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Given a stationary Gaussian vector process (X,,,Y,,), m € Z, and two
real functions H(x) and K(x), we define Z% =AY} H(X,,) and
Zi =By L K(Y,,), where A, and B, are some appropriate con-
stants. The joint limiting distribution of (Zf, Zg) is investigated. It is
shown that Zf; and Zg are asymptotically independent in various cases.
The application of this to the limiting distribution for a certain class of
nonlinear infinite-coordinated functions of a Gaussian process is also dis-
cussed.

1. Introduction. Let (X,,,Y,,), m € Z, be a sequence of stationary
Gaussian vectors. We assume that EX,, = EY,, = 0, EX2 = EY,2 = 1 and

ri(m) = EXyX,, ~ |m| P,
ry(m) = EY,Y,, ~ |m|™F
as |m| — o, and
ry(m) = EX,Y,, ~ m~Ps,
ry(—m) =EY,X,, ~m™ P«

as m — o, where B, By, B, B4 > 0. With their correlation functions assumed
above, {X,,} and {Y,,} are usually called processes of long-range dependence if
B1, B2 < 1. Let G(x) and G,(x) be the spectral distribution of {X,,} and {Y,,},
and let Z; and Z, be their corresponding random measures. Since {(X,,, ¥,,)}
is stationary, there always exists a complex-valued function G4(x) such that

ry(m) = /e'i’"x dG,(x), VmeZ

Since the matrix

Gy(dx) Ga(dx)
Gi(dx) Gy(dx)
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1160 H.-C. HO AND T.-C. SUN

is positive definite, it follows that
|Gs5(dx)|” < G1(dx)Gy(dx).

Given two functions H(x) and K(x), satisfying EH(X,,) = EK(Y,)) =
EH*X,,) < w and EK*(Y,) < «, and having their Hermite expans1ons as

H(x) = Z ¢c;Hi(x) and K(x)= Z d;H,(x),

J=v Jj=vy

where ¢, # 0, d,, # 0, we define

n—1 n—1
Zp=A;'' Y H(X,) and Z:=B;'Y K(Y,).
m=0 m=0

It has been proved that, with proper choice of the norming factors A, and B,,,
Zj; and Zg have marginal limiting distributions as n — . When v, < 1 (or
v5Bs < 1), the limiting distribution of Zj (or Z2) has a multiple Wiener
integral representation and is non-Gaussian when v; > 1 (or v, > 1) [3], [6],
[9]. On the other hand, when »,8; > 1 (or v,8, > 1), the limiting distributions
of Zj; (or Zg) is, in fact, Gaussian [1], [2]. The purpose of this paper is to study
the joint limiting distribution of (Z%, Z%). Our main results can be summa-
rized in the following three theorems.

THEOREM 1. Assume v, < 1and v,B, > 1. When v, = 1 we also assume

1+
B=ByABy > —5—.

Then, with A,, = n'~"#1/2 qnd B, = n'/?
(2, 2%) ~a(2§,2¢) asn -,

where:

() Zf -4 Zj as n - «, where Z# has a multiple Wiener integral repre-
sentation and is non-Gaussian when v, > 1.
(i) Zg —»; Z# as n - o, where Z¥ has a Gaussian distribution.
(iii) Z}% and Z}¥ are independent.

THEOREM 2. Assume v, <1 and v,B, < 1. Then, with A, = n'=*1P1/2
and B, = n!~v2P2/2
(Z, Z) »q(Z§,ZE) asn >
where:
D Zy—4 Z% and ZE >4 Z§ asn > .
() Zj and Z} both have multzple Wiener integral representations and are

non-Gaussian when v, > 1 and vy > 1, respectively.
(iii) Z% and Z¥ are independent unless

B = (/31 + Bz)/z-
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THEOREM 3. Assume v,B; > 1 and v,B, > 1. Then, with A, = B, = n'/?,

(Zf,ZR) —a(Z5,ZE) asn > o,
where:

WD) ZE >, Z and Z} —, Z asn —> =,
(i) Z% and Z§ have a joint normal distribution.
(ii) Z% and Zj are independent unless the coefficients c; and d; in the
expansions of H(x) and K(x) satisfy the condition {j|j = v, and c; # 0} N
{jlj = vy and d; + 0} + .

In the above theorems, the notation —,; means convergence in distribu-
tion.

This problem was first studled in a paper of Hsiao [5]. However, his proof
was found to be false and his paper was never published. Our proof in this
paper is much shorter. What motivated us to study this problem is the
following. Given a square-integrable function L of a stationary Gaussian
process with the form

L=Ik1(f1)+Ik2(f2): 1Sk1<k2’

where I;(f) is the j-fold multiple Wiener integral, with kernel f, with respect
to the random spectral measure generated by the Gaussian process. Write

n—1 n—1
=C;' Y L(U,°f) +C;* Z I,(U, - f3)
m=0
=77 +2;,,
where U, is the m-steps shift operator, ie., (U, ° fNxy, ..., x,) =
exp(im(x, + - +x,) f(xq,...,x;).

When f; has a zero value at the origin, it is possible that Z7 , Z7 and Z}
all have nonzero limiting distributions with C, = n'/2 [7] and, in partlcular
Zp, has a Gaussian limit and Z7 has a non- Gauss1an limit. It is interesting to
determine the limiting distribution of Z]'. In some cases, we can apply
Theorem 1 to conclude that Z7 and Z, are asymptotically independent, and
hence the limiting distribution of Z]' is the convolution of the marginal
limiting distributions of Z7 and Z7 , one is Gaussian and one is non-Gauss-
ian. More detailed results in this direction will appear in a subsequent paper.

There are already many publications discussing the cases where both Z7,
and ZL have Gaussian limiting distributions (e.g., [1], [4]) or both ZL and
zZr, have non-Gaussian limiting distributions (e.g., [8]). So far, there are no
ex15t1ng publications studying the case where one is Gaussian and one is
non-Gaussian.

2. Proofs of the theorems. We shall prove Theorem 1 in detail and shall
only sketch the proofs of Theorems 2 and 3.
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Part (i) of Theorem 1 was proved in [3] and [9] and part (ii) of Theorem 1
was proved in [1]. Therefore, to prove Theorem 1 we only have to show that

and Z% and Z} are independently distributed. We shall prove this fact only
for the special case when H(x) and K(x) have one-term expansions: °

H(x) =H,(x) and K(x)=H, (x).

The reduction of H(x) to its first term is justified because when v,8; < 1 only
the first term is relevant to the distribution of Z3 [9]. In [1] it is made clear
that when v,8, > 1, we need only to consider the K(x) with finite expansion
to prove the central limit theorem. Though we prove the theorem only for the
K(x) with one-term expansion, the arguments in the proof can be extended
easily to the finite expansion case.

The major tool we use to prove the theorems is the so-called diagram
formula [6] on how to compute the expectation of a product of Hermite
polynomials of standard Gaussian random variables. Prior to giving the state-
ment of the formula, we need some notations and definitions. Let a given set of
Iy + -+ +1, vertices be arranged into p levels such that the ith level has /;
vertices. A graph G is called a diagram of order 1,, .. , if (i) each vertex is
of degree 1 and (ii) edges may pass only between dlfferent levels By a regular
diagram we mean a diagram whose levels can be paired in such a way that its
edges do not pass between levels of different pairs. For each edge w € G
connecting the ith and jth level, i <, define d,(w) =i and dy(w) =j. The
diagram formula states:

Lemma 1 (Diagram formula). Let (Wy,...,W,) be a Gaussian vector with
EW.=0, EW?> =1 and EWW, =r(, j). Then for the Hermite polynomials
Hl(x) Hlp(x) we have

p
ETTH(W) = T TT r(dy(w),dy(w)),

G we@

where the sum runs through all the diagrams G of order (1,,...,1,).

Independent Gaussian random variables have the moments given in Lemma
2, and these moments determine their distribution.

LEMMA 2 Given two r.v.’s Z and W with EZ = EW = 0 and EZ? = ¢} and
EW? = o2, then Z and W are independent Gaussian r.v.’s if and only if
o [I'm!
EZ'W™ = { 2t/2+m/2(] /9))(m /2)!
0, otherwise.

aloyr, ifland m are even,
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In the following, A always denotes bounded intervals in %. Then because
ry(n) = [e'** dG4(x), we have

(1) E[f(x)Zg(dx) [g(x)Zc(dx) = [f(x)E(x) dGs(x)

for f € L%G,) and g € L%G,). By Proposition 1 of [3] or similar arguments, it
can be proved that there exist G§(x) and G§(x) such that

d.
(2) nBlGl(%) — G¥(dx) weakly
and
B —8(Bg) dx
(3) nPZ(log n) G, - - G¥(dx) weakly

as n — o, where
Bf=B, A1 and 8(x)=1 ifx=1and0 ifx # 1.
We shall need Lemma 3 to prove the theorems. Recall that 8 = B3 A B,.

LEMMA 3. Assume B < 1. There exists a function G¥(x) of locally bounded
variation such that for each bounded interval A,

A
(4) lim m”(log m)_a(ﬁ)G3(Z) =G5(4).

Moreover G} satisfies
G3([0,y]) = G3([-y,0]) = »*D,

where D is some complex constant.

Proor. It is sufficient to show that (4) holds for A =[0,y] or [—y,Ol.
‘Define
1

Fi(x) = 5=

T ry(s) [ e dy
|s|<n -
for x € [—, 7]. Since each term in the above sum is bounded by C|s|#~! for
some constant C, F,(x) converges to G4(x) for all x, i.e.,
1 o isx __ e—isw
Gy(x) = lim Fy(x) = o— X ry(s)
n—o 2'77

§=—o

s
Let-A = [0, y]. Define

S, , =mP(log m)_a(ﬁ)[Ga(%) + @}
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= —(logm) a(B) Z (r (s)m”)M,

§=—

which as m — « tends to

yﬁRﬁ: ifﬁ3¢ﬁ4,
yﬁzRﬁy if 33 B4:

where R, = (1/mlim, _, o(—log &) >®* x~#~' sin x dx. Similarly, if we define

-t (ol 3]

—l——(logm) 58 Z (rs (s)mﬁ) cos(s/m)y)’

s=— s

(5) lim S,,

n — o

then we obtain
—yPl,, if By < By,

(6) lim C,, = { iyl if B, < By
0, if B3 = By,
where I, = (1/m)lim, _, o(—log &) ~*®[7 x " ~1(1 — cos x) dx. (5) and (6) imply
0,
im m#(tog m) 00, 21| — 45 = 610,51,
where
Rﬁ’ if B3 B4:

D= (ng - iIﬁ)/2’ if B3 < By,
(Rg +ilg)/2, if B, < Bs.

Since the property G3(A) = G3(—A) is preserved by passing to the limit G,
we have

Gi([-y,0]) =y°D.
The proof is complete. O

When B8 < 1, observe that

o)

-8(B) < mﬁ—(/gl-'.;g;)/z(log m)ﬁ(Bg)—ﬁ(B)

mP(log m)

1/2
A * 5By [ B
X mBlGl(E)mﬁZ(log m) 2G2(;) .
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Thus we have an immediate corollary from (2), (3) and (4):
(7) B = (B +B%)/2.

When B > 1, G4(dx) is absolutely continuous and its density is continuous.
Let G4(dx) = f(x) dx. Then

(8) lim mGo( | = A(3) £(0),

m—

where A is the Lebesgue measure. Also (7) is clearly satisfied for g > 1.
By (2),

A
(9) nﬂl/zzal(;) =4 Zgy(A)

as n — » [3], where Z, is the random measure induced by G{(dx). Since the
distribution of Z# can be represented by the v;-fold Wiener integral, to prove
Theorem 1 we need to show that, for disjoint A’s, 1 = 1,2,...,v,

(23,8, ..., 2&,(A,)) L Z§,

where 1 denotes independence. This is equivalent to the statement that for
any linear combination ©7_;a,Z&(A,) of Z&(A,)’s,

n i n l
B L o200 (z)" - B[ £ 0,26 (80| BzD)"

i=1
for all integers [ > 0 and m > 0.

Clearly it is true if and only if for any A,
E(Zg(8))(Z)™ = E(25,(A)) E(Z¢)™, forallintegers [ > 0 and m > 0

or equivalently
(10) Z&(A) L Zg.

We know already that the vector (Z&(A)),...,Z&(A,)) and the random
variable Z;} are Gaussian, but we have to prove that they are also jointly
Gaussian. We do this with the help of Lemma 2. It is not difficult to see that
(10) is also equivalent to

ix

e

(11) W(A) =/A ——2Z,(dx) L Z§.

It is a mere technical convenience for us to replace Zg;(A) by W(A) [5]. Define
e —1 1n1

12 K%)=~ = — 3 eY%/"
02 = G e
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and

n-—1
W, (A) =n -B/D Y f e Zg (dx)
j=0 A/n

dx
- f K (x) n(ﬁl/z)zcl(_).
A n

(9), (2) and the fact that K,(x) converges to (e’* — 1)/ix uniformly on every
bounded set imply

(13) W,(4) »4 W(4)

as n — o [3]. If we can show

lim E(W,(4))'(Z%)"

(14) I'm! o i1 and
) = 21/2+m/2(l/2)!(m/2)!0102’ if / and m are even,

0, otherwise,

where EW%(A) = 02 and E(Z})? = o3, then by (13) and Lemma 2, (11)
follows.

Proor oF THEOREM 1. To prove (14), first we have to use Lemma 1
(diagram formula) to compute E(W,(A)*(Z2)™ for any given I and m. For
this we need the following notation.

Consider a set V of | + mv, vertices having [ + m levels with the configu-
ration

0
it
0
O O “ e O
O O P O
0 0 0
Vo

Let us use the notation V=(1,...,1,v,,...,v,). Define I' to be the set of all
regular diagrams of order V and I'° the complement of T, i.e., the set of all
nenregular diagrams of order V. Any subgraph of a diagram is called a
subdiagram if it is itself a diagram, its vertices consist of all the vertices in
some levels of the original diagram and no edge exists between this subgraph
and its complement in the original diagram.
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Any diagram G € I'° can be partitioned into three disjoint subdiagrams
Vi, 15 Vg,2 and Vg 5, which are defined as

Vi,1 = the maximal subdiagram of G which is regular within
itself, and all its edges satisfy 1 < d(w) <dy(w) <! or
1+1 <d(w) <dy(w) <l +m,

Vg,2 = the maximal subdiagram of G — V;; ; whose edges sat-
isfyl +1<d(w) <dy(w) <l +m,
Vo,3=G— (Vg,1Y Vg,2).
For each subdiagram V; ; of G, i = 1, 2,3, define
Vg = {Jlthe jthlevel of VisinVj ;},
Ve(1) ={jeVgill<j<l},
Ve (2)={jeV§ill+1<j<l+m}.
Also in the following E(G) will denote the set of all edges contained in the
diagram G.

Note that, in the diagram formula, each summand corresponding to a
diagram G is a product of numbers. Now apply the formula to E(W,(A)Y(Z2)™.
If G is regular, the product is equal to [E(W,(A)?'/2E(ZR)*]™/2. If G is
nonregular, then the product can be partitioned into three subproducts A7, A%
and Aj corresponding to the three subdiagrams V; ;, V; , and V; ; of the
diagram G. To be more precise, we have

(15) E(W, (M) (Zp)" = ¥ + ¥ A} X A3 X A3,
Ger Gere

where

y - Gzr[E(anf]”z[E(zg)Z]’"/2,

GeT
2]IVE 1 (DI/2 V&, @)/2
A7 = [BE(W,(2)]" "V B(28)% " ®,
*
AL = n Ve 2072 37 Il To(Payw) ~ Payw)) s
O<p,<n—-1weEVg )
ievVg,
*
A% =n~Ves@1/2 % Il re(Payw) — Paywy)

O<p;<n—1 weEEWVg3)
i€V,  d(w)eVgy@)

X I—I n-1-B1/2)
eEE(VG’;;)
dl(e)evgj;;(].)

XE [ fA /nexp(ipdl(e)x)ZGl( dx) f exp(ipg,ox ) Zg(dx) |.

Since L ;o converges to the right-hand side of (14), it is sufficient to show
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that, for fixed G € I'¢, the triple product in the second term of (15) vanishes,
ie.,
(16) lim A7 X A% X A% = 0.

n—o

Recall the definition of W, (A). We have

ix

dG#(x) = EW?(A)

(17) EW2(8) = | ‘

as n — o, (17) and the central limit theorem for Z imply
lim A" = (EW2(A))Vé: DV2( 2)Vé:1 @12 o
nl_f}; = (4)) (0'2) *®

Using (1), we can rewrite

_vF
Aj=n Ve, 5@ /2 Z ﬂ rz(Pdl(w) - sz(w))

O<p;<n-1 WEE(VG,;;)
PCVE(2) d(w)EVFD)

(18)

[ Pafe) —pafe) x
X I—_[ Z n_(l_Bl/Z)f exp l( ! £ xdG3(——) .
e€E(Vg 3 |0<pyy=<n—1 A n n
dy(e)e Vg (D)

For each e € E(V; 3) with d(e) <[, we can obtain, as a result of (4) in
Lemma 3 [or (8) if 8 > 1], an asymptotic bound (denoted by ¥ *) for the second
summation in (18). Using the notation

a=BA1,
we have

Y * = pBi=20/2(og n)a(ﬂ)/‘ [ y exp( W, (e)* ) 1}

0<pye<n—1 n n
—iDg. % _ x
Xexp(%f)—)n“(logn) a(ﬂ)dG3(—)
n

e

ix _ 1
= O(n(Bl—2a)/2(log n)B(ﬂ)j’A - ||dG§"(x)|) .

If B < 1, then, by (7),

(19) Bi—2a=p;—2B < —B3<0.

If B > 1, clearly (19) still holds. By (19) it follows that

(20) L =0(nPrm29/%) = o(1).
Define

k(i) = the number of edges w satisfying d,(w) =i

and
g(i) = the number of vertices in the ith level not

connected by edges to any of the first [ levels.
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First we assume that v, > 1. When VG 5 is nonempty, by a similar argu-
ment employed to prove the proposition in [1] (page 433), we can show that

(21) lim A%} =

When V; 3 is nonempty, we are going to show that A% — 0 as n — «. We shall
decompose the set V#3(2) of levels into three parts by defining

Co = {i € Vg's(2)lg(i)B2 > 1},

Ag = {i € Vga(2)lg (i) = 0},

Bg =Vg3(2) — (Ag U Cg).
We shall rearrange the levels in Vj#3(2) in such a way that the levels of B are
preceded by the levels of A; and followed by the levels of Cg;. Within B, and

Cg, their levels are also rearranged so that the levels with smaller g(i) come
first. We also need the following notation later:
VG’ 3 = the subgraph of V,; ; which consists of all the edges that
connect only between the levels in Vi 3(2).

If Cq = Vi§3(2), ie., Ag = B = &, we can obtain an asymptotic bound for
the first summation in (18). We have

a, = Z ]._.[ |r2(pd1(w) - pdz(w))l
O<p;<n—-1 weEWVg,)
(22) ieVga2) dw)eVga2)

= O(n!Vé.s@I-L.evg  @k)/20)

Note that the «,, given above is well defined because it is assumed that v, > 1.
As shown in (2.20) in [1], we have the inequality

k(i)
(23) > 31V s(2)].
i€V 42 g( )
(22) and (23) imply that
(24) a, = O(nlV&:@1/2),

Then (18), (20) and (24) imply

A3 = (0(1))Vé= D,
Hence if V;; 3 # &, then, because |V#4(1)| > 0, we have
(25) lim A3 =0

n— o

If Cq ¢ Vi 3(2), we have

Ag =0 n—lVék,3(2)I/2 l—.[ n(B1—2a)s /2 l—.[ n(ﬂl—201)(1’2’—3(1'))/2,,/1—k(i)ﬂznea(k(i)ﬂz)
i€Ag i€Bg
g()By<1
(26)

X n nl—k@)/ &) n nl—k@)/&@) ,
i€Bg i1e€Cq
g()By>1
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where ¢ is some positive number chosen to handle the case when k(i)B, = 1.
By (19) and the assumption that Byv, > 1,

l—_[ nB1— 23 /2 _ O(n_|AG|/2),
i€Ag

where the order o should be replaced by the order O if A; = &. By the same
argument for deriving (24), we have

I_I nl—k@)/e@) — O(nICGI/2)'
ieCq

It is clear that (25) will still hold if we can show that the asymptotic bound for
the second product and the third product in (26) together is of o(n!Bel/2),
Define

T= Y [(Bi—2a)(vy—g(i))/2+ (1 - k(i)By) + e8(k(i)B,)]

i€Bg
gG)By<1

+ X [1-k()/g()]
i€Bg
g()By>1
and

b(i) = the number of vertices in the ith level whose edges w
satisfy that g(d,(w))B, < 1 and g(d(w))B, > 1.

We make the following observation:

. k(i) B
BT R+ L 2=l T g+ L 2
i€Bg i€Bg g(i) weVg s weVs g
gy <1 g@@)By>1 g(d(w)By<1 gld (w)By <1
g(dg(w))325 1 g(dz(w))32> 1
k(i
+ X [———(.) +b(i)&]
i€Bg g(i) 2
(27) £(D)By>1
Bs . k(i) +b(i)/2
22 T o+ TS
i€Bg i€Bg 8(i)
g()By<1 g(i)By>1
B2 . 1,( .
=5 L g(i)+alli  Bolg()B. > 1)1
i€Bg
g(i)By<1

The second term in the second inequality of (27) is obtained by the same
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argument for showing (2.20) in [1]. Using (27), we have

i€Bg
g(i)By<1

~|Bgl/2+ T < %{IBG| + X (B~ 2a)(vy — 2(1))

+e8(k(i)By) — Bag(i)] — I{i € Bolg(i)By > 1)]
5 ) [1 + (B — 2a)(vy — g(1)) + €8(k(i)By) — Bzg(i)]

i€Bg
g(l)BzS 1

: L [(1 = Bgvsy) + (By + By — 2a)(v5 — g(i))
g(li)ﬂgil

IA

+&8(k(i)Bs)]
< 0 (by choosing an £ > 0 small enough).

Hence, (25) is true under the assumption that v, > 1.

For any nonregular diagram G € I'®, if v, > 1, then its subdiagrams Vj; ,
and V; 3 cannot be empty at the same time; that is, either (21) or (25) must
hold. Hence (16) is true.

When v, = 1, then V; , is empty, i.e., Aj is absent. Thus in order to assure
(16) we have to show (25). Note that when v, = 1, the first product in (18) no
longer exists. Also note in this case |Vi*3(2)| > 1. Hence, by Lemma 3, we have

Pg X )1
Z exp( dy(w) )_
n

AL =nVés@/2 [ nt+A/D-e(log n)a(m[
0<pguy<n—1 n

weEWVg 5)

- x\1 x
X[ Y exp(——p—dr:(—&);]n“(log n)_a(ﬂ)dGa(—’;)

0<pgyuwys<n—1
e* —1

= 0| nBi*tD/2-a(]og n)a(ﬁ)f :
A X

IdGé“(x)I),

because |V 3(2)| > 1. By the assumption of the theorem, when v, = 1,

+1 + 1
Pitl <[5'=>‘ﬁ1 —a<0

The proof is complete. O

ProOF OF THEOREM 2. Part (i) and part (i) are proved in [3] and [9].
“For any bounded interval A C R, define

A
Zg () = nﬂixzzcl(;), i=1,2.
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Then (2) and (3) imply
ZG,,,(A) 4 ZGi*(A), 1=1,2.
Let A;,i=1,2,...,v;,and B;,i=1,2,...,v, be bounded symmetric inter-

vals such that A, N A, = Jand B, N B; = @ for i # j. To prove the theorem,
we only have to show '

(26,(AD), .. Z5,(A,,), Z,(B), ..., Za,(B,,))
—d (ZGf‘(Al)’ cees ZGi"(Avl)’ Zgy(By),. .., ZG;(Buz)),
which is, in fact, equivalent to
(28) (ZGM(AI)’ ZGZ,,(Az)) —d (ZG;"(A1) ) ZG;‘(Az))

for any bounded symmetric intervals A; and A,. (28) can be proved by using
the diagram formula and a procedure similar to the one used in the proof of
Theorem 1 and we shall omit the details here. Suppose 8 + (8; + B;)/2. Then
by (7),

B> (B +Bs)/2.
The correlation p of Zg,(A;) and Zgx(4,) is
p= EZGik(Al)ZG;‘(Az)
= ’}if}oEZGI,,(Al)ZG%(Az)

A;NA
= lim n(131+ﬂ2)/2g3(%) by (1)

n—oo
AiNA
= lim n(ﬂ1+/32)/2—/3nﬂGa(_:)
n—o n

-0
by Lemma 3. Thus Zg,(A,) and Z;3(A,) are independent for any A; and A,,
and hence Z4 and Z} are independent. O

Proor or THEOREM 3. It is sufficient for us to consider only the special
case

H(x) =H,(x) and K(x)=H,(x).
A procedure similar to the one used in the proof of Theorem 1 can be used to
show
(Z}’}’eré) _)d(ZI-);’Zg) '

Let
v p‘ = EZ}’I]"Z}?
= lim EZ2ZD.

Clearly, if v; # v,, then p = 0 due to the orthogonality property of the H,’s.
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Conversely if v; = v, = v, then by (7),
vBs>1 and »B,> 1.
Hence

o)

L Irg(m)])” <.

m=—o

It follows that

0

p=vy ) ry(m)". o

m=—o
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