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POLAR SETS AND MULTIPLE POINTS FOR
SUPER-BROWNIAN MOTION2

By EpwiN PERKINS

University of British Columbia

We study the closed support of the measure-valued diffusions
of Watanabe and Dawson. When the spatial motion is Brownian, sufficient
conditions involving capacity are given for a fixed set to be hit by the
k-multiple points of the support process. The conditions are close to the
necessary conditions found by Dawson, Iscoe and Perkins and lead to
necessary and sufficient conditions for the existence of k-multiple points.
When the spatial motion is a symmetric stable process of index a < 2, the
closed support is shown to be R? or &.

1. Introduction and statement of results. Let M (R?) be the space of
finite measures on R? with the topology of weak convergence and write m(¢)
for [¢(x) dm(x). Let Y, denote a right-continuous R%valued Lévy process on
canonical path space (Q° & 9), starting at x under the probability PZ. The
associated super-Lévy process (or critical multiplicative measure-valued
branching Markov process!), X,, is an My (R?)-valued diffusion. More pre-
cisely, if A denotes the generator of Y on its domain, 2(A), in the Banach
space C(R9) of continuous functions on R? with a finite limit at o, then for
each m, € Mp(R?) there is a unique (in law) continuous My(R¢)-valued
strong Markov process X such that for any ¢ € 2(A),

X,(¢) =mo(9) + [ ‘X,(Ad) ds + Z,(4),

(1.1)  Z/(¢) is a continuous % *-martingale with square function
2y, = [X(#*)ds
0

[see, e.g., Ethier and Kurtz (1986), page 406]. Here {#;%} is the smallest
filtration satisfying the usual conditions and for which X, € #%. Let @™°
denote the law of X on the space Q = C([0,%), Mz(R?)) of continuous mea-
sure-valued paths and let {#,} denote the canonical right-continuous filtration
on this space of paths completed with respect to {@™°: m, € My} as in
Blumenthal and Getoor (1968).

X is shown to be the weak limit of a sequence of discrete measure-valued
processes in Watanabe (1968) [see also Ethier and Kurtz (1986), Chapter 9].
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Consider p particles starting at 0 and following independent copies of Y on
[0,u™1). At ¢ = u~! each particle dies or splits into two particles indepen-
dently of each other. The new generation of particles then follow i.i.d. copies of
Y on [p™1 2u~1). This scheme of alternating critical (mean 0) reproduction
and Lévy migration then continues. If mass u ! is assigned to the location of
each particle at time ¢, the resulting measure-valued processes converge
weakly as u — o to the above process X with m, = §,. More generally, if
K(u) particles start at xf,...,xf and p 'LK45,. >, m, as p — o then
one obtains the process X in (1.1). The branching mechanism gives rise to the
martingale term in (1.1) and the spatial migrations give rise to the drift term,
(X (Ad)ds, in (1.1).

Assume now that X is a super-Brownian motion, that is, Y is a Brownian
motion. It is known [Perkins (1988)] that for d > 3 and all ¢ > 0, X, dis-
tributes its mass uniformly (up to multiplicative constants) over a random
Borel support according to the deterministic Hausdorff measure function
¢ — m, when ¢(x) = x%loglog1/x. This result is extended to the canonical
closed support in Perkins (1989). In some sense this reduces the study of X, to
the study of its (closed) support process. I.et S(») denote the closed support of
v € Mp(R%). The detailed study of the sample paths of {S(X,): ¢ > 0}, initiated
in Iscoe (1988) and Dawson, Iscoe and Perkins (1989) [hereafter abbreviated
(D.I.P.)] is continued here. In (D.I.P.) necessary conditions were given for a
fixed set to be “hit” by S(X,) for some ¢ > 0 or, more generally to be “hit by
the k-multiple points of S(X,).” In this work we obtain corresponding suffi-
cient conditions which are very close to the above necessary conditions. These
results together with those in (D.I.P.) give necessary and sufficient conditions
for the existence of “k-multiple points’ for super-Brownian motion and allow
us to compute the Hausdorff dimension of the ‘‘k-multiple points.”

We introduce some terminology to state these results precisely. Write S, for
the closed support S(X,) of X,.

DerFiNiTION. If 0 <s <t <o, R(s,t]) = R(s,t) = cl(U, ., .,S,) is the
(closed) range of X on [s,t] and R = U;. ,R(8, ) is the range of X. The set
of k-multiple points of X is

k
R, = U{ N R(I,): I, ..., I, disjoint compact intervals in (0, ®) }.
j=1

Clearly, R = R,. A c R? is a polar set iff A N R = @Q™o-a.s. for any m, €
M,(R?), and A is polar for R, iff AN R, = IQ™-as. for any m, € M(R?).
We say X(w) hits A iff A N R(w) # &. Note that since X, = m,, is finite, the
extinction time of X, { = inf{#: X,(R%) = 0} is finite @™°-a.s.

NOTATION. #'= {¢p € C(0, ], R): ¢(0) =0, ¢ nondecreasing and strictly
increasing near 0}. If ¢ € # and A c R?, ¢ — m(A) denotes the Hausdorff
¢-measure of A and dim A is the Hausdorff dimension of A [see Rogers
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(1970)]. Let
B ifB>0,r=0,
hB(r) _ r » B r>
(1+1log*1/r) ifB=0,r=>0.

If d < 3, X hits points [Sugitani (1987) or (D.I.P.), Theorem 1.3]. If d > 4 a
necessary condition for X to hit a set was given in (D.I.P.). Until otherwise
indicated Q™° denotes the law of super-Brownian motion starting at m.

THEOREM A [(D.LP.), Theorem 1.5]. Letd >4, k€N, AcCR? and m, €
M;R?). If " (ANR, + D) >0, then (h,_,)* — m(A) > 0. In particular,
h,_4 — m(A) = 0 is sufficient for A to be polar.

_ The proof was based on an asymptotic estimate for @™°(B(x,e) N
R(5,x) #+ &) as € | 0, where B(x, ¢) is the open ball of radius ¢ centered at x.
This estimate [with considerable additional effort if £ = d/(d — 4)] gives [(1.8)
of (D.I.P.)]

(1.2) dmR, <d-k(d—-4) Qmo-as. d=4,keN,

where dim R, < 0 indicates R, = &. Hence we have Theorem B.

TueoreM B [(D.I.P.), Theorem 1.6]. Ifd > 4, I_Bk =@ fork>=d/(d—-4)
Q™o-a.s. for all my € My(R%).

Our sufficient condition for X to hit a set involves capacity. If 1/g € %, A
is an analytic subset of R? and u € M,(R%) let

(ondg = [[8ly = =) du(x) du(y),
I(g)(A) = inf{(u,u),: u a probability supported by A}.

The g-capacity of A is then given by C(g)(A) = I(g)(A)~! [see, e.g., Hawkes
(1979), Section 3]. If A is compact then [see Taylor (1961), Lemma A]

I(g)(A)
n n
(1.3) = liminf{n(n -1y Y glx = xp):xg,.., X, EA}.
n—o i=1i'=1,i#i
Let

- -B if >0

=h 1_]r 1 )
8s(r) o(r) {1+log+ 1/r ifg=0.

The following partial converse to Theorem A is proved in Section 5.

. THEOREM 1.1. Let d>4; k€N and m, be a nonzero measure in
Mg(R%). If A is an analytic subset of R? such that C((g,_y*)A) > 0, then
Q™(A N R, # D) > 0. In particular, C(g,;_,(A) = 0 is necessary for A to be
polar.
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In fact Theorem 5.8 gives a lower bound for @™(A N R, # @) in terms of
C(gy_)"NA).

The Hausdorff measure condition in Theorem A and the capacity condition
of Theorem 1.1 are close but not equivalent. One has [see, e.g., Taylor (1961),

Theorems 1 and 2]
C(g;_)")NA) > 0 implies (h,;_)"* — m(A) = oo,

1 —1—¢
(hy_*log* - — m(A) > 0 for some ¢ > 0 implies
C(gy_)"NA) > 0, d >4,
and
1 —1-¢
(ho)k(logJr log* ;) —m(A)>0 for some &>0

implies C((g,)*)(A) > 0.

In general, this is all that can be said [Taylor (1961), Section 4]. Our conjecture
is

(1.4) C((84-0)")(A) >0 Q™(ANE,)>0, d=4,m,#0.

The state of affairs regarding polar sets for super-Brownian motion is there-
fore similar to that for various multiparameter processes [Dynkin (1981),
Evans (1987) and Le Gall, Rosen and Shieh (1989)] prior to the appearance of
Fitzsimmons and Salisbury (1988). In fact the methodology of Theorem 1.1
may also be used to prove similar results for a variety of multiparameter
processes, as was suggested to us by S. James Taylor.

THEOREM 1.2. Let Z(¢,t,) be a d-dimensional, two-parameter, a-stable
sheet [see Bass and Pyke (1984)] such that d > 2a. Let

M, = U{cl(Z(I)) n -+~ nel(Z(1})): Iy, ..., I, disjoint compact
rectangles in (0, 00)2}
be the set of k-multiple points for Z. If A is an analytic subset of R?, then
(1.5) C((84-24)")(A) > 0 implies P(M, N A # @) > 0.

Replace 2a by Na in the N-parameter case. Although we have been unable
to find (1.5) in the literature we will not present a proof for several reasons.
First, once the general approach is demonstrated in the derivation of Theorem
1.1, the proof becomes little more than a computational exercise (albeit a
rather long one). Second, our suspicion (recently confirmed by Loren Pitt) was
that the experts knew how to prove (1.5) but were really interested in the
conVerse. Finally, and most importantly, Fitzsimmons and Salisbury (1988)
have recently developed general techniques which, in addition to (1.5), prove
the elusive converse. Unfortunately, their elegant approach does not seem
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applicable to super-Brownian motion and so (1.4) remains a conjecture. A
handwritten proof of Theorem 1.2 is available from the author upon request.

In Section 5 we also use Theorem 1.1 to obtain the converse inequality to
(1.2) and hence obtain Theorem 1.3.

THEOREM 1.3. Ifd > 4, k € N and my(# 0) € My(R?), then
dmR,=d —k(d—-4) Qm™-a.s.,

where dimR, < 0 means R, = @. Hence R, # @ a.s. if k <d/(d — 4) and
R,=Da.s.ifk>d/(d - 4).

The study of k-multiple points was suggested to us by Robert Adler who
also proposed the study of a self-intersection local time (SILT) for X. Moti-
vated by Theorem 1.3, Dynkin (1988) constructed such a SILT and thus gave
another proof of the existence of k-multiple points if £ > d/(d — 4). In fact
Dynkin constructed a SILT for a more general class of superprocesses.

A more natural notion of X hitting A wouldbe A N S, # & for some ¢ > 0.
That is, one would replace R(s,?), R and R, with

R([s,t]) =R(s,t)= U S,, 0<s<t<w,

s<u<t

E= U S.

O<u<o

k
R, = {x:x € NS, forsome0 <¢ < --- <tk}.
i=1

In Section 4 we obtain estimates on R — R (Proposition 4.7 and Theorem 4.9)
which show Theorems 1.1 and 1.3 are also valid with R and R, in place of R
and R, (see Theorem 5.9). To do this, we study the discontinuities of
{S,:t > 0}.

Let #(R%) and Z(R?) denote the sets of compact and closed subsets of R,
respectively. If A, B are nonempty sets in #(R?) and x € R?, let d(x, A)
denote the distance from x to A and

pl(A7B) = sup d(xyB) A 1:
x€A

p(A: B) = pl(‘A: B) 4 pl(B: A)
Let p(¢, A) = 1if A+ @. p is the Hausdorff metric on F(R%) [or #(R?)]
[see Cutler (1984), Section 4, or Dugundji (1966), page 205]. The mapping
S: Mp(R?) - Z(R?) is Borel measurable [Cutler (1984), Theorem 4.4.1] and
hence so is its restriction to the measurable set

ME(R?) = {v € Mz(R?): S(v) compact}

as a mapping into #(R?).
Theorem 1.2 of (D.I.P.) shows that

(1.6)  {S,: ¢ > 0} is a right-continuous .¥(R?)-valued process Qmo-a.s.
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and the proof also gives
(1.7) {S,: t = 0} is a right-continuous #(R%)-valued process  @™°-a.s.

It is a little more convenient to work with .#(R%) and so (1.6) is extended as
follows in Section 4.

THEOREM 1.4. If m, € M (R?) then for @ ™-a.a. w:

(@) {S;: t> 0} is a #(R)- valued process having rzght-contznuous paths
with left-hands limits.

(b) S,_D 8, forallt> 0.

(© S,_— S is empty or a singleton for allt > 0.

Hence the countable set of discontinuities of {S,: ¢ > 0} occurs when an
isolated “colony”’ becomes extinct. The space-time set of these extinction
points forms a dense subset of the graph of S (see Theorem 4.8 for a precise
statement). It is easy to see that R, — R, is contained in the countable set of
spatial extinction points and hence Theorem 1.3 remains valid if R, is
replaced by R,. The extension of Theorem 1.1 takes a bit more work (see
Theorem 4.9).

The fact that S,_ is a singleton, which follows from Theorem 1.4(c), has
been proved independently by Liu (1988).

The situation for general super-Lévy processes is completely different from
the above. If Y is a symmetric stable process of index a € (0, 2), the proof of
Theorem 1.1 remains valid upon replacing d — 4 with d — 2a. In fact many of
the preliminary estimates are proved in this setting for future reference. The
problem is that Theorem A fails completely for a < 2. In fact S, =R?
or Jas.!

NoraTioN. Let v denote the Lévy measure of the underlying Lévy process
Y [see Fristedt (1974), page 248]. Let »® denote the k-fold convolution of v
with itself and let w,* u, denote the convolution of the measures u; and u,.

THEOREM 1.5. Assume Q™° denotes the law of the super-Lévy process
starting at m, € Mp(R?). Then

US(E®=«X,)=S8, Qm-a.s. forallt>O0.
E=0

The proof is given in Section 3. Hence the support process propagates
instantaneously to any points to which the underlying Lévy process can jump.
This should be contrasted with the behavior of super-Brownian motion whose
support propagates with finite speed. More precisely we have [(D.I.P.), Theo-
rem 1.11if ¢ > 2 3 6(w, ¢) > 0 such that

. 1 1/2
S, c {x: d(x,S;) <c|(t— s)log*m) }

for0 <t—s<é(w,c) as.
An immediate corollary to Theorem 1.5 is Corollary 1.6.

(i.s)
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COROLLARY 1.6. IfY has Lévy measure v and Uy S(w®) = R9, then for
all t > 0 and m, € Mp(R?),

S, * @ impliesS,=R? Q™-a.s.

In particular this is the case if Y is a d-dimensional symmetric stable process
of index a € (0,2).

Proor.

S,# Pand |J S(»*) =R? clearly imply |J S(»*® * X,) = R9.

k=1 k=1
The first result is therefore immediate from Theorem 1.5. If Y is an R%valued
symmetric stable process of index a € (0,2) then »(dx) = c|x|"?~* dx and so
S(») =R% O

If Y is a symmetric a-stable process and d > «, Perkins (1988) shows that
for @™0-a.a. w and all ¢ > 0 there is a random Borel support A (w) for X, (w)
such that

c(a,d)p, —m(ANA,)
<X,(A) <cy(a,d)p, —m(ANA,) forall Ae B(R?).

If @ <2, A, is dense in R? for Lebesgue a.a. ¢t < { a.s. by Corollary 1.6, and
(1.9) is clearly false if A, is replaced by S,. This answers a question (in the
negative) which was raised in Perkins (1988) and solved in the affirmative for
super-Brownian motion in Perkins (1989). We conjecture that for @ < 2 there
does exist a #(w) such that S, # R? and S, # &. Dynkin’s SILT for k-multiple
points exists for & < d/(d — 2a). In light of Corollary 1.6 it is clearly of
interest to study the nature of this random measure more closely.

It is natural to ask for which sets A is X,(A) > 0 for some ¢ > 0. If this is
the case we say that X penetrates A. Reimers (1989) shows that if X is
super-Brownian motion then for each fixed Borel set A, X,(A) is continuous in
t a.s., and hence X penetrates A with positive probability if and only if A has
positive Lebesgue measure. (In fact this ‘““strong continuity’’ and characteriza-
tion of penetrated sets holds for a much larger class of superprocesses includ-
ing the supersymmetric a-stable processes.)

The following elementary result, which is immediate from (1.1) [see also
Watanabe (1968), Section 2], will be needed.

(1.9)

ProposITION 1.7. If X! and X? are independent super-Lévy processes with
laws @™ and Q™2 (the underlying Lévy process Y is the same), then X' + X2
has law @™1+™2, :

. This result also follows from Watanabe’s construction of X as a weak limit
of branching Lévy processes, a construction that is used throughout this work.
Some technical estimates for a system of branching Lévy processes are given in
Section 2. We will use nonstandard analysis in Section 4 to represent a
super-Lévy process as the standard part of a system of branching Lévy
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processes with infinitesimal interbranching times. The main advantage in the
nonstandard model is that it retains the notions of ancestry which is lost in
the standard model. Good introductions to nonstandard analysis are given by
Cutland (1983) (brief and oriented towards probabilists) and Hurd and Loeb
(1985) (more comprehensive). The nonstandard model is only used to study the
jumps of {S,} in Section 4.

In Section 6 sufficient conditions are given on a set A so that for a fixed ¢,
A N S, # & with positive probability. This result again complements the nec-
essary conditions in (D.I.P.), Section 7.

Constants introduced in section i are denoted c; ;,¢; ... . These constants
may depend on d and the law of Y. Other dependencies will be made explicit.
€1, Co, - . . denote unimportant constants whose value may change from line to
line. B(x, r) is the open ball in R? centered at x and with radius r.

2. Branching Lévy processes. Let I = U, ,Z,x%{0,1}*, and if v,B =
(ﬁOa'H’Bi) eIwrite IB' = i’ Bl.] = (BO""’ﬁj)forj < i’and‘y <Bif7 =ﬁ|.]
for some j <i. Let {YP: B € I} be a collection of i.i.d. d-dimensional (right-
continuous) Lévy processes with law P{ on path space, and let {e”: B € I} be
i.i.d. random variables satisfying P2%(e? = 0) = P%(e® = 2) = 1/2. These two
collections are independent and are defined on a common (Q2, 272, P?). If
R?= R? U {A}, where A is added as the point at =, let (Q', &/!) =
R, ZRY™)) and (Q, &) = (O, 1) x (92, 272). We will assume that Y#
and e? are defined on () in the obvious way.

Fix a parameter x in N and suppress dependence on u wherever possible.
Let T=T® ={j/u: j € Z.} and A be the measure on T which assigns mass
pn~' to each point in T. Given w = ((x;), w?), we construct a branching
particle system as follows: A particle starts at each x; # A; subsequently
particles die or split into two, each with probability 1/2, at the times in
T — {0}; in between these times the particles follow i.i.d. Lévy processes. Each
multi-index B in I will label a branch NP? of the resulting tree of branching
Lévy processes up to ¢t = (|B| + 1)/u:

Ntﬁ’“((xi)iez,,, w2)

18]
xp,t X [1(i/w <5 <t A ((i+1)/w) dYPF i g # A,
i=0
A N if xBo = A’
((%)icz,, w?)
O ifxﬁo = A’

= {min{(i + 1) /u: P = 0} if x5 # A and this set is nonempty,
81 + 1) /u ) otherwise,

NP+ if0 <t <P,

]VtB=]th3,#= {
A if t > 7.
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Nortation. If g €1 and ¢ > 0, write B ~*t (or B ~ ¢) if only and only if
1Bl/1 <t < (8] + 1)/p. Let M(R?) denote the set of measures on R¢ and

K
ME(RY) = {,u_l Y 5.:K=-1,01,...,x,€ Rd} c Mz (R9).
i=0

DEFINITION. N = N®): [0, ) X © - M(R?) is defined by
N(w)=pn" X 5NP(w)1(1VtB(w) * A)'
B~t

If ¢: R? - [0, ), define $(A) = 0 so that N(¢) = pIE 5 d(NP). Let IT°
denote the projection of Q onto Q° and define a filtration on (Q, &) by

oty = ot = (', Y8, ¢ 18] < L)) v (O (V25161 = [n), s 5 0)).
u>t
If w!e Q! let P*' =58, X P2 [a probability on (Q, 2] If w' = (x;) € Q'
anq m = ;L_12°j?=06x11(xj #+ A) € Mip(R?), then (m,u) uniquely determilnes
P*' on o(N,, t > 0) and we may write P™* for the restriction of P to
o(N,, t > 0). In fact we will usually abuse the notation and write P™ for P*

itself, suppressing the dependence on (x;).

Let &=o(ef: Bpel) and for ScI let H(S)= a(YE eP: B 8).
{9,: t = 0} denotes the canonical filtration on the space of R%valued cadlag
paths. {P,: t > 0} denotes the semigroup of the Lévy process Y on the Banach

space C(R?) and EJ(A) = [PZ(A) dm(x) for m € My and A € 2,

LemMMa 2.1. Let u € N and m € Ma(R).

@If pel, reT®, 0<t<r+t<|Bl/n and A€ 2, then on
{N£, # A},

(2.1)  P™(NF._g A&V o,)(w) =PM™(YeA) Pras.
(b) Let t € T(;) and ¢: R? —; [0, ] be Borel measurable.

(2.2)(1) E™(N(s)) = E"($(Y))).

(23)(ii) E™(N(9)") = Eg"(8(Y))’

cBp(s) [, PV M0

(a) is an easy extension of (D.I.P.), Lemma 2.1(a), b(i) is Lemma 2.1(d) of
(D.I.P.) and b(ii) follows easily from Perkins (1988a), Proposition 2.6a(ii). The
more general setting here (Y is a Lévy process) requires no change in the
arguments. )

THEOREM 2.2. If m, € Mp([R?) and m, € MER?) converge weakly to m
as u — ®, then

Pm#""‘(N(”‘) S ':)3—>w Q™ on D([ano]’ MF(Rd))
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This theorem, essentially due to Watanabe (1968), is proved in Ethier and
Kurtz (1986), page 406, when the interbranching times are i.i.d. exponential
r.v.’s with mean u~!. The alterations required for deterministic branching
times are routine.

If my € Mp(R?) and ¢, y: R? - [0, »] are Borel measurable, the analogs of
(2.2) and (2.3) for the limit process are

(2.4) Q™ (X,(¢)) = Eg(4(Y))),

Q™ (X(6) X, (¥)) = Eg(¢(Y,)) Eg(¥(Y,))

(2.5) .
+ [ EE(P (V)P b(Y,))ds,  0<tsu.

(2.4) is clear from (2.2) and the above theorem, and (2.5) follows similarly from
a slight extension of (2.3) [alternatively (2.5) and extensions to higher mo-
ments may be found in Dynkin (1988)].

We also require a classical result on the critical Galton-Watson branching
process, {Z,} [Harris (1963), pages 21 and 22]: If Z, =1 and P(Z, =0) =
P(Z, = 2) = 1/2, then

(2.6) lim nP(Z, > 0) = 2,
n—o
(2.7) lim sup |P(Z,/n >2|Z, > 0) —e | = 0.

n—o z>0

The uniform convergence in (2.7) follows form the pointwise convergence by a
standard argument.
We close this section with a series of important lower bounds on the

probability that N,(B(x,, ¢)) is large.

LemMMA 2.3. There is a uy: (0,%)2 X (0,1) > N, increasing in the first
variable and decreasing in the last variable, such that if p > u(K, 8, p) and

(2.8) p < P§(Y; € B(y,¢)),
then
(2.9) P%/#(N{(B(y,z)) > KSIN{(R?) > 0) > exp{ —4K/p}p/4.

(Here 8,/u is the measure assigning mass u~ ! to the point x.)

Proor. Choose 8,¢ > 0, p €[0,1] and y, x € R? so that (2.8) holds, let
K > 0 and define M = 2K /p. Let u € N be fixed and’

A"

12

ay

(N(R?) > Mo) -

i=1

where {A;: i < n} are disjoint sets, each specifying one of the finite number of
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possibilities for {y ~ 6: y, = x, Ny # A}. Choose one such A;, say
we Ao {y~5: Ny(w) # &) = (3: ] <N},
where N > M&u (necessarily).
Let X; = 1(Ny» € B(y, ¢)) and define
N

(2.10) j=1
_ < P%/b(N{"(B(y,¢)) = Kb|A;).
(2.1) with r = 0 and (2.8) imply
p <P§(Y, € B(y,¢)) = Ea“/"( 5 Xj/NIAi) <q+(1-9)K/M.
j=1
Rearranging the above, one sees that
(2.11) qg=>(p-K/M)1-K/M) "
By (2.7) there is a uy(M, 8), increasing in M, such that
P‘sx/"(Ng“)(le) > M§|N{M(R?) > 0) >e 2M/2 ifp > ue(M,9).
Let u(K,$8, p) = uny(2K/p,d), assume pu > u,; and combine the above with
(2.10) and (2.11) to conclude
P%/*(N{¥(B(y,¢)) = K§|N{P(R?) > 0)
>e M2 Y(p - K/M)(1 - K/M) ™"
> exp{—4K/p}p/4. m|

LEMMA 2.4. For every K,5 > 0 and p € (0,1] there is a puy(K,p,8) €N
such that if 0 <¢&' <eg,
(2.12) p <P)Ys;€B(0,e —¢")),
and p > w,, then foranym e Mg, t — 6 € T™ and M > 0,

P™(N*(B(x,¢)) = K5|,_;)
> (1 — e ™)(4M8) ' pe*K/PNW)(B(xo,¢'))
X 1(N#)(B(xy,¢')) < 46Mp~1e* /P)  Pmq.s.

Proor. Let K, 6, p, €, ¢, ¢, m, x, and M be as above, u € N, and assume

(2.12). Let N e Z, and{y;: i <N} C{y:y ~t — 8}. Set
A={w:{y:i <N} ={y~t—8:NY;€B(xp,¢)}} €,

and

“ B, = {w:,u,_1 Y 1(NYeB(Nyse—¢)) >K6}
(213) y~t, y>y,
={w: N5 # A} N C;,
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where
Ci= {wzﬂ_l Z 1(1\7;_]01&863(0’8_8,)’ ]._.[ eﬂj;&O) >K6}
y~t, y>y; vl <j<lvl

If S; = {y: ¥ > v}, i < N, then {S,} are disjoint sets and are all disjoint from
{y: Iyl < u(t — 8)}. It follows that {£(S,): i < N} are mutually independent
o-fields and are jointly independent of 27, _;. Since C; € #(S,) and B, N A =
C; N A [by (2.13)] we see that if 4 > u (K, p, 8), then w.p.1,

P”‘(N,(")(B(xo,g)) = K5|=9/t—3)1A

N N
me( U Bi|=9/t—a)1A =Pm( U Cil"Q/t—s)lA

i=1 i=1

N N
=dla~ ]-A]:I (1 - Pm(Ci|=Q/t—a)) =1, - 1Ail=—[1 (1 - Pm(Ci))

=1,-1, 1‘[ (1 - P72 (NW(B(0, e — &) > Ks))

— 1,(1 = (p/4) e *K/PPoo/n( N#(RY) > 0))" (Lemma 2.3).

(2.6) shows that for large enough u, depending only on §, P*  o( NS*X(RY) >
0) > (u8)~'. Therefore there is a w,(K, p,d) such that if u > u,(K, p,d),
then w.p.1,

P (NM(B(x,8)) = Kb|,_5)1,
> 14(1 = (1= (p/4)e *5/7(ub)
> 1,(1 — exp{—p(48) 'e~*K/PNW(B(xo, )}
> 1,(1 — e™™) M~ 'p(48) " 'e~ /PN B(xo, "))
X1(N®(B(x,¢')) < 46Mp~le*k/P),

Since () is a finite disjoint union of sets of the form A (up to P™o-null sets),
this completes the proof. O

_1),uNt“_‘3; (B(xo,s')))

Lemma 25. If 0<K, 0<86<t, 0<ée' <e p=PY;| <e—¢) and
M = pe=*K/P(t — 5)6°1, then

Q™ (X,(B(y,¢)) = K5)
> ((1-e™)/16)[ Pyo(Y, BN 5) " A 1],
forally € R% ¢ > 0 and m, € Mz(R%).

Proor. Fix K, §,t,¢,¢ as above and u > u (K, p,8), u €N. Let ¢t =
[utl/m, 8 = [n6]/n and assume p is also large enough so that 0 < § < ¢.
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We suppress dependence on u wherever possible. Let m € ME(RY), M =
pe *K/P(¢t — §)87 ! and

M’ = pe=*%/P((¢t — 8) vV E™(N, 5(B(y,¢))))a~ .
Lemma 2.4 implies that
P™(N/(B(y,¢)) = K8) = (1 — e™™)(4M'3) " "pe~**/»
(2.14) X[ E™(N_o( B(,2"))
—p(4M'5)‘le-‘*K/PE’”(I\Q_@(B(y,e’))2)]-
From (2.3) we see that
E™(N,_5(B(,¢))*)
< E™(N,_o(B(y,¢)))* + (t = 8 + p ") E™(N,_5( B(»,¢")))
< E™(N,_5(B(y,£)))[E™(N,_s(B(y,"))) + 2(¢ - 8)].
Substitute this into (2.14) and use (2.2) and the definition of M’ to conclude
P"(N(B(y,¢)) = K?)
>(1-e ™4 (t-8) vV P(Y,, € B(y,¢))]
XE™(N,_5(B(y,€)))[1 - 7 — 7]
> (1-e )16 (Py(Y,, € B(y,e))(t - 8) ") A 1]

Let m = m* converge weakly to m, € Mp(R?) as u — ». Now use the facts
that N* - X, as p — o (Theorem 2.2) and X,(3B(y,¢)) = 0 a.s., together
with standard weak convergence arguments, to complete the proof. O

3. Instantaneous propagation of the support process. We are ready
for the proof of Theorem 1.5. Recall X, is a super-Lévy process. We may
assume without loss of generality that the underlying Lévy process Y has a
nonzero Lévy measure, v.

NotatioN. %, = {B(y,r):y € Q% re Q%

Proor oF THEOREM 1.5. Fix m, € My(R%), t > 0 and work with respect to
P = @™ on the canonical space of continuous M(R?)-valued paths. Let

K, = [(log n)/5] ([x] denotes the integer part of x) for n > e° and
A = {Xt—2‘"( B(y’ 5)) = an—n—l}’

n

where y € R? and ¢ > 0 are fixed. Let &' € (0, ¢) and use the Markov property
and Lemma 2.5 with t — 6 = 6 = 27"~ 2 to see that °

- P(AL Ll Fian) = Q¥-2(Xy-n1(B(y,2)) 2 K, 127" %)
(3.1) > ((1 — e™Mn+1) /16)
X[(P&—=(Y(27""2) € B(y,¢))2"*2) A 1],
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where M, =p,e *%2/Pn, p = PY|Y(27" 1) <& —¢'). Let ¢" €(0,¢") and
¢: [0,0] > [0,1] be a decreasing C* function satisfying ®lo,en =1 and
®le) = 0. Recall A and Z(A) denote the infinitesimal generator of Y on

C(R?) and its domain. If ¢?(z) = ¢(|z — y|), then ¢’ € D(A) and

(3.2) A¢p?(x) = fqby(z +x)dv(z) > v(B(y —x,¢")) forly —x| > ¢
[see Fristedt (1974), page 250]. In particular,

(3.3) lim E§ (47(¥)) ™ = Ag* (),

where the convergence is uniform in x € R?. The expectation on the left side
of (3.3) is less then or equal to PZ(Y, € B(y, ¢))t~*. Therefore (3.2) and (3.3)

imply that w.p.1,

1iﬂi£ff1(|x —yl = &) PF(Y(27""%) € B(y,£'))2"*2dX,_,-n (x)

> li}{lligfflﬂx —yl = &) Ad?(x) dX,_o-»(x)

(3.4)
= f1(|x -yl =2 ¢&)Ad?(x) dX, (x)

> [1(x =yl = e)w(B(y - 2,¢")) dX, (x),

where in the next to last line we have used the continuity of X, and
X,(0B(y,&")) = 0 a.s. Suppose now that X,(B(y, &") > 0. Then, except for a
P-null set, we have

1iﬂi£ff1(|x —y <&)PF(Y(27""2) € B(y,£'))2"*2dX,_,-n (x)

> liminf2"*2X,_,-.(B(y,&") PY(|Y(27" )| <& — &) = w.

n—oo

Use the above together with (3.4) and let ¢"1 &' to see that w.p.1,
liminf Pgf-2(Y(27""%) € B(y,¢'))2"*2
n—o .

(35) < f1(|x -yl =&)Ww(B(y —x,¢')) dX,(x) + © - (X, (B(y,¢)) > 0)

= (7+X)(B(y,¢)),

where 7 = v + « - §,. (3.5) and (3.1) together imply that for a.a. w and large
enough n (depending on w)

P(A, 1| Fi_p) = (1 — e™Mn01) /32) (5« X,(B(y, ")) A1)
>(n+1)7'647 (5 * X,(B(y,&)) A 1).
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The extended Borel-Cantelli lemma [Breiman (1968), Corollary 5.29] shows
that (let £'1 &)

(3.6) w.p.l 7*X,(B(y,£)) > 0implies A, occurs infinitely often.
Let0<e<ég", & =(e+¢&")/2and
T,=inflt —2">t—2": X, 5 (B(y,¢)) 2K,27" Y} At
—t—27"m,

where n,, € {m,m + 1,...,}, m € N. (3.6) implies
(3.7 w.p.l #*X,(B(y,&)) > 0implies n,, < < forall m € N.
The strong Markov property shows that on {n,, < «},

P(X(B(y,e")) <271 Fp, )(w)

= QX X(2" W) (B(y,e")) < 2701

< QX1 W/ Knpur( X(27 ") ( B(y, £")) < 9= m(w)=1) Kt
(by Proposition 1.7).

Use Lemma 2.5 with t —8 =8 = 27" ~1 ¢ =¢” and K = 1 to bound the
right side of (3.8) by [write Z,(w) for X; (w)/K, ]

(3.8)

_ ‘ n (W)
(1= (1 — en®)(16) " (PEn(Yymrpiwrs € B(y, )21 A 1)),

where M, (w) = p,(w)e=*P®), p (w) = PY(|Yy_nw-1| <" — &'). Note that
pu(w) = t<i2r_1£_lP8(lKI <& —¢) =p,.
If m is large enough so that pl > 1/2, then on {n,, < <} we have (recall
g —¢ =¢ —¢)
P(X/(B(y,e") <271 Iy, )(w)
<(1-(1-exp{~e?/2})167"

m

X((Xr,()(B(3, ) K7 k()27 ) A 1))
< q%n,

where ¢ = 1 — (1 — exp{—e8/2})/32 € (0, 1). Integrate the above inequality
over {n,, < x} = (T, <t}to see

P(X,(B(y,e")) =2 "1, T, <t)>(1-q%)P(T, <t).
From this and (3.7) we derive '
P(X,(B(y,¢") > 0) = (1 = ¢¥")P(7+ X,(B(y,¢)) > 0).
Let m — « and ¢"| ¢ and use X,(3B(y, ¢)) = 0 a.s. to conclude
P(X,(B(y,¢)) > 0) = P(# = X,(B(y,¢)) > 0).
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The event on the left is a subset of that on the right and so w.p.1 for any
B e #,, X(B) > 0iff 7+ X,(B) > 0, and hence

(3.9) wp.l S(r+X,) cS(v+X,) =38,

If wy,pg g € MA(R?Y), S(u;) C S(u,) implies S(uy*pg) € S(uy * Ms) Use
this and (3.9) to see

S(»@xX,)=S(r*(v+X,))cS(r+X,)cS, as.
Iterate to get S(v® « X,) ¢ S, for all £ € N a.s. and therefore

USk®=xX,)=8, as. ]
£=0

In addition to the symmetric stable case considered in the Introduction it is
interesting to consider the above result when m, =8, and Y is a Poisson
process with rate A so that v = A§;. The theorem implies that if ¢ > 0 is fixed
then w.p.1 £ € S, implies {k, £ + 1,...} € S,. The process becomes extinct as
min(S,) increases to + .

CoRrOLLARY 3.1. If Y is a Poisson process with rate A > 0, then Q%-a.s.
there are (,)-stopping times {T,: k € Z .} such that T, = 0, {T,} increases to {
a.s.,

(3.10) kS, c{k,k+1,...} foraltin[T,,T,,,), kE€EZ, as.

and
(8.11) S,={k,k+1,...} forLebesguea.a.tin|T,,T,,,),k<€Z, a.s.

Proor. It is clear from Theorem 2.2 that for any m, € M,
(3.12) S(mgy) c{k,k+1,...} implies S,c{k,k+1,...}
. forall t > 0 Q@™Me-a.s.

Define
T, = inf{t: X,({0,..., k — 1}) = 0}.
Then clearly T, 1 { a.s. and
Q*(X,({0,...,k — 1)) = 0forall ¢t > T,| 77 )
=QXTW(S,c{k,k+1,...}forallt>0) =1 as.
by (3.12) with m, = X(T,). It follows that
S,c{k,k+1,...} forallt>T, @Q%-as.

(3.10) is now immediate from the definition of T,. Choose w so that the
conclusion of Theorem 1.5 holds for all ¢ > 0 outside an exceptional Lebesgue
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null set A(w). Since v = A5, (3.10) and Theorem 1.5 imply

S, US(6;*X,)>(k,k+1,...} forteA(w)n[Ty, Tpyy). O
Jj=0

REMARK. It is not hard to use (1.1) to set up a stochastic differential
equation for (X,(0), X,({0})) from which one may infer via a comparison
argument that

P(X,({O}c) = 0 for some ¢ < Tl) > 0.
Hence the exceptional set of ¢ in (3.11) is necessary.

4. On the discontinuities of the support of super-Brownian motion.
Throughout this section X is a d-dimensional (d > 1) super-Brownian motion
starting at m, € M. Our immediate objective is Theorem 1.4. A deterministic
lemma will give the existence of left-hand limits for {S,: ¢ > 0}.

Notation. If FcR? and ¢ > 0, let A° = {x: d(x, A) < ¢}, where d(x, A)
is the distance from x to A.

LeEMMA 4.1.  Assume f: (0,%) - #(R?) satisfies
(41) Ve>036>0suchthat 0 <u —t<6impliesf(u) cf(t)".
Then f possesses left- and right-hand limits at all t in (0, ).

Proor. If N € N is fixed, (4.1) implies there is a compact ball B so that
fAN~Y, ND c #(B). #(B) is compact [Dugundji (1966), page 253, Exercise
6, Section 4]. Therefore if lim,,, f(s) does not exist in #(R?) there are
-sequences {s,}, {x ,}, increasing to ¢ such that s, <u, <s,,q,lim f(x,) = K,
and lim f(s,) = K, in J¥(B) [or equivalently #(R%)], where K, # K,. Sup-
pose x € K, — K,. If ¢ €(0,d(x, K;)/2) choose § as in (4.1). For large
enough n, 0 <s,,, —u, <& and so (4.1) implies f(s,,,) < f(u,):. Since
x € K, = lim f(s,), we also have d(x, f(s, ) <e&/2 for large n and hence
d(x, f(u,)) < 3¢/2 for large n. Let n » « to see d(x, K,) < 3s/2 which
contradicts the choice of ¢. Therefore K, c K; and by symmetry K, = K.
This contradicts the choice of K, and K, and hence proves the existence of
left-hand limits of f. By making some trivial changes in this argument one
obtains the existence of right-hand limits. O

PROPOSITION 4.2. {S,: ¢t > 0} is a #(R%)-valued F;-optional process which
has right-continuous paths with left-hand limits @™-a.s. Moreover,

(4.2) S,_>8, forallt>0 QMo-a.s.

ProOF. Theorem 4.4.1 of Cutler (1984) implies S is %-optional. The
previous lemma and the one-sided Lévy modulus for S, (1.8) imply the a.s.
existence of left- and right-hand limits. The right-continuity was proved in
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(D.L.P.) [see (1.6)]. If X,(B(x,¢)) > 0, then X, (B(x,¢)) > 0 for u near ¢ by the
continuity of X. (4.2) is therefore obvious. O

A nonstandard construction of X is used to finish the proof of Theorem 1.4.
We work in on w,-saturated enlargement of a superstructure containing R. Let
{NB: B €I} be the system of branching Brownian motions constructed on
(Q, &) in Section 2. Fix an infinite u in *N — N and consider the internal
collection of branching *-Brownian motions {N?: g € *I} and the internal
*M(R%)-valued process N = N®), all defined on the internal measure space
CQ*Z). If m, =p LK 8, € *M"(Rd) *P™u (or more precisely *P*?) is
the internal probablhty on (*Q, *o7) defined as in Section 2. We abuse the
notation slightly and write

(*Q, 7, P™) = (*Q, L(*o7), L(*P™)),

for the Loeb space constructed from (*Q,*o7, *P™~) [see Loeb (1975) and
Cutland (1983)].

NoraTioN. st denotes the standard part map on the near-standard points
in *R9, °¢ denotes the standard part of a finite ¢ in *[0, ) and st,, denotes the
standard part map on ns(*M,(R%)).

THEOREM 4.3. Let my € My(R%) and choose m, € *M{[R?) such that
sty(m,) = mq. There is a unique (up to indistinguishability) continuous
Mg -valued process X on (*Q, &, P™+) such that

X.(A) = L(N,)(st7(4)),
(4.3) for all Ain #(R?) and ¢ in ns(*[0,%)) P™«a.s.

Moreover, P™"«(X € }= Q™(}

This is Theorem 2.3 of (D.I.P.). We also need the following nonstandard
Lévy modulus for N&,.

NoraTioN. h(u) = (ulog™ 1/u)V2

THEOREM 4.4 [Theorem 4.7 of (D.I.P.)]. If m, is as in Theorem 4.3, then
for P™u-a.a. w and every ¢ > 2 there is a 8(w, c) > 0 such that

INP — NP| < ch(t —s), foralls,te *[0,x]
4.4
(4.4) and B ~ t satisfying 0 <t — s < 8(w,c) and NF + A.

Now choose m, € *M} such that sty (m,) = m, and st(S(m,)) = S(m,)
and write P and *P for P™+ and *P™, respectively. Let ¢ = [tu]/u for
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t € *[0,») and let %,° = ¢(Z)) for t € [0,x). For each B € % and r € Q=°,
define an internal *M-valued process by

N/B(A)=p~' Y 1U(N)e*B,N, €A).

y~t+r

N B records the future evolution of the descendants of those particles which
are in *B at time r. If C; and C, are internal *-Borel measurable subsets of
*D([0, ®), M) and v|p denotes the restriction of a measure v to a set B, then
clearly

(4.5) *P(N"B e Cy| ) (w) = *PNI*™)(N e C;)  *P-as.
More generally if B, and B, are disjoint in % then by conditioning on the
disjoint sets {y ~r: N € *B;}, i = 1,2, it is easy to see that
2
(46) *P(N"BieC,i=1,2/9)(w)=[]*PY"=“(NeC) *Pas.

1=

(4.5) and Theorem 4.3 (with m, = N,|*B) show that for each r € Q2% and
B € %, there is a unique (up to indistinguishability) continuous Mp-valued
process X' B on (*Q, #, P) such that

X5 B(A) = L(N/B)(st71(A))

(4.7)
for all A € #(R%) and ¢ € ns(*[0,%)) P-a.s.

(Technically this is just a.s. S-continuity of N™5) Take standard parts in
(4.5), and use Hoover and Perkins (1983), Lemma 3.3, the fact that

sty (N, |sp) = X,|p as. [recall X,(0B) = 0 a.s.] and Theorem 4.3 to see
P(X"" € C1%°)(w) = @¥1xX(C)
(4.8)
a.s. for all Borel measurable C in C([0,«], My).

Similarly (4.6) shows that:
(4.9) If B,NB,=@, X" 5B and X" B2

are conditionally independent given %.°.

Noration. ¢(r, B) = inf{t > 0: X" B(R¢) = 0} + r.
S;P = S(Xtr’B)'
In the rest of this section we will work with respett to P, but in view of

Theorem 4.3, may transfer these results onto path space under @™ by trivial
mea:;surability arguments.

LEmMMA 4.5. For P-a.a. wift>0,x €S,_— S, and B = B(y,28,) € %,
satisfies X,(B(y, 38,)) = 0 and x € B(y, 8,), then there is an ¢ = e(w, B,t) > 0
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such that t = {(r,B) and x € S"B({(r,B)—r)—) forall re(t —et)N
Q=0

Proor. Choose w outside a P-null set so that there is a 8(w,3) >0
satisfying (4.4) (with ¢ = 3), and such that (4.3) and (4.7) hold, the latter for
all r € Q=% and B € %. Assume B = B(y,2§,) and x € S,_— S, satisfy the
hypotheses of the lemma. If B, = B(y, p3,), the fact that x € S,_N B, means
there is an ¢ = ¢(w, B, t) > 0 such that

(4.10) X,(B;) >0 forue(t—e,t).

We may choose ¢ so that, in addition,

(4.11) e <8(w,3) and 3h(e) <.

Let re(t —e,t) N Q>°If s €[r,t], and y ~ s then (4.11) implies
(4.12) °INy =N} <8h(s—r) <8,

and hence N € *B(y, p) implies N’ € *B whenever p < §,. Therefore
N B(*B(y,p)) = N,(*B(y,p)) wheneverp <34,.
Now use (4.3) and (4.7) to obtain
X,(B,) = lim °N,(*B(y, p))
pT8;

lir? °NB(*B(y,p)) (by the above)
pT6; B

=X"B(B,) Vselrt]
This together with (4.10) shows that {(r, B) > ¢. For the opposite inequality
use (4.12) with s = ¢ to see that N € *B implies °N,Y € B; and hence [use
(4.3)] °N;/>B(*R?) < X,(B;) = 0. Therefore X;:2(R%) =0 [by (4.7)] and we
have ¢ > {(r, B). (4.13) and X, > X2 [by (4.3) and (4.7)] implies S, N B, =
SI"BN B, Vselrtl Let s 1t (omitting another null set of w to ensure the
limits exist) to see

(4.13)

S,_NnB, =8;5 nB,.
Since x belongs to the set on the left, it belongs to S(;’_B,)_ and the proof is
complete. O

PropOSITION 4.6. Fora.a. w for all t > 0, card(S,_— S,) = 0 or 1.

Proor. Since X,(R?) is the diffusion with generator 3xd2/dx?,
Q™(¢ <t) = exp{—2m(R?) /t} [Knight(1981), page 100].
(4.8) therefore implies
P({(r, B) —r < t|%.°) = exp{—2X,(B) /1}.

If B, and B, are disjoint balls in % and r <0, {(r, B,) and {(r, B,) are
conditionally independent given %.° by (4.9). Since their conditional laws are
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atomless we have
P(g(r) Bl)
={(r, By) > r for some r € ©=° and disjoint balls B,, B, in %) = 0.

Fix w outside this P-null set and such that the conclusion of the previous
lemma holds. Suppose that x, y are distinct points in S,_— S, for some ¢ > 0.
There are disjoint balls B; = B(x;,28;), B, = B(y;,28;) in % such that
X,(B(x,,36,) = X(B(y;,35,)) = 0 and x € B(x,,8,), y € B(y;,8). By the
choice of w there is an r € Q=°, r < ¢ such that {(r, B,) = {(r, B,) = ¢t. This
contradicts the choice of w and hence completes the proof. O

Theorem 1.4 is now immediate from Propositions 4.2 and 4.6.
Let

9 = {(A, B) (}Z/(Rd)zz A DB, A — B isempty orasingleton},
and define ¢: .@ﬁ@by
x if A—-B={x},

V(A B) = {A if A=B.

It is easy to check that 9 is a closed subset of #(R?)? and ¢ is measurable
[its restriction to {(A, B) € 2: A # B} is continuous]. Let

Z(t,w) = {"’(St—(w)’st(l")) if(S,_,S,) € Zand ¢ >0,
, A otherwise.

Theorem 1.4 shows Z is an (%,)-optional process on [0,) X Q and w.p.1
equals A except at the countably many jump times of S,. For such a time
Z,(w) is the location at which a “colony” becomes extinct at time ¢. With (4.8)
- in mind we also define (for each r € Q=°, B € %)

Z7B(t) = {([r(S{_’B, S/ B) if (/25 S'B)e Zand ¢ >0,
A otherwise,
Z(r,B) =Z"2({(r,B) —r).
(4.8) and Theorem 1.4 show that
(4.14) if /(r, B) > r then Z(r, B) € R? as.

Z(r, B) is the location at which descendants of those individuals in B at time
r, become extinct.

PROPOSITION 4.7. For P-a.a. wand all 0 <s <t < o, R(s,t) — R(s,t) is
countable and satisfies .

R(s,t) — R(s,t) c{Z(u) e R%:s <u <t}
(4.15) c{Z(¥,B):reQn(s,t),{(r,B) >r, BE %g}.

Proor. Choose w outside a null set so that the conclusions of Theorem
1.4 and Lemma 4.5, and (1.7) hold. If x € R(s,¢) — R(s, ¢), choose u,, € [s,¢]
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and x, €S, so that lim x, = x. By taking a subsequence we may assume
u,lucelst] or u,tu <|[s,t]. The former case would imply x € S, by
right-continuity of {S,} [use (1.7) if u = 0], contradicting x & R(s, ¢). Hence
we are in the latter case and so x € S,,_— S, which implies x = Z(«) for some
u € (s,t). Assume, in addition, that w is in the set of probability 1 for which
{8/ B: t > 0} satisfies the conclusion of Theorem 1.4 for all r € Q=% and
B € % [use (4.8)]. The second inclusion in (4.15) is then immediate from
Lemma 4.5. The countability of R(s,¢) — R(s, ¢) is obvious from (4.15). O

NoratioN. If r € Q=% and B € %, let
¢(r, B) = minf{t: N> B(*R?) = 0} + r
and
1" = {y ~{(r,B) = w5 N*(¢(r, B) - n™") # A, N} € *B).

Since N™B({(r, B) — r)(*R%) = 0, (4.7) implies {(r, B) < °¢(r, B) a.s. The
opposite inequa_lity is clear from (4.5) and Lemma 4.9 of (D.LP.) so that
(4.16) %¢(r,B) =¢{(r,B) <o aus.

The definition of I8 implies it is nonempty if {(r, B) > r. By lexicographically
ordering I and choosing the ‘“first” y € I8 if {(r, B) > r, and any fixed
Yo € I otherwise, we may define a random index y" Z(w) such that

y™ B is measurable w.r.t. the internal algebra & v &,

4.17
( ) (recall & is generated by {e?: B € I})

and
{(r,B) >r implies y" 8 e "B,
Lemma 4.9 of (D.L.P.), (4.4), (4.16) and the above imply
if {(r,B) >r theny"B I8 and
std(Nyr'B(g(r, B) - u‘l)) =Z(r,B) as.
[Here Lemma 4.9 of (D.I.P.) and (4.4) together imply
std(N“/r'B(g(r, B) - /.L_l)) € S”B((°§(r, B) —r) —) if°¢(r, B) > r.]

(4.18)

DEerFINITION. The closed graph of S is
G(w) ={(¢t,x):x€8,_,¢t >0} U {0} xXS,.

G(w) is a.s. a closed subset of [0, ) X R? by Theorem 1.4 and (1.7). We are
now ready to prove that the set of extinction points (¢, Z(#)) in [0, ©) X R? is
dense in the graph of S for d > 3.

THEOREM 4.8. Ifd > 3, the countable set
H(w) = {(t,Z(¢)):t > 0, Z(¢t) € R%)

is a dense subset of G(w) a.s.
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Proor. Clearly H(w) ¢ G(w). Fix r € @=° and B € %,. We claim
{(r, B) > r implies
(¢((r,B),Z(r,B)) = (¢{((r,B),Z({(r,B))) € H as.

Define X" B as for X B (but with B° in place of B). As for (4.8) and (4.9) we
have .

(4.19)

P(X"® e C1%°)(w) = @%=(C) as.
(4.20) for all measurable C in C([0, =], M)
and
(4.21) X7 B and X" 5 are conditionally independent given .#°.
Theorem 3.1 of (D.I.P.) implies
(4.22) Q"(x€8,)=0 VxeR?¢>0and m € My.

Condition on %% v ¢(X™ B) and use (4.14) and (4.20)-(4.22) to conclude that
outside a P-null set, Ny, {(r, B) > r implies Z(r, B) € R¢ — S(X[;Bg, ). Fi-
nally, (4.3) and (4.7) show that outside of a null set, N,, X, = X"2" + X» 8
Y ¢ > r, and the conclusion of Theorem 1.4 holds. Choose w & N, U N2 so that
{(r,B) > r.Then Z(r, B) € 8" B((¢((r,B) — r) =) c S(r,B) - XX B < X,
Y t>r), and Z(r, B) & S, p, because Z(r, B) & S(X},%5 ) and X, p, =
X" B(¢(r, B) — r). This proves Z(r, B) € S({(r, B)) — ) — S({(r, B)) and
hence (4.19).
If r, <ry,ryand ry € Q=7 let

J(ry,ry) = {NJI: y~ry,AB ~rys.t. B> yand N,’; #* A},
T(ry, ry) = card(J(ry, r2)).

Then conditional on %?°, T'(r,r;) is a Poisson r.v. with mean 2X, (Rd)
(ry — r) ™. Therefore for aa. w,

(4.23) [(ry,ry) <o forall ry,r, € Q=% with r; <r,.
1272 1< T2

Choose w outside a null set so that, in addition to (4.23) and (4.18), the
following conditions hold:

X,({x}) =0 forallt>0and x € R?

(4.24) [Theorems A and B of Perkins (1988)],
(4.25) (4.4) holds with ¢ = 3,
st4(S(N,)) 2 S(X.,) V t € ns(*[0, ~)) and
(4.26) sta(S(N,)) = S(X,) ¥V reQ>
; [Lemma 4.8 and (4.26) of (D.I.P.) and the choice of mu] ,
(4.27) {(r,B) >r implies ({(r, B), Z(r, B)) € H(w)

forall r € Q=% and B € %,.
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In (4.27) we have used (4.19). Let (¢,x) € G and ¢ > 0. Assume x € S,_ and
¢t > 0 (a similar argument will work if £ = 0 and x € S;) and let r,,r, € Q=°
satisfy ¢ € (r,ry) and ry, — r; <8(w,3) A ¢ [§ as in (4.4)]. Choose u € (r;,t)
and y € S, such that |y — x| <& Then y = st ,(N?) for some y ~ u and
z = st (N) € S, by(4.26). Since z € S, , (4.24) implies X, (B(z,8) —{z) >0
for all 6 > 0. By (4.23) we may therefore choose B € ﬁ@ such that B c
B(sty,(N)),e), BNS, + @ and B NdJ(r,r,) =@. Use the definition of
J(ry,ry) and (4.26) to see that the latter two conditions imply

(4.28) ry <{(ry, B) <r,.

(4 18), (4.21) and the inclusion B C B(st,(N,)), ¢) show that if y' = y"»® and

= {(ry, B) - ~1 then
|2(ry, B) — x| <INy = NY| + °INZ = N2| + °INJ = NJ| + Iy — 2]

(4.29)
<3h(ry—r)) +e+3h(ry—r)) +e==6h(e) + 2¢.

(4.27), (4.28) and (4.29) show that we have found a point ({(ry, B), Z(r,, B)) €
H within 6A(¢e) + 3¢ of (¢, x). The result follows. O

REMARK. The condition d > 3 was only needed to derive (4.22). In fact
(4.22), and hence the above result, is also true in two dimensions. One
approach is to show first that @ (X, , . A) and Q™% X, , . A) are equivalent
laws. This implies that if @ (x € S,) > 0 for some x, then this is the case for
all x, and hence S, has positive Lebesgue measure with positive probability.
The latter is shown to be false in Perkins (1989). We feel, however, that this
argument is longer than the result warrants and we leave a simple derivation
of (4.22) for d = 2 as an open problem.

The next result will be useful in the study of polar sets in the next section.

THEOREM 4.9. If A is a Lebesgue null subset of R®, {Z(u): u >0 NA=0
a.s.

Proor. Fix r € Q=° and B € %, and let C € *#(R?). Then (4.17) and
the fact that {(r, B) is &V .o7,-measurable imply that on {{(r, B) > r},

*P(Nv"B(g(r, B) -pn ) eCle v e”)(w)
- *p(Nv"B<w>(g(r, B)(w) —pn') € Cla, v e”)(w)
= *Pé\’z’r’a(w)(*B(g(r, B)(w) —up~t - r) € C) a.s. [Lemma 2.1(a)].

Take standard parts in the above, using Hoover and Perkins (1983), Lemma
3.3, and extend the resulting equality to C in o (*Z(R%)) to get

P(N"'B(g(r, B) —u"!) € Clo(o/, v €))(w)1(¢(r, B) > 1)
= L(*P({Vr’r'B(‘”))(*B(g(r, B)(w) —p~ 1 - [) € C)l(g(r, B) >r) as.
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Take C = st;(A), where A € #Z(R?), use (4.18), (4.16) and the fact that
st(*B) is a Brownian motion starting at °x under L(*P§) to conclude

P(Z(r‘, B)eA,{(r,B)>r) = E(Pgtd(Nryr'B(w»( B({(r,B)(w) —r) €A)

x1({(r, B)(w) > r)).

In particular the left-hand side of the above is 0 if A is Lebesgue null. (4.15)
now completes the proof. O

The above result allows us to transfer hitting estimates for R or R, to
estimates for R or R,. For example we have [(D.I.P.), Theorem 1.3]

(4.30) Qmo(xcR)=1- exp{—2(4 —d) [ly %2 dmO(y)}, d<3.
(4.15) and the previous theorem show @™°(x € R — R) = 0 and therefore

(431) @m(xecR)=1- exp{—2(4 ~d) [ly — =" dmo(y)}, d < 3.

5. Polar sets and multiple points for super-Brownian motion.
Throughout this section the underlying Lévy process Y, will be a symmetric
stable process of index o scaled so that

(5.1) E(e®Y0) = exp{—t0]*}, 6 €R?fora<2,

and so that Y, is a standard Brownian motion if o = 2. In fact the main
theorems only hold for super-Brownian motion but, with an eye to future
applications, we prove several preliminary estimates in the more general stable
setting. Assume d > a, unless otherwise indicated. Recall that Y, has a
radially symmetric continuous transition density p,(y) = q,(|y|) satisfying

(5.2) q/(r) =74 2q,(rt=1/9),

(5.3) q,(*) is decreasing,

(54) 0<cy;(R)=<qr)Vr<R, q:(r) <c59(1 + r) Y r> 0.

Use the fact that Y, is equal in law to B(r,) wheré B is a d-dimensional
Brownian motion and 7, is an independent stable subordinator to see (5.3). See
Blumenthal and Getoor (1960) for (5.4).

The next estimate for the system of branching stable processes introduced
in Section 2 follows easily from Proposition 2.6(a)(i) and Lemma 2.7 of Perkins
(1988).
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Lemma 5.1. If 2u~'<e* <2 %andt € T™ then
E™(N®(B(x,¢))") < E"(N®(B(x,¢)))" + c55°E™(N#(B(x,¢)))
Vx € R? and m € ME(R?).
[The additional hypothesis ¢* < ¢! in Lemma 2.7 of Perkins (1988) is only
required if d = a.] A

A simple first moment estimate shows
5 P™o(X,(B(xo,¢)) 2 £%) <& °P"(Y, € B(x,¢))
(6:5) <5527 *mo(RY) e [by (5.4)].
In fact if @ = 2 such an upper bound is obtained in [(D.I.P., Theorem 3.1] for
Pmo(X,(B(xg, €)) > 0). The next result establishes a converse inequality to
(5.5).
PROPOSITION 5.2.  Suppose ¢ € (0,1/2], m, € Mp(R?%) and
(5.6) t > max(2e7, £°1 @/ D o(RY) 7).

Then for every x, in R?,
(5.7)  P™(X,(B(x4,2)) > %) > c5, f‘h/2(|x — xo|) dmy(x)e? ™.

Proor. Let € €(0,1/2],
pO =p0(a’ d) = Pg(lYll < 1/2)’

and p > py(1, py,e%) V 267% u € N, where u, is as in Lemma 2.4. Fix X, in
R?, m € M§R?) and ¢ such that (5.6) holds with m, = m and

(5.8) t—e*eTW,
Lemma 2.4 (with K = 1, § = ¢ &' = £/2) implies that for every M > 0,
P™(NW(B(xy,¢)) > % /0,
(5.9) > (1 - M)M Tcie ™ *N®o(B(x,,/2))
X1(N®#e(B(xo,2/2)) < 7 'e°M ),
where ¢, = 47 1pje~%/Po, Use (2.2) to see

E™(N®%(B(%,6/2))) = [[1peey.c/p9)Praly = x) dydm (z)

> 274 (15 s 2(2) Py o 2) dzdm ()
[by (5.6), (5.2) and (5.3)]
(5.10) zczgdfqt/zﬂx — x| VAs) dm(x)
[by an elementary argument and (5.3)]
> caadfqt/z(lx — xo|) dm(x)
[by (5.6), (5.2) and (5.4)].
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Conversely, it is clear from the first line of the above, (5.6) and (5.4) that
(5.11) E™(N®o(B(x4,£/2))) < cst~% % m(R?).
Lemma 5.1 together with the above shows that
E™(N®(B(x0,2/2))’)

< E™(N®Mo(B(%9,£/2)))(cat™ %% m(R?) + c5e®).

(5.12)

Take expected values in (5.9) to conclude (for any M > 0)
P™(NM(B(xg,¢)) = &%)
2 (1— e ™) M le,e™[ E"(N®u(B(o,6/2)))
—cls_“M'lE’"(Nt(fga(B(xo, 3/2))2)]
>(1—e™M)M lc;cpe? ™™ fq,/2(|x — xo|) dm(x)
X[1 = e, M™%t~/ *m(RY) — ¢,c, M1

[by (5.10) and (5.12)].

Now set M = M(d, @) = 2¢,(c, + ¢5) and use (5.6) (with m, = m) to conclude
that the final term (in square brackets) is at least 1,/2. We have shown

P™(N®(B(xo,¢)) 2 &%) = ¢5.4 [, (% — %ol) dm(x)e? ™,

whenever ¢ € [0,1/2], u > (1, pg, %) V 267%, x5 € RY, m € ME(R?) and ¢
satisfies (5.6) (with m,=m) and (5.8). Theorem 2.2 and an easy weak
convergence argument complete the proof. O

We want to use (2.5) to get an upper bound on E™(X,(B(x, £))X,(B(x', £)))
(Lemma 5.6 below). To do this, a sequence of probability estimates for the
stable process Y is required.

LeEMMA 5.3. Forall x,y € R? and &,u > 0,
Py(Y(u) € B(x,2)) < cs5(ly — 2@ Due?l(ly — x| = 2(u'/* V £))

+((w%%%) A 1)1(ly — x| < 2(u¥* Vg))).

Proor. This follows easily from (5.2)-(5.4) by considering four cases ac-
cording to the relative sizes of |y — x| and 2(z'/* V ¢), and u'/* and &. O
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LemmA 5.4. Ifs > 0,0 <r <Randy,x,x' €R? then

Eg(l(le —x|2r,|Y, -2 =R)|Y, - x| "y, - x,l—(d+a))

(a) < 05.68—d/ar—a(R Volx — xll)—(d+a)’
Eg(1(|Ys —x|=r,|Y, - x| <R)|Y, _x|—(d+a>)

(b) = 05.73_d/a(1(|x —%'| > 2R)R%x — x'| 4"

+1(Jx — 2’| < 2R)r‘°‘),
E(1()Y, — x| <r,|Y, - «'| = R)|Y, - 274
<c5e8 4 r 4RV |x — x'|) 49,

(d) P3(IY, —x| <r,|¥Y, —x'| <R) <c595 % *I(jx — x| < 2R)r?.

(c)

ProoF. A simple scaling argument allows us to assume s = 1, and transla-
tion invariance allows us to set y = 0. The elementary proof now only uses the
fact that Y, has a bounded density. We only give the details for (a) as the other

cases are even simpler.
(@ If

Si={yir<ly—x<ly-x}, Sy={y:R<ly—«|<|y—xl},
then the expectation in (a) (with s = 1, y = 0) is bounded by
| Pily — 217l — 1| =@+ dy
(5.13) =
+ [ Pyl — x| @Oy — x| @ gy,
S,

On Sy, Iy —x'| = |x — x'| /2 and so the first integral is bounded by
||p1||w2d+a|x _ xll_(d+a)f p—(d+a)pd—1 dp — ||p1||w2d+aa_lr_a|x _ xll—(d+a).
r

A similar argument gives the same bound for the second integral in (5.13).
Therefore we have shown

Eg(]-(IYl - xl =>r, |Y1 — x’l > R)lYI _ xl—(d+a)|Y1 _ x,l_(d+a))

5.14
( ) <cr¥x — x| 7@,

We also have
EQ(1(IY, — x| 2 7, |Y; — x| = R)|Y, — x| @ *)Y, — x'|@+)

< R4 [1()y — x| 2 r)ly — x|~ p,(y) dy

<||pyllR™¥ [ pmd-ard=igy
r

= [Ipylloa TR Op e,

This together with (5.14) gives (a). O
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LEMMA 5.5.
E3(Py(Y, € B(x,2))Py(Y, € B(x',¢)))
< c51082% Y [u(lx — x| @O A ym@/aFD f gm@ra)
+e 9 (lx —x'| Vul/* < 8)]
forall 0 <e,s,0 <t < uandx,x’,y e R?,
Proor. Use Lemmas 5.3 and 5.4 to bound the above expected value by
c25eEY((1(1Y, — x| = 2(£V/= Vv &))|Y, — x| =@+t
+1(Y, — x| < 2(¢V* vV e))tm/2 A e™?)
X(1(Y, — x| = 2(u¥/ Vv €))|Y, — x| @y
+1(Y, — x| < 2(u'/* Ve))u= A e_d))
< cg.é—,,sz"'s*"'/"[c5.6tu2“)‘(t‘1 Aem®)((2(uVVe)) Vv |x — x'|)_d_a
tesg(274 9 A e ) u2d (2% v e?)((2(u* Ve)) V |x — x’|)_d_a
+eg (w4 A s_d)(1(|x —x'| > 4(u* Vg))
X (2(ul/* v s))d|x —x'|7d
+1(jx — o' < 4(ul/* V)27 (¢ AeT))
+es (7% A e ) (w24 A e d)
X1 — 2| < 4(uM* v £))2(e9/ v )]
< clszds‘d/“[l(lx —x'| > 4(u*Ve))ulx — x| 74
+1(x — x') < 4(uV/* v 5))[u(u1/“‘ v e)_d_a +ud/ A e‘d”
< 02£2ds_d/“[u(|x _ xl|-(d+a) A y~@/a+) A 8—(d+a))
+1(x — %' < 4(uVeVe))um/* A e
< c51082% 7 [u(jx — x'|T@TD A @/ @t A @)
+1(x — x'| V ul/* < s)e_d]. O
LEMMA 5.6. Ife> 0,8 >t>1>0, x,x' € R? and my € Mp(R?), then
E™(X,(B(x,¢)) X,(B(«',¢)))
(5.15) = 05.1152d(l_Zd/amo(Rd)(mo(Rd) +1)

F (R (6 V e — 2 V12— 1) 7).
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Proor. Let B = B(x,e), B'=B(x',¢') and ¢ >¢>1> 0. By (2.4) and
(2.5) the left side of (5.15) equals

Pyo(Y, € B)P (Y, € B) + [ ‘Ego(PY(Y,_, € B)PY(Y,_, € B')) ds
2 _ o 1/2 - o .
< mo(R?)Iqy]2(2¢) >t ~24/ + fo mo(R?)(26)*%(1/2) /|12 ds

+ mo(R%)cs 10e24(1/2) /e

% /'t (t’ _ s)(lx _ x,l_d_a A (t/ _ s)—d/oz—l A 8—d—a) ds
/2
(5‘]_6) +1(|x _ xll Vv (t' _ t)l/a < 8)ft g_dl(tl —8 < 30‘) dS]
/2

< clszd(mO(Rd)zl‘zd/“ + my(RE) 11 -24/a + m (RF) -4/«

X (ft (¢ — s)(|x — x| A (- s)_d/“_1 A s'd'“) ds
1/2

+1(x — x| V(2 — )V < e)e"‘_d)).

We have used (5.2) and Lemma 5.5 in the first inequality in the above. Let I
denote the integral in the last inequality. Then

(5.17) 1< f‘ (t'—s) ¥ds < (¢' =) Y(dfa - 1)1, d>a,
1/2

andif gg =¢ V |x — x|,

:_88 t

1< (' (' —s)dsey?

(5.18) /2
<e§"%d/a — 1) + g5 /2,
Use (5.17) and (5.18) in (5.16) to obtain the desired conclusion. O

(¢ —s) ¥ ds +f

'
t'—e§

We are ready to give a lower bound for the probability that k-multiple
points exist in a given compact set F, and, in particular (¢ = 1), that X hits
F. Our approach is motivated by the solution of the corresponding classical
problem for multiple points of a symmetric stable process Y [see Taylor (1966)
for the necessary methodology if not the result itself]. For 2 = 1, recall that if
points x,,...,x, are spaced out appropriately in F then

N
_ PY(Y hits F*) > ¥ PY(Y hits B(x,,¢))
(5.19) i=1
— Y. ). P{(Y hits B(x,,¢) and B(x;,¢)).

1<i#i'<N
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Estimates for the hitting probabilities of balls for Y are well known and when
the last term is estimated via the strong Markov property, one obtains the
sufficient condition C(g,_ X F) > 0 for PJ(Y hits F) to be positive. Although
hitting estimates for balls for super-Brownian motion are known when d > 3
[(D.I.P.), Theorem 3.2], the last term in the analog of (5.19) for X, is not easily
estimated by stopping X when it hits B(x;, ¢) or B(x;, ¢) at time T. This is
because one is then faced with analyzing the law of X,. To circumvent this
problem we usean inclusion—exclusion argument over space and time and also
require X,(B(x;,¢)) > ¢* instead of X,(B(x;,¢)) > 0. This will mean that the
only required probability estimates are Proposition 5.2 and Lemma 5.6. These
estimates depend only on the two-dimensional distributions of the process.
This explains why the method works in other settings where the potential
theory is not well developed such as multiparameter stable processes (see
Theorem 1.2).

In the classical setting, the a.s. existence of k-multiple points follows from
their existence with positive probability either by scaling and the Blumenthal
0-1 law or by the fact that the process has an infinite lifetime. X does not
scale as nicely and has a finite lifetime. This forces us to estimate the
probability of finding a k-multiple point in [0, 2%[] in terms of [ so that we can
let 1|0 and use Blumenthal’s 0-1 law. The key estimate (Proposition 5.7)
appears slightly more complicated because of this.

If I>0and reN, let I! =[(2r — 1),2rl], and for 2 € N and F c R?¢
define

A, =AM = {w: X, (B(x,27")) = 27" for some x € F and
t,elIlforl<r<k}
If ceR,let cF ={cx: x € F}.

ProprosITION 5.7. Assume d > 2a. Let k € N, R > 0. There is a constant
cs12(k, R) such that if | €(0,1], F is a compact subset of B(0, Rl'/*) and
m, € Mp(R?) satisfies

(5.20) mo(B(0, RIV%)) > 1,
then
Q™o(AL* T occurs for infinitely many n) = c; 15(k, R)C((gd_za)k)(l‘l/“F).

Proor. Let &, R, [, F and m satisfy the above conditions. By restricting
m, to B(0, RI'/*) and multiplying by [/m(B(0, RI'/*)) (< 1) we may as-
sume (use Proposition 1.7)

(5.21) mo(R?) = my(B(0, RIV/*)) = 1.
Choose {x}¥: i < N} C F so that if

IN = N_I(N - 1)_1 Z Z gd—Qa(lxiN - xilyll_l/a)k)

i#i
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then [see (1.3)]
(5.22) lim Iy = 1(gd_50)(17/°F).
Let p > 1,

A — pn27" if d = 2a,
m\p27  ifd > 2a,

and define
k
T, = {(iIAn,...,ikAn) e [11ki;e N}.
r=1
In what follows we will assume 7 is large enough so that
(5.23) 24, <.
Let A > 0 and choose N,, 1« so that if

N n~ k=t if d = 2e,

=N A—kz—nk(d—a)lk(Z—d/a) —
n=n an—nk(d—Za)p—klk(z—d/a) if d > 20[’

then lim, ,_ A, =A. If m'=m,/k € My and X',..., X* are i.i.d. measure-
valued processes on some (Q, .7, P) with common law @™, then (Proposition
1.7) X' + --+ +X* has law @™. Writing B, ,, for B(x}N»,27"), we therefore
have

Q™ (A,) = Qm"( U U {X,r(Bi’n) >2 " forl <r< k})
=1teT,

U U {X/(B;,) =2 forl<r< k})
=1teT,

N,
Z Z P(X/(B;,) =2 forl<r=<k)

(5.24)

b}

i,

Z 1((i,t) #(i',t))P(X/(B,,) = 27",

X(B;,) =2 forl<r<k)

k
=Y ¥ T1Q™(X,(B;,)=27")

k
- X 1((i,t) # (i',t'))zzk"“gEm'(X,,(Bi,n)X,;(B,-r,n)).
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(5.21) and (5.23) allow us to apply Proposition 5.2 and conclude that for
t,ell, r<k,

Q™(X,(B;,) =27") 2 c5mo(R) k™ inflg, ,o(y)): ly| < 2RIYJ2 "=
> c,(k, R)[17d/ag=nd-) _
[by (5.21), (5.2) and (5.4)].
This result and Lemma 5.6 show that (5.24) implies

Q@™(A,) = cy(k, R)A, —cg(k) A}

(5.25) _ 04(k)lk(l—d/a)2—2nk(d—a)2 ,
where
Nﬂ
L=X L @)=
n i,i'=1¢,¢t'eT,
: -d
X TT(@7 v el = i) v i, = g/ e) "
If ¢ >0,
=X Y10, A, A, €18 (e v (jiA, —jA)Y)"
Jr<Jt
and
=Y 1(j,A, € IH)ex9,
jr
then
S, < 21%A.? fl(e v /ey T g
0
(5:26) = 213—d/“A;2f1(gl—1/a v a0y gy
0
< c5l3‘d/°‘A;2gd_2a(el‘1/")
and .

(5.27) S, < 21A; 174 = 2]27d/ap - (g] "1/ )T
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Use (5.26) and (5.27) with ¢ = 27" V |x/» — x| to see that for n > n (),

Nn
T osco(k)| L (100 mragthg, o (27 v [a - al
n

l,.i'=.,1

i)

+1@d/ORpCE((27m v | N — e )l_l/a)k(“_d)) :

+Nn(l(3—d/a)kA;2kgd_2a(2—nl—l/a)k + l(3—d/a)A'—l2gd_2a(2—nl—l/a)

(5.28) Xl(2—d/a)(k—I)A;(k—1)(2—nl—1/a)(k_1)(°‘_3))

< co(R) | NZIC4/ A2 Iy + Iy 270K~
X (A7 114/ 0g, o (2717 )) ")
A )
+l2—d/aA’—llgd_za(z—nl—l/a)zn(k—1)(d—a))]‘

In the last line we have used the fact that r*~%g,_,.(r)~! is decreasing near 0
to replace (27" V |xN» — x¥=|)I~1/* with 27"1~'/* in the second of the four
terms (at least for n large enough, depending only on !). By considering the
cases d = 2a and d > 2a separately one finds that for n > n (1) [> ny(0)],

(logz)z—lp—lzn(d—a) < lz_d/aA;Igd_za(z_nl_l/a) Sp_lzn(d_a).
Use the above in (5.28) to see that for n > n (),
Y < o(B)| N2LO-4/A 3, (14 ) + N, AZAE270 (4 7).
n

Now substitute this inequality into (5.25) to conclude [for n > n(]
Q™(A,) = cy(k, R)A, — cs(R)X, — Cs(k)/\znPkIN,, —cg(k)A,p~ "
Let p = max(2cg(k)cy(k, R)~%, 1) and use Iy > g,_4,(2R)" to see that
Q™ (A,) ZCQ(k’R)An_clo(k’R)IN,,Azn’ n > ny(l),
and hence, if I = I((g,_,, ) XFL~1/),
liminfQ™(A,) > co(k, R)A — cyo(k, R) A,

n—o

Finally, choose A = c4(2¢,oI) ™" and hence obtain
Q™(A, i.0.) > limsup@™(A,) > c515(k, R)I . O

n— o

As we saw in Section 3 there are k-multiple points in any nonempty set if
a < 2, and so we assume X, is a super-Brownian motion (a = 2) in the rest of
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this section. Note that the above result gives information on the amount of
X,-mass near points in F.

TuEOREM 5.8. Let o = 2 and d > 4. There is a function cg15: N X (0,0)? —
(0,») such that if A is an analytic subset of B(0, M) and my(B(0, M)) > 0
(my € Mp[R?)), then

Q™ (ANR, + D) = c55(k, M, mo(B(0, M)))C((gd_4)k)(A).

Proor. By the inner regularity of C((g,_,)*) it suffices to prove the result
when A is compact. Proposition 5.7 with [ = m(B(0,M)) A1 and R =
Mi1~1/2 implies

Q™o( AL * 4 infinitely often) > c; 1,(%, R)C((gd_4)k)(Al‘1/2)

> ¢5.15(k, M, mo(B(0, M)))C((gd_4)k)(A).

The event on the left side implies A%™" N (N*_,R(I})) # & infinitely often in
n and hence A N R, # & by the compactness of A. D

Theorem 1.1 is immediate from the above.

We can apply the method of Taylor (1966) and Fristedt (1967) to obtain a
lower bound on the Hausdorff dimension of R,, which ‘together with the upper
bound from (D.L.P.) will prove Theorem 1.3, i.e., dim R, = d — k(d — 4).

Proor oF THEOREM 1.3. The upper bound on dim R, [including the fact
that R, = @ if d — k(d — 4) < 0] is given by Theorem 1.6 of (D.L.P.).

For the lower bound when d > k(d — 4), let us first assume the initial
measure X, = m satisfies

(5.29) mo(B(0,21Y%)) > 1, forsomel, |0.

Choose d’ <d (d’ € N) and o' € (0,1) such that d — d’ + &’ > k(d — 4), and
let Y, be a d’-dimensional symmetric stable process of index «’, independent
of the super-Brownian motion X and starting at 0. It will be convenient to
work on the canonical product space of paths, (Q X Q', @™ X Pg). If =(I) =
inf{¢: |Y;| > 1*/%}, introduce F; = cl({Y,: ¢t < 7(1)}), and if B,(x, a) denotes the
r-dimensional open ball let '

F, = F/ x cl(B,_4(0,17?)) c B4(0,21'/?).

The scaling property of Y shows that I(gk_,)X(I"'/?F)) is equal in law to
I(gk_,XF)) (the necessary measurability is easy to check). Since dim Fy = o’
[Takeuchi (1964), Theorem 6], it is easy to see that dim F; =o' +d — d' >
k(d — 4) and therefore I(g;_,NF,)) < as. [e.g., see Taylor (1961)]. An
elementary argument therefore shows

liminfI(gk_,)(F,1,'/?) <o for Pj-aa. w'
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Fix such an w’ and a subsequence [,(w’) along which I(gj_,XF, ! n/ 2

remains bounded. Proposition 5.7 with R =2and F=F, (w’) [(5.29) 1mphes
(5.20)] shows that

Qmo({w: rk] R(I’{nj)(w) N Flnj(w’) * @})

r=1

is bounded away from 0 uniformly in j. The Blumenthal 0-1 law now gives
Qmo ({ ﬂ R(Ilm)(w) NF, (w ) # & for infinitely many_]}) =1.
r=1

Therefore I1,(R,(w)) N F{(w') # &, @™ X P%a.s., where I, denotes the
projection of R? onto R?. Fubini’s theorem shows that C(g, _ X R, (w)) > 0
@™o-a.s. and hence dim I1 (R (w)) > d' — o' @™°-a.s. It follows trivially that
dim(R,(w)) > d’' — &' and, taking d’' — o' arbitrarily close to d — k(d — 4),
the result follows under (5.29).

In general let

! k P —_
R,(8,) = U '01R(Ij) CcR,,

where U’ indicates the union is over disjoint compact intervals I,,..., I, in
(8, ©). The Markov property shows

Q™(dim(R(5,%)) > d — k(d — 4)|.7;)(w)
= Q%W(dim R, > d — k(d — 4)).

The necessary measurability arguments are again easy to provide [see, e.g.,
Lemma 6.3 of (D.I.P.) or Cutler (1984)]. Theorem 6.5 of Perkins (1988) implies

(5.831) limsupX,(B(x,1?))I"! =w for X;-a.a.x andall > 0 Q™" a.s.
L0

(5.30)

Fix w such that (5.31) holds. For small enough 8, X; # 0 (recall m # 0) and
we may choose x so that (5.31) holds. The previous case with X;(w) in place of
m, and x in place of 0 (use translation invariance) shows that the right-hand
side of (5.30) is one. Hence w.p.1 the left-hand side of (5.30) is one for small
enough 8 and hence

dim R, > d — k(d — 4) Qmo-a.s. i
Finally, we show the above results hold if R, is replaced by R,.

THEOREM 5.9. Assumed > 4, k € N, m is a nonzero finite measure on R?
and Q™0 is the law of super-Brownian motion starting at m,.
w .

(@) dim R, = d — k(d — 4) @™°-a.s., where dim R, < 0 means R, = Q.

(b) If A is an analytic subset of R? satisfying C((g4_)*XA) > 0, then
QM (ANR, + ) >0.
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Proor. (a) It follows easily from (4.15) that
(5.32) R,-R,c{Z(u) €eR%0<u<w} as.

and therefore is countable a.s. [by (4.15) again]. (a) now follows from Theorem

1.3.

(b) Let k(d —4) <d and assume first A is a Lebesgue null analytic
set satisfying C((g,_,)*)A) > 0. Then (5.32) and Theorem 4.9 imply
Q™ (R, — R,) N A+ @) = 0. Theorem 1.1 shows @™(R, N A # &) > 0, and
thus completes the proof in this case. If A has positive Lebesgue measure, one
can choose a Lebesgue null subset B such that C((g;_,)*)}B) > 0 [e.g., use
Rogers (1970), Theorem 57, and the relationship between capacity and
Hausdorff measure]. The previous case shows @ (R, N B # &) > 0 and the
result follows. O

6. Polar sets for S(X,). Throughout this section @™° denotes the law of
d-dimensional super-Brownian motion starting at m, and d > 3. The follow-
ing results are taken from Section 7 of (D.I.P.): Assume 0 < ¢; < -+ <{,.

k
(61) NS,=2 Qm-as.ifd>3andk>20ord=3andk>2.

i=1
(6.2) If d=3thendim(S, NS, )<1 @Qmas.

If AcR? and ke N satisfy x9~2 — m(A) =0, then

(6.3) AnS, n---nNS, = Qme-as.

It is easy to use the method of Section 5 to prove converses to these results.
The proofs are much simpler and are therefore omitted. For example, the
inclusion-exclusion argument is now carried out only over space and not space
and time. A partial converse to (6.3) is given by (b) of the following result.

TueOREM 6.1. (a) There is a function cg,: N X (0,%)3 — (0,%) such that
if A is an analytic subset of B(0, M), my(B(0, M)) > 1972 and 0<1 <
¢, <+ <t, <L, then

Qmo(A N Stl n-nN Stk #* Q) 2 ce.l(k’ l’ L’ M)C((gd—z)k)(A)
(b) If A is an analytic subset of R%, 0 <¢, < -+ <¢t, and my # 0, then
C((g4-2)")(A) > 0 implies Q™ (AN S, N :- NS, # ) >0.
[6.1) implies that (6.3) and Theorem 6.1 are only of interest if k =1, or
d=3and k = 2.

The proof of Theorem 1.3 now gives the opposite inequality to (6.2) with
positive probability.
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THEOREM 6.2. Ifd =3,0 <t <ty and my+# 0 (m, € My), then

Q™o(dim(S, N S,) =1) > 0.

REMARK 6.3. (a) Theorem 6.1(b) implies that a fixed set A will intersect S,
with positive probability if A intersects a d-dimensional Brownian path I'} =
{B,: 0 < s < 1} with positive probability. Theorem 7.1 of (D.I.P.) shows that if
S, # &, then S; and I'; both have positive and finite Hausdorff ¢ — m, where
¢(x) = x2 loglog 1 /x. We have no explanation for this correspondence between
two such apparently different sets.

(b) We conjecture that Theorem 6.1 remains valid if d = 2, and that the
converse to Theorem 6.1(b) holds for all d > 2 (thus tightening the above
correspondence).
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