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UNIVERSAL ALMOST SURE DATA COMPRESSION

By DONALD S. ORNSTEIN® AND PauL C. SHIELDS?

Stanford University and University of Toledo

An n-code is a mapping ¢, from the set A" of sequences of length n
drawn from a finite set A into the set of finite length binary sequences B*.
A decoder with distortion D is a map from B* back into A" that sends
c,(a?}) into a sequence that agrees with af in all but at most Dr places. We
describe a sequence of codes and associated decoders of distortion D such
that, for almost every sequence from an ergodic process, the number of bits
per A-symbol converges almost surely to R(D), the optimal compression
attainable for the process. The codes are universal in that the statistics of
the process need not be known in advance. Expected value results of this
type were first obtained by Davisson and, independently, Fittinghof; almost
sure results for the invertible case (D = 0) are implicitly contained in the
Ziv-Lempel algorithm. Our results also apply, virtually without change in
proof, to random fields.

1. Introduction. For our purposes, a source u is a stationary, ergodic
process {X,} taking values in a fixed finite set A, called the alphabet. The
alphabet size will also be denoted by A; for cardinalities of other sets we use
the common | - | notation. The set of n-length sequences drawn from A will be
denoted by A™ and x? will denote x,,,%,,.1,--.,%,. A code (or more precisely,
a binary n-code) is a function c, from A" into the set of finite length binary
sequences B* = U%_;B", where B = {0, 1}. The length function I(x}) is de-
fined by c,(x) = bi*D), and its associated compression factor is defined by
r(c,(x7)) = I(x])/n. The expected compression factor, R(c,) = E, (r(cy(x]))),
is called the rate of the code. The code is called a block code if I(x7) is
constant, a.s.; otherwise it is called a variable-length code.

To measure fidelity, we use the average Hamming distance

1 n
dn(xf’yil) = ;Z d(xi)yi),

i=1
where
1, ifx=y
d R j— ; ) )
(%,) {O, otherwise.

A code c, will be called D-semifaithful if there is a function ¢,: B* - A",
called the decoder, such that

d (57, ¥a(ca(x1))) <D,  xp€A.
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In the invertible case (D = 0), such a code will be called faithful or noiseless.
The (operational) rate-distortion function R (D) is defined as follows: If g% is
fixed, the set {a}: d (a}, @}) < D} will be called a (D, n)-ball with center art, or
simply a D-ball if n is understood. Let .~ be a subset of A" and define
N(D, #) to be the minimum number of D-balls needed to cover .. Define

R, (D,e) = min log, N(D, ),
Su(A)=1—¢

that is, the exponent in the minimum number of D-balls needed to cover a set
in A" of probability 1 — . Then define

(D) = lim lim R,(D,e).

As noted in our final remark, R, (D) = lim, _,,R*(D), where R*(D) is the
greatest lower bound of the rates R(c,) over the class of all D-semifaithful
n-codes c,,.

The landmark papers by Davisson [1], Lynch [6] and Fittinghof [4], first
showed the existence of asymptotically optimal noiseless codes in the expected
value sense for some classes of sources. These results were extended by many
others, until it was finally established that for the class of ergodic sources with
a given finite alphabet A, there is a sequence {c,,} of D-semifaithful codes such
that for each ergodic process u the compression factor r(c,(x)) converges in
L'-norm to R D) [5]. The Ziv-Lempel algorithm [11] provides a sequence {c,}
of invertible codes such that for any ergodic source u the sample compression
ratio r(c,(x7')) converges almost surely to R .(0) = H, the entropy of the
process. Our principal result is an extension of the Ziv—Lempel result to obtain
almost sure convergence for the semifaithful case.

THEOREM 1. Forany D > 0 there is a sequence {c,} of D-semifaithful codes
such that for any ergodic source n, the sample compression factor r(c,(x")
converges almost surely to R M(D).

If the source is known, then the definition of the rate-distortion function
implies the existence of an asymptotically optimal sequence of codes. Theorem
1 asserts that a sequence of codes exists that is universal, that is, we can
design a code in advance such that for any given ergodic source the code
almost surely performs as well asymptotically as a code designed specifically
for the source. Our proof is based on the covering ideas contained in a recent
paper by Ornstein and Weiss [8]. In order to make the proof more easily
understood by the reader, we first give the proof in the noiseless case, then
extend to the semifaithful case. )

A feature of our method of proof is that it extends to random fields, that is,
processes of the form {x, , . }. This extension to random fields is essen-
tially a mere translation from one dimension to M dimensions; e.g., we just
replace a single integer n by an integer-valued M-vector n = (n, ny,...,n,,)
and define a block to be an M-dimensional rectangle. We note at the end of our
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paper the place in Section 3 where somewhat more work is needed in the
random field case.

2. The invertible case. Our code will use the partition of x7 into the
contiguous nonoverlapping blocks

{xit Y% i=1,2,...,q}, n=kqg+r,0<r<k,
and the empirical k-block distribution p, defined by

{i: x50 =at, i <(n—r)/k)

(1) ﬁk(alf) = l (n _ r)/k

The remainder x7_,., can always be encoded separately without affecting
asymptotic performance since we will assume that & grows like 1 log, n. It is
sufficient, therefore, to construct the codes for the case n = kA%*, a relation
assumed to hold in our subsequent code constructions.

An informal description of our code is the following: First, the sequence x7
is partitioned into contiguous nonoverlapping k-blocks. Second, a list of these
k-blocks in order of decreasing frequency is transmitted, which we call the code
book. This-initial listing of the code book is short relative to n, since & is
asymptotically  log, n. Successive k-blocks in x7 are then encoded by giving
the index of the block in the code book. High frequency blocks appear near the
front of the code book and therefore have short indices, which will guarantee
optimal asymptotic performance. A construction similar in spirit to ours was
used to obtain asymptotically optimal expected coding rates in [10]; our proof
techniques are quite different, however, and yield almost sure convergence.

To describe our code more precisely, let us first define the concatenation
operation * as

= — ~S — Kt
a*b=a;,a9,...,0,,b;,by,...,0,, a=aj,b=">;.

(Commas are used here for visual clarity.) Next we choose a fixed invertible
function f: A — B®, where 2°7! < A < 2, to encode the alphabet symbols,
and then extend to sequences by concatenation to obtain f,: A" — B°",
defined by

falal) = f(ar)x f(ag)* -+ = f(a,).
Fix a sequence x]. The encoded sequence c,(x]') = b:*D will be the con-
catenation of two binary sequences b* and 5%}, that is,

= pl=D) = = Ixf
Cn(x{l) - bl(xl) - b1b2 bmbm+1 bl(x{‘) - bin *bn(zﬁ—ll)

The first part 7", the encoding of the code book, is defined as follows: Arrange
the possible sequences a* in order of decreasing values of their empirical
probabilities p,(a*), defined by (1), and call this list the code book .. Define
b* to be the #-concatenation of the binary blocks f,(a¥) in order of the
appearance of a* in the code book _Z. Note that the length of this first part m
is asymptotically upper bounded by k(1 + log, A)A*, which is o(n), so that
the listing of the code book makes a negligible contribution to code length.
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Note also that the decoder does not need to know the actual frequencies of
each k-block, but only an ordering in terms of frequencies.

The second part of the code 5'(*1) contains the addresses in the code book .~
of the successive k-blocks in x]. To make this precise, let us define

o (xEHD%) =j, if xE V" is the jth sequence in the list 2.

To obtain compression these addresses must be expressed as binary sequences
of variable lengths so that high frequency blocks, which appear at the begin-
ning of _#, will have short binary addresses. To guarantee unique decodability
of these binary addresses we use a technique of Elias [2], which was suggested
to us by Imre Csiszar. A short binary prefix is added to the standard binary
representation of each integer so that no binary address is a prefix of any other
binary address. This is done as follows. Let BIN(n) be the usual binary
representation of the integer n and let LEN(#n) be the length of this binary
representation of n, so that BIN(n) = bLEN™_ Also, let Z(bT) be a sequence
of 0’s of length m equal to the length of the binary sequence b7*. Then define
the function G(n) by concatenation as
G(n) = Z(BIN(LEN(n))) *BIN(LEN(n)) *BIN(n).

Note that the leading bit in the standard representation of an integer is always
a 1, so that decoding is easy. The initial block of 0’s must be Z(BIN(LEN(n))).
This tells how many further bits to read to determine the second
block BIN(LEN(7)). This second block tells us how many further bits
to read to determine BIN(n) and hence n. Thus any concatenation

G(n)*G(ny)* -+ *G(n,) can be uniquely decoded to produce the sequence
of addresses 7, 1y, ..., n,. We now define b.*) to be the concatenation of the

G(A (&L P0) for 0 < i < n/k.

As noted earlier, the amount of space m needed to transmit the code book
Z is o(n). Likewise, it is easy to see that the total space taken up by the
address prefixes is also o(n). Let ./, = &, LEN(M(xf;eill)k)) To complete the
proof of Theorem 1 in the noiseless case it is enough to show that

. n
lim — =H, a.s,

n—oo N
where H is the entropy of the process. We make use of a recent covering result
of Ornstein and Weiss [8, Section 2, Theorem 2], stated as follows.

Lemma 1. Let {X,} be an ergodic process with finite alphabet A and
entropy H. Let ¢ be a positive number. There is a K, such that if k > K, there
is a collection 7, = J;(¢) C A, of cardinality at most 2H*+* sych that for
almost every realization x = {x} there is an integer K > K, such that if k > K
and n > 28*, then the following are true.

(1) In the sequence x{‘, the k-blocks x{.*V* belong to 7, for all but at most
(1 — €)% of the indices i. )
#(ii) If %, is a collection of sequences of length k such that in xi the blocks

x4 V¥ belong to B, for more than €% of the indices i, then the cardinality

of %, is at least 2H =k,
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A proof of an extension of this lemma to the rate distortion case will be
given in the next section. The lemma is applied in the following way: Let us
choose £ > K and put n = kA%* noting that n > 2%, since H < log, A. Let
I, = () be the collection of typical sequences given by Lemma 1 and let .9
be the first 2(7*9* members of the code list .#, so that |.9| > |.7,| and
Pp(7,) = 1 — . Since - lists the blocks in order of decreasing frequency, we
have p,(9) = p,(7,). Thus all but (1 —e)% of the binary addresses
BIN(o/(x{,* V%)) refer to members of .7~ and thus have lengths bounded above
by (H + &)k. For the lengths of the binary addresses of those k-blocks that are
not in .7, which are at most £% of the addresses, we can use the crude upper
bound 1 + % log, A. Thus we have

S <(1—¢)[n/kR)J(H +¢e)k +¢e[n/k](1 + klog, A)
and hence

limsup./,/n < H, a.s.

n—o

To show that this limit superior is really a limit and equal a.s. to H, we
make use of the second part of Lemma 1. Let & be the first 27 ~9* sequences
a” in the list .. The lemma guarantees that there can be at most [n/k]e
indices i for which x{;*»* belongs to %. These are the only k-blocks that can
have addresses shorter than (H — ¢)k; hence

liminf.”,/n > H(1 —¢)(1 —¢), a.s.
The proof of Theorem 1 in the noiseless case is now complete.

3. The semifaithful case. 'We now extend our previous construction to
the semifaithful case. The distortion level D will be fixed throughout this
section and we set R = R (D). For convenience we modlfy our definition of
D-ball to allow subsets, that i is, a nonempty subset of {a*: k(al, k) < D} will
be called a (D, k)-ball with center G*, or simply a D-ball if % is understood
Thus, in particular, a D-ball need not include its center.

As before, we assume that n = A%* and count frequencies of nonoverlap-
ping k-blocks in x7, letting p, denote the empirical distribution of k-blocks
defined by (1). Thus to say that a collection € of k-blocks covers a% of x] is
to say that p,(¢) = a. Let %, = %,(x}) be the set of all k-blocks that appear
in x7, that is,

(2) U = {at: pu(at) > 0}.

We construct our code book as follows: By induction, pick a sequence {V;} of
D-balls such that V, is the D-ball contained in %, — U ;_,V; of largest p,
probablhty Let a(i)? be the center of V, and let ( D) be ‘the list of the a(i)k
in order of increasing i. The first part of our code, b7, is defined to be the
concatenation of the binary blocks f,(a(i)*) in order of increasing i, where, as

before, f,: A* - B** is our fixed binary encoder. The second part of the code,
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bi*1) is the concatenation of the G(o/p(x{L*D*)), where o/ (x(, V%) is defined
to be j if x((1Y* e V.

As in the noiseless case, the listing of the code book and the sum of all the
prefix lengths are each o(n), so it is enough to show that ./, /n - R, as,,
where .7, is the sum of the lengths LEN(2/(x{.%?*)). To accomplish this we
again make use of the Ornstein—-Weiss result (our Lemma 1), modified here so
that it covers the semifaithful case. We first define the D-neighborhood of a set

€ of k-sequences as

Mp(€) = {a*: d(a%, u¥) < D, for some u* € ¢}.

LemMa 2. Let {X,)} be an ergodic process with finite alphabet A, measure u
and entropy H, and set R = R (D), where D is fixed. Fix a positive number &.
There is a K, such that if k > K, there is a collection €, C A* of centers of
cardinality at most 2% such that for almost every realization x = {x;} there
is an integer K = K(x) > K, such that if k > K and n > 2"* then the follow-
ing are true.

(i) In the sequence x7}, the k-block x{. D belongs to N1(€),) for all but at
most (1 — )% of the indices i.

(i) If %, is a collection of sequences of length k such that in x{ the blocks
xR belong to Np(B,) for more than €% of the indices i, then the
cardinality of %, is at least 2Rk,

We first show how Lemma 2 leads to the conclusion that .7, /n < R, a.s. As
in (1) and (2), let p, be the empirical distribution and %, the universe of
k-blocks determined by x7. Also let {V;} be the partition of %, into disjoint
D-balls used to define the code book -Z(D). Define M to be the first integer
such that $,(V;,) < 2 %%+ and define

c=UV, &= UV.
i<M i>M

Our goal is to show that & covers most of x[', that is, that ﬁk(@b ) is small, for
since M < 2¥E+e) this will show that ./, /n cannot be much larger than
R +e.

We can assume that % is so large that 27%*/2 <¢/2 and so that for
n = kA% Lemma 2 provides us with a collection .7, C %, such that p,(7}) =
1-¢/2 and J, can be partitioned into a collection {U;} of no more than
2#E+¢/2) D balls. From the definition of M we have that

ﬁk(l]l N f") Sz—k(R+e)’ .
so that
u ﬁk(g))=13k((02/k—<7k)n@5)+13k(97zn@5)

< 8/2 + 2k(R+e/2) . 2—k(R+e) <e.
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This establishes that
A< (1 —¢e)[n/k](R + &)k +e[n/k)(1 + klog, A),

so that limsup, .. /n < R, a.s. An argument using the second part of
Lemma 2, similar to that used in Section 2, shows that this limit superior is
really a limit and equal to R = R (D).

Proor oF LEMMA 2. We sketch the proof of the first part of the lemma,
indicating where changes need to be made in the Ornstein—-Weiss argument.
Let 6 and 1 < /2 be positive numbers to be specified later. First we use the
Shannon-McMillan theorem [3] for the rate-distortion function to obtain an
integer M and a subset € = ?M of AM with the two properties:

(a) The cardinality of ¢ is at most 2B +2/2M .
(b) If w,, is the measure on A defined by u, then u, (Ap(€)) = 1 — 52

For each positive integer k& > K, where K, will be prescribed later, let
€y, = ©y, M be the set of all sequences a such that for all but (1 — 35)% of the
indices i, 0 <i <k — M, the M-block a'*¥ belongs to 4. As in the
Ornsteln—Welss proof, a count of the possibilities shows that for suitable
choice of K, and &, the cardinality of ¢, is at most 28*®* for all & > K.

From the ergodic theorem we know that for almost all infinite sequences
x = {x;} there is an integer K = K(x) > K, such that if # > K and n > &,
then all but at most (1 — 2n2)% of the M blocks x/{¥*" in x] belong to

D(KM) If & is in the range n > & > K, then, by the Markov inequality, all
but at most (1 — 27)% of the k-blocks x{.** must belong to .#,(£}), since we
assumed that n < §/2.

This implies the first conclusion of Lemma 2.

We now turn to the proof of the second part of Lemma 2. Note that the
relation between n and % is now allowed to be arbitrary, subject only to the
condition that n > 25*  As before we let p, be the distribution of k-blocks and
%, the universe of k-blocks determined by x7, as defined by (1) and (2).

Fix a positive number ¢. Let us call a sequence x] ¢-bad if the second part of
the lemma fails for it, that is, there is a collection %, C A* of cardinality less
than 2(F~9* guch that the blocks x{.*%* belong to .#;(#,) for more than ¢%
of the indices i. Let .2(n, ¢) be the set of all e-bad sequences of length n. The
proof of Lemma 2 will be completed if we can show that for almost all x = {x},
x7 belongs to 2(n, ¢) for only finitely many n. To obtain better control of the
bad sequences we first use Lemma 1 to choose a collection 7, c A* of
cardinality no more than 2**®, such that for almost every x = {x,} we have
D,(Z73) > 1 — 8, so long as k is large enough and n > 27*, The number § will
be specified later. We think of .7, as the set of typical k-blocks. Now define

2i(n,e) = 2(n,e) N{x]: pp(7) > 1 - 8}.

Fribm Lemma 1 it is enough to show that for almost all x = {x;}, x{' belongs to
9,(n, ¢) for only finitely many n. Our desired result will be a consequence of
the following two lemmas.
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LEmMMA 3. Given & > 0 there is an £ > 0 such that for all sufficiently large
n, 2(n, ) can be covered by fewer than 2"E=9(D, n)-balls.

LeEmMA 4. The set A™ can be partitioned into two sets %, and £, such that
the following hold.

() For almost every x = {x;}, the finite sequence x} belongs to &, for only
finitely many n.
(ii) No (D, n)-ball contained in %, has probability larger than 2~ ™E~®,

The second part of Lemma 2 follows easily from these two lemmas. Lemma
3 and part (ii) of Lemma 4, with ¢ replaced by £/2, imply that 2/(n,¢) N £,
has probability less than 27"¢/2 and this together with part (i) of Lemma 4
shows that indeed x € 2(n, ¢) only finitely often, almost surely. Thus it is
enough to prove Lemma 3 and Lemma 4.

Proor oF LEMMA 3. Let us write n = km + r, where 0 < r <k, and let I
be the set of integers in the interval [0, m). A collection . of k-sequences that
can be covered by fewer than 2*%~9 D.balls will be called too thin. If a
sequence x7 is bad, then we can find a subset I; of I, of cardinality at least
me for which the set of sequences

Aaf, 1) = {=30* i e 1)

is too thin.
Our proof of Lemma 3 will use the following ideas, stated here in somewhat

vague form.

(a) The number of too thin collections determined by the bad n-sequences is
exponentially small in n.

(b) The set of sequences with the same too thin collection ./ covering a
fixed set of places of cardinality at least ne can be covered by exponentially
fewer than 2"£(D, n)-balls.

Let us begin by bounding the number of too thin collections . that are
needed for all the bad r-sequences. Toward this end we need consider only the
too thin subsets of the set .7}, of typical k-blocks.

Next we use an idea of [3] to control the sizes of D-balls. A (D, k)-ball will
be called big if its cardinality exceeds 2*#~F+¢/9 Choose a maximal set {V,}
of disjoint big D-balls contained in .7, and let & = U,V,. Note that since
| 7] < 29k the set & can be covered by fewer than 2#(%+0=¢/9 D halls. We
can therefore assume that 8 is chosen so small that for any too thin subset .
of 7, the following holds:

(3) The set U & can be covered by fewer than 2*£~¢/® D_palls.

The number of possible .U % can be bounded as follows: Let & = .9, — %
and note that the number of distinct U & is the same as the number of
distinct N 4. To count the latter recall that, by definition, a D-ball con-
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tained in % must have fewer than 2*#~E+</9 members, so that since a too
thin collection .~ can be covered by fewer than 2(E~* (D, k)-balls, we have

|#N g}q < QR—e)Qh(H-R+s/4) o Qh(H—5/2)

Therefore, if n > 2*¥, the number of possible sets .U % is upper bounded
by

QR(H+8) Oh(e +5)2 ke +O)gh(H+5)
(4) (2k(H_E/2) < 22k(e+0) < 2"A" where B, > 0as n - x,

where we used the fact that p';) < 27%rPlogp if p < 1.
Now we show how to cover the bad set 2,(n, £) by exponentially fewer than

2E7 (D, n)-balls. By using the first part of Lemma 2 we can assume
(5) ), can be covered by fewer than 2¢(E+% (D, £)-balls.

Fix a set I, c I of cardinality at most 9§, fix a set I; C I of cardinality at least
me, and fix a too thin set ./ contained in .7,. Consider the set 2(.7, I,) of all
bad sequences x} such that A (x7, I;) € U & and the indices i for which
xitDR & 7 all belong to I,. We cover 2(., I,) by (D, n)-balls by using the
(D, k)-balls that cover .U % to cover the k-blocks that start in I, then
using the (D, k)-balls that cover .7, to cover the k-blocks that start in
I — I, — I, and finally covering the remaining %-blocks and the last r terms in
some arbitrary way. Thus, using (3) and (5), the number of (D, n)-balls needed
to cover 2(., I,) is bounded above by

(6) 2(R—£/8)k|11| . 2(R+5)k(m—6m—|11|) . AkSm - A" < 2(R—t—:1)n

if & is small enough, where ¢, is positive and independent of n. Since the
number of subsets of I, the set of places where k-blocks can start, is upper
bounded by 2™ < 2"/* we also have:

(7) The number of ways to choose I, and I, is upper bounded by 22" /%,

Thus the bounds (7), (4) and (6), with § chosen small enough and % large
enough show that there is a positive number £ such that the bad set 2/(n, ¢)
can be covered by fewer than 2"%~9 (D, n)-balls. This completes the proof of
Lemma 3. O

Proor or LEMMA 4. We again make use of the idea suggested in [3], this
time to control the measures of D-balls. Let us call a (D, n)-ball fat if its
measure is at least 27"£~%), Note that fatness refers to measure, while bigness
referred to cardinality. Let ® = {¥/} be a maximal disjoint collection of fat
(D, n)-balls and put %, = U,;%, &4, = A* — %,. Then property (ii) of Lemma 4
certainly holds.

Note that the fat part of the space .%, can be covered by fewer than 2%~
(D, n)-balls. This is the only property of the sequence {#,} that will be used in
the remainder of the proof. To make this explicit we state this fact as the
following lemma, from which Lemma 4 follows easily.
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LEmMA 5. Let {,} be a sequence of sets such that for each n, the set 7,
can be covered by fewer than 2™E~® (D, n)-balls. Then for almost every
sequence x = {x;}, the block x} belongs to F, for at most finitely many n.

Proor. We shall show that if Lemma 5 is false, then for sufficiently large
m we can cover a set of m-sequences of large probability with exponentially
fewer than 2™F (D, m)-balls. To establish this we shall use the covering
argument recently employed to extend the asymptotic equipartition property
to amenable groups in [7] (see also the appendix in [9] for a description of the
one-dimensional form of the construction used here).

Let us suppose that Lemma 5 is false, so there is a positive number y such
that for any N there is an M > N such that the set

n=M
-'U st e 5
n=N

has measure greater than y. Let 8 be a positive number to be specified later
and use the definition of the rate-distortion function to find a positive integer
L and a collection 4}, of L-sequences of probability greater than 1 — & that
can be covered by fewer than 2L®*® D.balls. Choose N so large that
2L/(N + 2L) < § and then choose M so that w(W¥) >y Put W= U"
Note that W is a set of finite sequences of lengths varying between N and M
while W = {x: 2} € W, for some n, N < n < M}.

Let us call x good if we can find a collection % of nonoverlapping blocks
x!f™ with the properties:

(a) The collection % is the union of two cisjoint subcollections, € and %7,
such that the blocks in ¢ all have length L and belong to <7, while the blocks
~in # all belong to W.

(b) % covers all but 26% of x7.
(c) # covers at least y% of x7.

Let T, be the set of all good n-sequences. We shall prove
(8) lim u(T,) = 1.

We sketch the covering argument used to prove this in the one-dimensional
case, referring the reader to the appendix in [9] for the details. Let 7' denote
the shift on sequences x = {x .}. For a given x define two increasing sequences
{n;} and {m,} of positive 1ntegers with n, <m; <n;,, as follows: Let n, be
the first positive integer such that x," belongs to W and define m, to be the
least such m. Having defined n; and m; for i <j, define n; to be the least
integer greater than m _, such that there is an m such that xre W, and
define m; to be the least such m. The process stops as soon as we get within
M —sN of the end of x{. Since the set of indices i for which x & T' W has
limiting density less than 1 — v, this proves that for all sufficiently large n, for
most sequences of length n we can cover at least y% of the sequence with
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nonoverlapping blocks that belong to W. Here “most” means in terms of
probability.

By a similar argument we can eventually also cover all but % of most
sequences of length n by nonoverlapping L-blocks that belong to 7. Combin-
ing these results we see that for n large we can with high probability both
cover y% of x}' by nonoverlapping blocks from W and cover (1 — 8)% by
nonoverlapping L- blocks from ¢,. The nonoverlapping blocks that belong to
W are assigned to # and the nonoverlapping L-blocks that are in €7, and that
meet no blocks in # are assigned to <. Since we assumed that 2L/
(N + 2L) < & we will with high probability in this way obtain good n-blocks.
This proves (8).

From the definition of fatness, the cardinality of the maximal set of fat
(D, n)-balls is at most 2" =2, Thus we can apply to I, an argument similar to
the one used to prove Lemma 3 to show that there is an a > 0 such that for all
sufficiently large n, I, can be covered by fewer than 2"(E=o D palls. This
contradicts the assumptlon that R = R(D) and establishes Lemma 5. Our
proof of Theorem 1 is now complete. O

ReMARK 1. Note that our proof of the result (8) made use of the linear
ordering of the natural numbers. For random fields in higher dimensions the
nesting argument used in [7] can be used to obtain the same conclusion.

REMARK 2. Lemma 5 also shows that there is no way to beat the rate-dis-
tortion function in the limit, no matter what sequence of D-semifaithful codes
{c,} is used. To see this let R = R (D) and suppose that there is a sequence of
codes such that

limsupc,(x') <R, almost surely.

n—o
Then for some & > 0 the sets
B(n,e) = {x:c,(x}) <R — &}

will have the property that, for a set of sequences {x;} of positive measure, x{
will belong to %(n, ¢) for infinitely many n. Since each #(n, ¢) can be covered
by fewer than 2"(®~¢) D-balls this would contradict Lemma 5.

A more minor observation is the following: Recall that the rate-distortion
function was defined as the best one can do asymptotically on the average with
block codes if an arbitrarily small part of the space is removed. Lemma 5
shows that it can be defined as the best one can do asymptotically on the
average with variable-length codes on the entire space. In other words,
R (D) = lim,, _,,R}( D), where R*(D) is the greatést lower bound of the rates
R(c ) over the class of all D-semlfalthful n-codes c,, block or variable length.
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