{—fosF(z(u,x)) du} ds

Put x = 0 in (3.4). Then we have

(3.5) AR, (o) =0

since, from Day [(1987), page 132],

(3.6) F(o) =0.

Therefore, we have

(3.7) [F(2(s,2))ds + [TAR, _1(2(s, %))l ds < +e,
0 0

since

(3.8) f IF(2(s,x))|ds < sup |VF(y)|f l2(s, x)| ds,

lyI<ro

Lm|ARn_1(z(s,x))|ds
(3.9) d 1/2 .
< sup( > Ia"'Rn_l(y)/ay?ayjlz) fOIZ(s,x)IdS-

lyl<rg \i,j=1
Let T — o« in (3.4). Then for |x| < r,

R, (x) = Rn(o)exp{—f:F(z(s,x)) ds}

3.10 ) )
(3.10) of (ARn_l(z(s,x))/2)exp{—f0F(z(u,x))du}ds

and R,(-)is a C*-solution of (1.7) in {x; |x| < r} from Proposition 2.2 and the
mean value theorem. O

Proor oF THEOREM 1.3. First we prove asymptotic expansion of R°(-). Let
K be a compact subset of (L, A be the corresponding compact set in
Proposition 2.2, T = max{inf{t > 0 lz(t, x)| <ro/2};x € K}and 7 = inf{iT A £;
dist(2°(¢, x), A) > dist(A, Q%) /2}. Then in the same way as Day [(1987),
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Section 5] there exist 0 < § < (r,/4) A (dist(A, Q%) /2) and C' > 0 such that
for all x € K,

Re(x) = Ex[Re(ze(T))exp{—[(:F(ze(s)) ds}]
- B R (D) exp{ - [TF(4() )

(3.11)

sup |2°(¢) —z(t,x)| < 6]
T

0<t<
+ O(exp(—C’'/e)) as £—0.

If we modify V(-) outside Q7 so that V(-) has bounded derivatives of all
orders, then there exist z*(¢,x), # > 0, T > t > 0, such that for any p > 0 and

n >0,
4
]8—(n+1%

xeK,OstsT}

2n+1

lim sup E [|z°(t) — Y &'/%2i(t,x)
i=0

e—>0

sup

(3.12)

< 4o

[cf. Freidlin and Wentzell (1984), page 56, Theorem 2.2]. This, together with
Theorem 1.2, completes the proof of the asymptotic expansion of R(-).

In fact, if sup, _, . 7 12°(¢) — 2(¢, x)| < 8, then [2°(T)| < 3r,/4 and, for any
n>0,

Ex[RE(zs(T))exp{—fOTF(zE(s)) ds}; sup |2°(¢) —2(t,x)| < 6]

0<t<T

n 2n+1 k
—Ex[ L R((T)) T ([[F(x(,)) ~ F(a<(s))] ds| (k)"

k=0

Xexp{—foTF(z(s,x)) ds}; supleE(t) —2(¢t,x)| < 8}

O<t<

n

R(2) — ¥ e*Ry(2)

k=0

+ sup{ki IR,(2)]; |2] < ro}exp(3T sup{|F(z)|; z € RY})
-0

(3.13)

< sup exp(T sup{|F(z)|; z € R%})

|z|<rg

X T2m*D sup E[[F(2°(1)) — F(2(¢,2))*" 7] ({2(n + 1)}1) "
0<t<T

— 0(8n+1)
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and, forany i,j =0,...,2n + 1,

Ex[Ri(ze(T))(fOT[F(Z(s,x)) - F(2°(s))] dS)j;

sup |z°(¢) —z(¢,x)| < 6}
0<t<T

2n+1 d *R.(2(T, x .
2|5 gyt oy PR iy ayyix
k=0 i ig=1 0%ttt 0z,

x(2(T) - Z(T,x))i"(foT[F(Z(s,x)) - F(2°(s))] dS)j]

<({2(n + 1)}!)_1Sup{|62(n+l)Ri(z)/azil e Bz

i2(n+l)|;
(3.14) 2] < To»ritse rigmeny =1r-.,d]

« dz("“)Exhze(T) - (T, x)lz(n+1)] (2T sup{|F(z)|; z e Rd})j

+ 2(n + 1)d*"*+b
><sup{|<9kRi(z)/6zi1 e 9z, 05 |2l <o,

0<k<2n+1,iy,...,i,=1,...,d}

2n+1

X (2T sup{|F(2)|; z € R?Y})’ V (E,[|z°(T) - 2(T, x)|*™])
m=0

1/2

0<t<T

X(Px( sup |2°(T) — 2(T,x)| > 6))1/2

- 0(eY),

uniformly with respect to x € K, as ¢ — 0. Then we can use (3.5)1i§12Freidlin
and Wentzell [(1984), page 61]. Since R°(x) = R“*"?(x) = R® ¥(x), the
coefficients of odd power of £'/2 equal O [cf. Freidlin and Wentzell (1984), page
61].

Smoothness can be proven by induction from Theorem 1.2, (3.4) and
Proposition 2.2.
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(1.7) can be proven in the following way. From (3.10),

R,(2(t,x)) = Rn(o)exp{—fmF(z(s,x)) ds}
(3.15) t

+fm(ARn_1(z(s,x))/2)exp{—./;SF(z(u,x)) d_u} ds.

Differentiate both sides of (3.15) with respect to ¢ and put ¢ = 0. Then we
have (1.7).
At last we prove (1.8). For ry, > 8 > 0,

1= fdes(x) dx

(3.16) - '{xp&ps(x) dx + 2] < 5/12R€(x)£_d/2 exp(—V(x)/¢e) dx

f , R*(x)e™ %% exp(—V(x)/¢) dx
e5/12<|x|<8

= (1) +(2) + (3).
Then (1) = (1)°* - 0 as £ — 0 [cf. Freidlin and Wentzell (1984), page 131].

3) =) > 0as ¢ - 0, since

e—d/2

(3) < sup R°(x)

x| <& /:-:5/155|x|58

xexp{ —(V(x) — V(o) — (VV(0),x)) /e} dx
< sup R*(x)C(8)e /2

|x|<é
x exp(—inf{( D?V(y)x, x)/¢; x| = £/, |y| < 8}/2)
< sup R¢(x)C(8)e~?/2

lx|<8

Xexp(—inf{(DzV(y)z,z); 2 =1, |y| < 6}8‘1/6/2)—>0

(3.17)

as &£—0,

if & is sufficiently small, because D%V(o0) is positive definite. Here C(8) denotes
the volume of the set {x; |x| < 8}. With respect to (2) = (2)¢, we have

(3.18) limsup (2)° = Ro(0){(2m)ID2V(0) 1) 7,
-0
(3:19) limin(2)° > R (0){(2m) 1D*V(0) 1) "

Since (1) + (2) + (3) = 1, we have (1.8).
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(3.18) can be proven in the following way:

(2) < sup Re(x)/ g~/2

|x|65/12 |x|<g5/12

xexp{—(V(x) — V(o) = (VV(0),x))/e} dx

< sup Re(x)s‘dﬂf dx exp{—(D?*V(0)x, x)/2¢}

|x| <g5/12 la/el/?|<e=1/12
X exp(d® sup{|0°V(2) /02, 0z; 02, ;
lz] <52 i j,k=1,..., d}lx/s4/12|2/3!)

(3.20) :
< sup Re(x){(2m)D*V(o) ") *{(2m) D2V (o)}
|| <e5/12
X flyl<£_1/12exp{— (D2V(0)y,y)/2} dy

X exp(d3 sup{|0°V(2) /9z; 0z; 0z,
ol <212,4, 7,k =1,...,d}"/*/3))
> Ro(0){(2m)4D?V(0)|"1}'"* as & - 0.
(3.19) can be proven in the same way. O

REMARK 3.1. Put x =0 in (3.4) with n = 0. Then we get (3.6), since
R (o) # 0 from (1.8).

REMARK 3.2. z(+,x), i > 0, in (3.12) depends only on the derivatives of b*
in the curve {2(¢, x)}, . o

Proor oF CorOLLARY 1.4. First we prove uniqueness.
Uniqueness. Let {R,(-)};__, be C*-solutions of (1.7) and (1.10). Then for
x # 0, (3.4) holds since

Ru(2(t,2)) = Bu(x) = [(VRi(2(s,)), #(s, %)) ds
- —/Ot<w%k(z<s,x)),VV<z<s,x)) +8(2(s, x))) ds
=/(:F(z(s,x))1§k(z(3,x)).ds

—fotARk_l(z(s, x)) ds/2.

Let ¢ = « in (3.4). Then we get (1.11) since lim, ,, 2(¢, x) = o, which implies
the uniqueness.
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_Existence. We define {R,()¥__, by (1.10) and (1.11). As we will see later,
{R,(-));- _, is well defined. Change b(-) outside " so that (A.2) and (A.3) are
satisfied.

By induction, we can show that for any n > 0, there exist a},..., a” such
that
- n
(3.21) B (x)= ¥ ajRy(x), xeqr
k=1

which completes the proof. In fact,
(3.22) Ryo(x) = C4R,(0) 'Ry(x) from (3.10).
Suppose that

(3.23) R (x)= Y a?R,(x) forsome a?, k=0,...,n.
E=0

Then from (1.11) and (3.10), we have
Rn+1(x) = Cn+1R0(0)_1Ro(x)

+ kéOaZLwARk(z(s,x))exp(—fOsF(z(u, x)) du) ds/2

k}i:,oa’,;{RkH(o)exp(—j(.)wF(z(s, x)) ds)

+/:ARk(z(s,x))exp(—j:F(z(u,x)) du) ds/2}

(3.24)
#{Co 1 Ro(0) ™ = T aiRyy (o) Rol0) | Rof)
k=0
= {Cn+1R0(O)_1 - Z a',:RkH(o)RO(o)_I}RO(x)
k=0
n+1
+ Y ai_,R,(x). O
k=1 ,
REMARK 3.3. From the above proof, for a%, 2 = 0, ..., n, we have
(3.25) 2yt = (c > a',:Rk<o))Ro(o>—1,
k=0 .
(3.26) aitl=at_=al*'"t  n+12k=>1.

REMARK 3.4. If we can prove, by the analytic method, that AR,(0) = 0
provided that R(-),..., R,(-) are C*-solutions of (1.7), & > 0, then Corollary
1.4 can be proven by the purely analytic method. The fact that AR,(0) = 0,
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k > 0, was obtained from the asymptotic expansion of R*(-) and its represen-
tation by way of the It6 formula.
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