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Let {a,(#), 0 < ¢t < 1} and {B,(s), 0 < s < 1} denote the uniform empiri-
cal and quantile processes. We show that, for suitable sequences A(n,«,)
and B(n,l,), the tail empirical process {A(n,k,)a,(n"k,t), 0 <t <1}
and the tail quantile process {B(n,1,)B,(n"1,s), 0 < s < 1} are almost
surely relatively compact in appropriate topological spaces, where 0 < «, <
n and 0 <!, < n are sequences such that «, and /,, are O(loglog n) as
n — «, The limit sets of functions are defined through integral conditions
and differ from the usual Strassen set obtained when «, and [, are
«(loglog n) as n = «. Our results enable us to describe the strong limiting
behavior of classical statistics based on the top extreme order statistics of a
sample or on the empirical distribution function considered in the tails.

1. Introduction. Let U,,U,,... be a sequence of independent random
variables with a uniform distribution on (0, 1). Denote by U,(t) = n™'#{U; <
t:1 <i <n}for —» <t < « the right-continuous empirical distribution func-
tion [df], and by V,(s) = inf{t > 0: U,(¢) > s} for 0 <s < 1, with V,(0) = 0,
the left-continuous empirical quantile function [gf] based on the first n of
these random variables. Let a,(¢) = n'/%(U,(t) — ¢) for 0 < ¢ < 1 be the uni-
form empirical process and let B,(s) = n'/?(V(s) —s) for 0 <s < 1 be the
uniform quantile process.

Let 0 <k, <n,n=1,2,..., be a sequence of real numbers. The aim of
this paper is to obtain functional strong limit laws for {A(n, k,)a,(n " 'k,t),
0 <t < 1} and {B(n,«,)B,(n" k,s), 0 < s < 1}, where A(n, «,) and B(n,«,)
are appropriate norming sequences.

The best known result of this kind has been obtained in 1971 by Finkelstein
for k, = n [see, e.g., Shorack and Wellner (1986), page 513] and is stated in
Theorem A below. Denote by (B(0,1),U) the set B(0,1) of all bounded
functions on [0, 1], endowed with the topology U of uniform convergence on
[0, 1] (see Section 2.1 in the sequel).

THEOREM A. The sequences {(2loglog n)~'?%a,} and {(2loglogn)~'/28,)
are almost surely relatively compact in (B(0,1),U) with set of limit points
equal to S, ,, where S, | consists of all absolutely continuous functions f on
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1694 P. DEHEUVELS AND D. M. MASON
[0, 1] such that

(1.1) fO) =f(1) =0 and [(f(u)’dus<1,
where f denotes the Lebesgue derivative of f.

A version of Theorem A for the tail empirical and quantile processes has
recently been obtained by Mason (1988) for «, and by Einmahl and Mason
(1988) for B,,. Their results are stated in Theorem B.

THEOREM B. Assume that {k,, n > 1} satisfies the conditions

(1.2) 0<«k,<n, k,1, n '%,1l0 and «,/loglogn > o asn — o,

Then the sequences of tail processes {(2n~'k, loglog n)~'2%a,(n"% 1),

0 <t <1}and{(2n"'k, loglog n)~1/%8,(n"k,s),0 < s < 1} are almost surely
relatively compact in (B(0, 1), U) with set of limit points equal to S,, where S,
consists of all absolutely continuous functions f on [0, 1] such that -

(1.3) £(0) =0 and ['(f(u))dus1,
0
where f denotes the Lebesgue derivative of f.

Notice that S, is the so-called Strassen set, named after the famous
functional law of the iterated logarithm for partial sums due to Strassen
(1964). A simple analysis shows that the functions f€ S, which maximize
If(D| are f(u)=u and f(u)= —u for 0 <u < 1. Therefore we see that,
whenever the conclusion of Theorem B holds, we have
(1.4) limsup + (2«, loglog n)_l/z(nUn(n‘lxn) - Kn) =1 as.

n—o

and
(1.5) limsup + (2«, loglog n)_l/z(nVn(n”lxn) - Kn) =1 as.

n— o

By a result due to Kiefer (1972), the limits in (1.4) and (1.5) are no longer
true when «, = O(loglog ), so Theorem B cannot be extended to this case.
His result is stated in Theorem C below. Introduce the functions

h(x) =xlogx —x+1 for0 <x <o,
h(x) =« forx <0,
with the convention that 0log0 = 0, and

(1.6)

(1.7) I(x)=x—1-1logx for0<zx <,
l(x) = forx <0.
Notice that the function exp(—h) is the Chernoff function of the Poisson
random variable with mean 1 and that exp(—1) is the Chernoff function of the
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exponential random variable with mean 1 [see, e.g.,, Shorack and Wellner
(1986), pages 416 and 856].

For any 0 < ¢ < «, denote by 0 < 5, <1 <8 < = the roots of the equa-
tion (in 8) h(8) = 1/¢c, with the convention that 6, = 0 for 0 < ¢ < 1. Like-
wise, for any 0 <c¢ < », denote by 0 <y, <1<y <o the roots of the
equation (in v) I(y) = 1/c.

THEOREM C. Assume that {k,, n > 1} satisfies the conditions
(1.8) 0<k,<n and «k,/loglogn —»c < (0,9) asn — =,

Then almost surely

. nUn(n_IKn)
limsup + ———— = +¢87,
o0 loglog n
(1.9
. nV,(n"%,) .
imsup + = tcvy7.
o 00 loglog n

In view of (1.4), (1.5) and Theorem B, Theorem C leads to the conjecture
that the sequences {A(n, k,)a,(n",¢t), 0 <t < 1} and {B(n, «,)B,(n" 'k, s),
0 < s < 1} might be relatively compact in some topological space of functions
defined on [0, 1] when «, /loglog n — ¢ € (0, ) and for the choices of A(n, k,,)
and B(n, k,) given by

(1.10) A(n,k,) = B(n,k,) =n'?/loglog n.

In Section 2, we will prove that this conjecture is true, and give explicit
descriptions of the limit sets. Our main tools will be the functional large
deviation theorem of Varadhan (1966) and its extension obtained recently by
Lynch and Sethuraman (1987). Our results can be considered as nonstandard
laws of the iterated logarithm [LIL] for tail processes, since the limiting sets of
functions differ from the Strassen set S,.

In order to complete our description of functional LILs for tail processes, we
must consider the remaining case where «,/loglogn — 0 as n — «. Here the
analog of Theorem C is as follows.

THEOREM D. (a) Assume that {k,, n > 1} satisfies the conditions
(1.11) 0<k,<n and k,/loglogn -0 asn — .
Then we have
(1.12) P(nU,(n"'%,)=0i.0.)=1
and

nV,(n"%,)
(1.13) limsuyp—— =1

a.s.
now loglogn
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(b) Assume, in addition to (1.11), that {x,, n > 1} satisfies:

There exists a sequence {x,, n > 1} such that

(1.14) X» 10 and (x, loglog n)/log(k;'loglogn) -1 asn — .

Then we have

=1 a.s.

nU,(n"%,) loglog n
. li
(1.15) nnn_)s:.:p Toglog 1 lo ( )

(c) Assume, in addition to (1.11), that {k,, n > 1} is such that
(1.16) k,=k,11,

where [u]> u > [u] — 1 denotes the smallest integer greater than or equal to
u. Then we have

(1.17) P(nV,(n"%,) <k, exp(—(1 +¢e)k, loglogn)i.o.)=0o0r1,

n

according as € > 0 or £ < 0.

REMARK 1.1. Theorem D is essentially due to Kiefer (1972). However,
Kiefer (1972) makes use of the additional regularity condition that n~, |0
for (1.15) and (1.17). Deheuvels and Mason (1988) have proved that this last
condition is superfluous for (1.17). We will adapt their result to show that this
extra condition is also not needed for (1.15) (see Proposition 3.1 below).

REMARK 1.2. Denote by 0 < U, , < -+ < U, , <1 the order statistics of
Uy, ..., U,. Notice that V,(n"',) = U, ,, where k, = [k, ]. Moreover, (1.17)
does not hold with %, replaced by «, if x, = O(1) as n —» . On the other
hand, this replacement is permissible when «, 1~ as n — « and (1.11) holds.

Motivated by (1.13) and (1.15), we will show in Section 3 that, when-
ever k,/loglogn — 0 as n —» « (under additional regularity conditions to be
stated later on), the sequences {A(n, x,)a,(n",t), 0 <t < 1} and
{B(n, k,)B,(n"'k,s), 0 < s < 1} are relatively compact in appropriate topolog-
ical spaces, with A(n,«,) and B(n, k,) given by

nl/2 loglog n
lo,
loglog n

nl/2

(1.18) A(n,«k,) = ) and B(n,«,) =

loglogn

n

Here also, a complete description of the limit sets is given. In Section 4, we
describe what happens in the extreme case when «,, is a fixed positive integer.

It turns out that these nonstandard functional LILs, in combination with
Theorem B, yield strong laws for practically all known statistics based either
on the top (or on the bottom) %, = [k, ]| order statistics of a sample when
n~', — 0, or on the empirical distribution function considered in the tails.
For a general sequence X, X,,..., of independent random variables with
common df F this is accomplished via a simple quantile transform. A thorough
exposition of such applications is provided in Deheuvels and Mason (1990). In
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Section 5, we give a simple example in order to briefly indicate our general
approach.

2. The intermediate case. This section is devoted to the study of
functional LILs for the intermediate case when «,/loglogn — ¢ € (0,%) as
n — . We start with some technical results and conventions which are needed
to present our results.

2.1. Preliminary results and notation. In the following, we consider the
restriction to [0, 1] of functions f defined on open neighborhoods of this
interval. In order to keep track of the behavior of these functions on the left of
0 and on the right of 1, it will be useful to define f(0— ) = limsup, ;, f(—¢)
and f(1+)=liminf, , f(1 + &), and to use throughout the convention that
the functions we consider are defined on [0—,1+ ]=[0,1JU{0—}uU {1+ }.
Let B(0, 1) denote the functions induced on [0— , 1+ ] by the bounded func-
tions on (—,»). Likewise let D;(0, 1), D(0,1) and C(0, 1) be the functions
induced on [0— , 1+ ] by the left-continuous functions with right-hand limits,
the right-continuous functions with left-hand limits and the continuous func-
tions on (—o, ), respectively. Denote by AC(0, 1) the space of all functions
induced on [0— , 1+ ] by df’s of Radon measures on [0, 1] which are absolutely
continuous with respect to Lebesgue measure. In other words, f € AC(0,1) is
of the form

f(x) = fxf(t) dt for0<x < 1',
0

f(0-)=£(0)=0 and f(1+) =f(1).
Let M*(0,1) be the set of all nonnegative bounded measures on [0, 1]. For
any u € M*(0, 1), set

fi(x) =p([0,x)) for0<x<1,

(2.1)

(2.2)

£H(0-) =£(0) =0 and £ (1+) = u([0,1])
and

fo(x) =p([0,2]) for0<x<1,
(2.3)

fu(0-) =0 and £ (1+) =f,(1) = n([0,1]).

Set 1(0, 1) [resp. Ic(0, 1)] to be the space formed by f, (resp. f,) when u
varies in M*(0, 1). Notice that { f: (x), 0 < x < 1} does not completely deter-
mine p if the value of f*(1+ ) is unknown.

For any u € M*(0,1), let u = pc + ng be the corresponding Lebesgue
decomposition of u, where w,c < dx and wg L dx (here dx is Lebesgue
measure). For any f=f, € 1(0,1) [resp. f=f, € Izc(0,1)], set f=f>" and
fs =1, (resp. fs=f, ) sothat 0 <f < xae., and

(2.4) f(x) = fo"f(t) dt + fs(x) for0— <x<1+.
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Let AC1(0,1) = 1(0, 1) n AC(0,1) = {f € I(0, 1): fg = 0}.

We endow the above spaces of functions on [0— ,1 + ] by the topologies
induced by the following topologies for sets of functions defined on (—, ®) or
on an interval containing (—¢,1 + ¢) for some & > 0. Denote by U the
topology of uniform convergence, by J; [following the notation originally
introduced by Skorohod (1956); see, e.g., Billingsley (1968), page 111] the
classical Skorohod topology, and by W the topology induced on I(0,1) or
I3c(0,1) by the weak (abbreviated from weak*) convergence of measures on
M*(0,1). A space [ endowed with a topology 7~ will be denoted by (F, 7).

Note here that the definition of (B(0, 1), U) so obtained is slightly different
from that given in the Introduction, and that the statements of Theorems A
and B are valid with the new definition [here and in the sequel, we define
U u) =V, (u)=0for u <0and Ufu) =V, (u)=1for u > 1].

In the sequel, we will consider possibly infinite valued functions
{®(x), — < x < =} such that the following assumptions hold:

(C.1) @ is convex and nonnegative; ‘
(C.2) ® < » on some nondegenerate interval,;
(C3) 0<Cy=1lim, , (P(x)/x) <oand 0 < C§=1lim,_, _(P(x)/|x]) < .

Note for further use that if ® satisfies (C.1)-(C.3), then the same holds for
the function v®(- /v) for any fixed v > 0. Moreover, the constants in (C.3) are
independent of v.

For any & satisfying (C.1)-(C. 3) f € I(0, 1) having the decomposition in
(2.4),and 0 < v < =, set

(2.5) o £) =0 'O f () /v) du + Chfs(1+).

Obviously, Jy, ,(f) does not depend upon the representative of £, and
defines a mapping of (0, 1) into [0, «]. In the particular case when C}, = «, we
see that Jg (f) < « if and only if f € ACI(0, 1), in which case, we have

(2.6) Jo.o(f) = vflfb(f'(u)/v) du.

One could glve an analogous definition of J ,(f) for f nonincreasing, by
replacing C§ by C¢ in (2.5). The main point of these extensions is that they
coincide with that given in (2.6) in the case where C§ = Cf = . If this last
condition holds, it can be seen that Jq) » can be extended as a mapping of
C(0, 1) into [0, =] by defining J,, ,(f) as in (2.6) when f — f(0) € AC(0, 1), and
by letting

(2'7) J<I>,v( f) =o for f- f(O) € C(O’ 1) - AC(O’ 1)
The following important result, due to Varadhan (1966), pages 262, 263 and
272, shows the interest of the definitions above.

LeEMMA 2.1.  Let ® satisfy (C.1)-(C.3) with Cy = C§ = »,and let 0 <v < »
be fixed. Then Jg , defined by (2.6) and (2.7) is a lower-semicontinuous
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mapping of (C(0,1),U) into [0,=]. Moreover, for any ¢ < », the set {f €
C(0,1): f(0) =0 and Jy (f) < c} is a compact subset of (AC(0, 1), U).

It turns out that the assumption that C§ = C§ = « is crucial for the validity
of Lemma 2.1 as shown by Lynch and Sethuraman (1987). They also proved
the following remarkable new version of Lemma 2.1.

LEmMA 2.2. Let ® satisfy (C.1)-(C.3) and let 0 < v < = be fixed. Then Jg ,
defined by (2.5) is a lower-semicontinuous mapping of (I1(0,1), W) into [0, ].
Moreover, for any ¢ < «, the set {f € 1(0,1): Jq, (f) < c} is a compact subset
of (1(0,1),W).

Recall by (2.2) that any f € I(0, 1) satisfies f(0) = 0, so that the statement
of Lemma 2.2 is similar to that of Lemma 2.1, with the replacement of the
uniform topology by the weak topology.

In applying Lemmas 2.1 and 2.2, we shall consider the following three
examples.

ExampLE 2.1. Let ®(x) = x2. We see that for any 0 < v < o, v®(- /v) =
®(-), and that C§ = C§ = =, so that Lemma 2.1 may be applied. An applica-
tion of this lemma shows that the Strassen set S, = {f € C(0, 1): f(0) = 0 and
Jp,1(f) < 1} used in Theorem B is a compact subset of (C(0, 1), U). The same
holds naturally for the Finkelstein set Sy, ={f€ S,: f(1) = 0}. Moreover,
both S, and S, ; are subsets of AC(0, 1).

Notice that any compact subset of (C(0,1),U) is a compact subset of
(D(0,1), J,) and of (B(0, 1), U). This explains the formulation given in Theo-
rem A, noting that Finkelstein’s (1971) theorem is usually formulated in
(D(0,1), J,) or (D (0, 1), J)).

ExampLE 2.2. Let ®(x) = h(x), where h(x) is as in (1.6). Here again,
C4 = C}§ = », so that we may apply Lemma 2.1 which shows that, for any
0 < v < o, the set

(2.8) A, ={fel(0,1): d,,(f) <1}

is a compact subset of (C(0, 1), U) and is included in AC I(0, 1). Here we have
made use of the fact that the set 1(0,1) N C(0, 1) is closed in (C(0, 1), U).

ExampLE 2.3. Let ®(x) = I(x), where I(x) is as in (1.7). We now have
C4 =1 and C§ = «, so that we may only apply Lemma 2.2 to show that, for
any 0 < w < o, the set

(29) I1w = {g € I(O’l) Jl,w(g) = 1}

is relatively compact in (1(0, 1), W).
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In this particular case, we may use (2.5) to show that if g € I(0,1) is
decomposed as f in (2.4), we have

(2.10) J,,u(8) =g(1+) —w —w “log(£(u)/w) du,

which has the advantage of not using explicitly the singular component

gs of g.
A similar simplified expression may be given for J, ,(f) for f & ACI(0, 1),
ie.,

(2.11) I o(f) =v —f(1) + [()lf(u)log(f(u)/v) du.

We will conclude this section by showing that the sets A, [defined in (2.8)]
and T, [defined in (2.9)] are closely related via simple transformations. Toward
this end, define for any v > 0 and w > 0 the sets

(212) A, ,={f€A,; f(1)=w} and T,,={geT,:g(1+) =1}

LEmMMA 2.3. For any 0 <v < «, the set A, , is nonvoid if and only if
(2.13) vé, <w < Vs,

where 0 <8,<1 <8, are as in Theorem C. Likewise, for any 0 < w < o,
the set T, , is nonvoid if and only if

(2.14) wy, <v <wy,,
where 0 < y, <1 < vy, areas in Theorem C.

Proor. Consider the case where f=w > 0 is constant. In this case,
f(1) = w, and f€ A, if and only if vh(w/v) < 1, which in turn is equivalent
to vé, <w <vd,/. By a similar argument used for the function I(-), we
obtain the “if”’ part of both statements (2.13) and (2.14). The “only if”’ part is
a simple consequence of Jensen’s inequality. For instance, since A(-) is convex,
we have

vh(folf'(u)v_ldu) =vh(f(1) /) < vj:h(f'(u)v_l) du

= Jh, v( f ) <1
A similar argument for [(-) completes the proof of the lemma. O

(2.15)

For any f € Ic(0,1) such that w = f(1) > 0 [recall that f(0— ) = 0], define
the corresponding rescaled inverse f € 1(0, 1) by

f(s)=inf(t:0 <t <1, f(¢) >sf(1)} for0<s<1,

(2.16) -
f(1+)=1.
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Likewise, for any g € I(0, 1) such that v = g(1+ ) > 0[recall that g(0) = 0],
define the corresponding rescaled inverse g € I:(0,1) by

(2.17) g (t) = sup{s:0<s<1,g(s) <tg(1+)} for0<t<1,

g (0-)=0.
Recall that the set of points of discontinuity of a monotone function is at

most countable. Hence, for any f € I3:(0,1), there exists a set D c[0,1]
which is dense in [0, 1] and such that, for any ¢ € D,

(2.18) F(F ) () =£(®).
A similar statement holds for (g) for g € I(0, 1).

LEmMA 2.4. Foranyv >0 and w > 0, A, , is nonvoid if and only if T, ,
is nonvoid. Moreover, if either of the two sets is nonvoid, then the application
f - of (resp. g —» wg) defines a one-to-one mapping of A, ,ontoT, ;(resp. of
I, , onto A, ).

Proor. The fact that A, , + P < T, # & is a direct consequence of
Lemma 2.3 and of the followmg simple 1dent1t1es (extended by continuity for
x=0):

h(x) =xl(1/x) for0 <x < o,
I(y) =yh(1/y) for0 <y <.

By (2.18), we see that f— T, ,(f) = uf defines a one-to-one mapping of
the set Igpg , ={f€Ipc(0,1): f(1) = w} onto the set I, ={g € I(0,1):
g(1+) = v}. Therefore all we need is to prove that, for f&€ Iy, , and g =
T, (P, dn () <1ed, ()<L

In order to clarify the mechanism of our proof, we consider the particular
case when f & ACI(0,1) and f> 0 on [0, 1]. We obtain directly the reciprocal
relations

(2.20) g(s) =vw/f(g(s)/v), s=f(t)/w and ds=(f(¢)/w)dt,

(221) f(¢) =vw/g(f(2)/w), t=g(s)/v and dt=(&(s)/v)ds,
so that, by (2.19), (2.20) and (2.21), a simple change of variables yields

(2.19)

(2:22) J,(F) =v[ R(F(2)/v)dt = w A U(g(s)/w)ds = J, ,(8).

In the general case where f € Ic(0, 1), we still have the equality J;, ,(f) =
J; ,(g) [even though J; ,(g) is then given by the general expression in (2.5)
which does not always reduce to (2.6)]. The proof of this statement is nothing
else but a repetition of the argument leading to (2.22) in a discretized version,
used jointly with Theorem 3.2 of Lynch and Sethuraman (1987). By this
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theorem, if #={¢t;, =0<t¢, < -+ <¢, = 1} denotes a partition of [0, 1], and

koo () — F(4is)
(2’23) I@(f) - iglvh( U(ti _ ti-l) )(tl - ti-—l),
then d(&) = max,_;_,(, —t,_;) — 0 implies that I,(f) — J, ,(f). Like-

wise, if 2={s;=0<s; < -+ <s, =1}, and

k 8(s;) —&(s;_1)
(2.24) Jo(8) = ,-lel( w(s; — s;_;)

then d(2) — 0 implies that J,(g) — J; ,(g).

In view of (2.19) we see that if we set ¢, = f (s ) =g(s;)/v and ¢,_
f(s;_)) = g(s,_,) /v, the equality

t~ - t-_ si - si—-
f(t:) —f(¢_1) (=t 1) = wl g(s;) —&(s;_1)

v(t; —t;_1) w(s; —s;-1)
always holds if

)(si - $;i-1),

(2.25) vh( )(si —5;-1)

=f(sis) <ti=f(s),
(2.26) f( f(_(si—l)) =8;1W,
f( f‘_(si)) =sw.

Observe that if, for some 1 <i <k, s, ,; <s; and f (s,_,) = f (s,), then
& =0 on (s;,_y,s;) [which implies that ¢J; ,(g) = ©] and f is discontinuous
[which implies that o, ,(f) = «]. Hence, in this case, J; ,(g) = J}, ,(f). If we
exclude this possibility, then we may suppose that the inequality in (2.26) is
satisfied for all possible choices of 0 <s;_; <s; < 1. Since we now assume
that f is continuous and that f is strictly increasing on [0, 1], we also have
f(f(s)) = s for all s € [0, 1], which implies that (2.26) and (2.25) hold, so that
Jo(g) = I5(f).

In order to use this last equality to prove that J; ,(g) = J), ,(f), all we need
is to choose 2 in such a way that d(2) — 0, jointly with d(%?) — 0. Unfortu-
nately, it is in general impossible to achieve d(£?) — 0 because of possible
discontinuities of g (or flat stretches in f). In particular, if we choose s;_;
and s; in such a way that

f(@) <f(ti-y) = f(¢) <f(¥) for

t<t,_y=f(s;_y) <f (s;) =t;<t,
the choice of & obtained through (2.26) implies that d(#) > ¢, — t,_, for i as
in (2.27).

To overcome this difficulty, we add new points between ¢;,_; and ¢,, i.e., by
letting ¢;,_, <t*, < -+ <t{f, <t; be added to & in order to obtain a new
partition &* of [0, 1]. Because of the fact that h(0) = 1, it is easily verified
that I,(f) = I4.«(f). Since we may now choose 2 and &* such that d(2) —»
0, d(#*) - 0 and Jy(g) = I.(f), an application of Theorem 3.2 in Lynch

(2.27)
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and Sethuraman (1987) shows that also in this case J, ,(g) = n,o{f). This
completes the proof of Lemma 2.4, together with the relations

Ino(f) =y ,(vf ) and J, (wg) =d, .(2)

(2.28)
for feA, ,andg€eT, . a

We are now prepared to state the main theorems of this section.
2.2. Theorems.

THEOREM 2.1. Assume that {k,, n > 1} satisfies the conditions
(2.29) O0<k,<n and «,/loglogn »ve (0,0) asn — .
Then the sequence of functions {(loglog n) " "(nU(n % ,¢),0 — <t <1+ }is
almost surely relatively compact in (I3:(0,1), U), with set of limit points equal
to A,, where
A, = {fe ACI1(0,1): £(0) = 0 and
(2.30)
1, , . .
j;) (F(Olog(f(2)/v) = F(t) + v)dt < 1}.

THEOREM 2.2. Assume that {l,,, n > 1} satisfies the conditions
(231) 0<!l,<n and l,/loglogn »w € (0,0) asn — .
Then the sequence of functions {(loglog n) X (nV,(n=,s),0 — <s<1+}is
almost surely relatively compact in (1(0, 1), W), with set of limit points equal to
T, where
r, - {g € 1(0,1): g(0—) = 0 and
(2.32)
g(l+)—-1- w[llog(g(s)/w) ds < 1}.
0

REMARK 2.1. Tt is obvious from Theorems 2.1 and 2.2 that we may refor-
mulate the statements of these theorems in terms of
{(2n‘1:<n loglogn) ™ ?a,(n"%,t),0 <t < 1}

and of {(2n~', loglog n)"'/?8,(n"',s), 0 <s < 1} by simple changes of
scale. For these sequences, the limit sets become, respectively,

A% = {fe AC(0,1): £(0) =0, f> —/u/2 ae.,

[loh(1+ V270 f(s)) ds < 1},

(2.33)
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and

(2.34) T ={g:g+IJw/2 €1(0,1),2(0) =0, d, (I +2/wg) <1},

where I(s) = s is the identical mapping.
Observe that A(1 + u) = (1 + wlog(1 + u) — u < u?/2for u > —1. Hence
we always have the inequality

(2.35) [oh(1+ V270 f(s))ds < [(F(s)) ds.
0 0
In view of (2.35), a comparison of (1.3) and (2.33) shows that
(2.36) {feSe: f= —yv/2} c A% forany v > 0.

This, jointly with the fact that A(1 + u) ~ u2?/2 as u — 0, shows that the
Strassen set S, can be considered as the limit set of A% as v — «. A similar
statement can be made for I'} as w — .

REMARK 2.2. It is remarkable that in the range covered by Theorems 2.1
and 2.2, the empirical and quantile processes exhibit a different behavior. In
the first place, the limit functions corresponding to the empirical process are
absolutely continuous. On the other hand, the limit functions corresponding to
the quantile function may have discontinuities and are always strictly increas-
ing on [0, 1].

ProoF oF THEOREM 2.2. The proof of Theorem 2.1 will be provided below
in Section 2.3. In the following, we limit ourselves to the proof of Theorem 2.2,
given the result of Theorem 2.1.

We start with the observation that both sequences

{(loglogn)_l(nUn(n‘lxnI))} and {(loglogn)_l(nVn(n‘llnI))}

are almost surely relatively compact in (Iy:(0, 1), W) and (1(0, 1), W), respec-
tively, if {x,, n > 1} satisfies (2.29) and {/,,, n > 1} satisfies (2.31). This is an
obvious consequence of Helly’s selection lemma, used jointly with (1.9).

Next we show that, if {/,, n > 1} satisfies (2.31), the sequence g, =
(loglog n)~YnV (n~',1)) is relatively compact in (1(0, 1), W) with set of limit
points included in T,,. For this, it is enough to show that from any sequence
{1 <n, <ny< ---}one can extract a subsequence . such that g, » g €T,
along . (whenever g, — g along . we shall say that g, is .#convergent to
g). Consider therefore g such that g, is .#convergent to g [in (1(0, 1), W)].
This is equivalent to having, along ., g,(x) — g(x) for all continuity points x
of g, and g,(1+) - g(1+). By (1.9), v == g(1+ ) € (0,»). Moreover, if we
define a sequence {«x,, n > 1} by

(2.37) Kk, =nV,(n71,+) = %in&nVn(n”lln +),
!

we see that {«x,, n > 1} satisfies (2.29) along .. Here a difficulty arises,
coming from the fact that {«,} is random. If we could directly apply Theorem
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2.1 to this case we would obtain the existence of .’ C . such that f, =
(loglog n) " (nU,(n"',I)) would .»'-converge in (Ip(0, 1), U) to some f €
. Since evidently V U, “and U, =YV, ,it would follow that if g* f
then g, would be /’-convergent to g* in (I (0,1), W). Since then by Lemma
2.4, g* €T, ,cTl,, one would have g = g* € I, as sought.
To overcome the randomness of {«,}, we apply Theorem 2.1 to an auxiliary
sequence k¥ = (v + ¢)loglog n, and use the continuity of the functions in
A,,, (for some small £ > 0) to show that the conclusion of Theorem 2.1
remains valid for {«,}. We omit the details since a similar argument is used in
Section 2.3 below for the proof of Theorem 2.1.
In order to complete the proof of Theorem 2.2, it remains to show that any
g €T, is the Alimit of g, for some suitable .. The proof of this last
statement can be made along the same lines as above, starting from f = vg for
some arbitrary v > 0, then using Theorem 2.1 to exhibit a sequence . such
that f, — f along ., then, using this fact to obtain that, along a subsequence
7" of 7, g, = & as desired. Here again, we make use of Lemma 2.4.
This completes the proof of Theorem 2.2. Note that the above arguments
are valid throughout with probability 1. O

2.3. Proof of Theorem 2.1. In this section, we give the proof of Theorem
2.1, together with some additional results of independent interest concerning
the approximation of the empirical process in the tail by Poisson processes. A
rough outline of our argument is as follows. In a first step, we show that we
may replace our original process by a suitably chosen Poisson process with a
negligible error. In a second step, we prove that the statement of Theorem 2.1
holds for this auxiliary Poisson process.

The following proposition provides us with the desired Poisson approxima-
tion.

ProposiTION 2.1. For any sequence {¢,, n > 1} such that

(2.38) 0<t,<n, n't,| and )Y n %2 <,

n

it is possible to define {U,(-), n > 1} on a probability space on which sits a
standard homogeneous Poisson process N(-) on R% such that

(2.39) limsup sup |nU,(n"') —S¥(n '%)| <» a.s,

n—owo 0<t<t,

where S#(t) = N(0,T] X (0,¢t]) with E(S§®)) =Tt for T > 0 and t > 0.

ProoF. Consider a standard homogeneous Poisson process N(-) on R?2, set
for0<s, <1, v,=N({n-1,n]x(0,s,) for n > 1, and denote by 7, the
time of first arrival of S* — S* |, i.e., 7, =inflt > 0: S*() — S*_ ,(t) > 1}.
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Define a sequence {¢,, n > 1} of independent random variables with distribu-
tion given by

(2.40) P(£,=0)=1-P(¢£,=1)=(1—-s,)e* forn=1,2,....

Let {6,, n > 1} be a sequence of independent uniform (0, 1) random vari-
ables. Assume that N(-), {¢,, n > 1} and {6, n > 1} are independent. Further
let

U, =71y, =ny + 820n1p, 50 + 520,15, ), =1

(2.41)
+(1- 0, +6,8,)1, _ole, -0

It is easily verified that {U,, n > 1} so defined is an i.i.d. sequence of random
variables with a uniform distribution on (0,1). Moreover, if U,(-) is the
right-continuous empirical df of U,,...,U,, we have for n = 1,2,...,

(2.42) 1-P(nUt) = (n—1)U,_y(¢) =Sx(t) —Sr,(t)for0 <t <s,)
=5,(1 —e™*") <57,

where Uy =0 and S, = 0.

Note that the construction given in (2.40) and (2.41) is well-known for the
approximation of Bernoulli random variables by Poisson random variables
[see, e.g., Serfling (1975), Section 5].

Now set s, = n”'t,. By (2.42) and the Borel-Cantelli lemma, we see that
(2.38) entails that almost surely for all n sufficiently large
(2.43) nU,(t) = (n—1)U,_y(t) = S#(¢) — S (¢t) forall0 <t<n~'t,
which since n~'¢, | yields (2.39). Notice that if the assumption n~1¢, | is not
satisfied, then we can replace ¢, in (2.39) by n min{m~%,:1<m <n}). O

For the proof of Theorem 2.1, we will choose ¢, in Proposition 2.1 as any
sequence satisfying (2.38) and ¢,/loglog n — « as n — « (for instance ¢, =
nl/* will do). It is easily verified from the conclusion of Proposition 2.1 that we
need only prove that Theorem 2.1 holds with S,(n~'¢) replacing nU, (n"1¢),
where S, (¢) := N((0, n] X (0, ¢)) denotes the left-continuous version of S*. We
will make use of the following lemmas.

LeEMMa 2.5.  Let {II(¢), t > 0} be a standard left-continuous Poisson process.
Set

(2.44) O(b,a) = sup |[lI(eb) — II(sb)| fora > 0andb > 0.

O0<t—s=<a
O<s<t<l1

Then, forall b > 0 and x > 1,
(2.45) P(II(b) > bx) < exp(—bh(x)),
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and forallb>0,0<aea<é<landx > 1,
20 3
(2.46) P(O(b,a) > abx) < — exp(— (1 — 8)%abh(x)),
where h is as in (1.6).

Proor. (2.45) follows from Markov’s inequality [see, e.g., Inequality 1,
page 485 in Shorack and Wellner (1986)], while (2.46) is a version of Inequality
5, page 571 [see also pages 545-548 in Shorack and Wellner (1986). O

LEMMA 2.6. For any subset o7 of 1(0,1) and v > 0 set
(2.47) Jh,u(M) = fi,g;']h,v( 1),
where J;, (f) is as in (2.11). Let {Il(¢), t = 0} be a standard left-continuous
Poisson process, and for T > 0 and v > 0, define Z, r € 1(0,1) by
Z, p(¢) = T"'I(Tut) for0<t<1, ‘
Z,(1+)=T"" iifgl'[(TU +¢).

Then:
(a) For each closed subset 7 c 1(0,1) in (1(0, 1), J,),
(2.48) limsup T ! log P(Z, r € &) < —d, (F).

T—oo

(b) For each open subset < c 1(0,1) in (1(0,1), J,),
(2.49) liminf 7™ log P(Z,,7 € #) > ~J; /(£).

Proor. This result is a consequence of the results of Lynch and
Sethuraman (1987) (see their Example 1) and Varadhan (1966). O

We will now introduce some further notation. For any v > 0 and integer
n > 1 define f, , € 1(0,1) by
fol(8) =S, (n"Mi(n)t) for0<t<1,

(2.50) fu(14) = lim S, (n"ti(n) +¢),

where here and in the sequel, /(n) = loglog (max(n, 3)).
For any A > 1, set

D)) = max sup [I(n,) ', (8) = U(n) T o o(2)

n.<n<n,,; 0<t<l1

b

where n,=|A"], r=1,2,..., with [x|]<x <|x|+ 1 denoting the integer
part of x.
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LemMA 2.7. There exists a bounded positive function  defined on (1,v2)
such that y(A) > 0 as A1, and

(2.51) limsupl(n,) "D, (A) <¢(A) a.s. foralll <A < V2.

r—ow

Proor. Choose any 1 < A < V2. We claim that

(2.52) limsupl(n,)_ISnr(n;lvl(n,)) <vé; as.,
(2.53) limsupl(n,) 'Di(A) < (A — Dvdy, -y a.s.
and

(2.54) limsupl(n,) 'Dy(A) < §(1 = 217280 gyq_2-2 aS.,

where 8. is as in Theorem C,
Di(A) =8, ,(n;'vi(n,)) = S, (n;vl(n,))
and
Dy(A) = 0s:;spllsn,(n:lvl(n»t) = S, (n;twl(n,,1)t)].

First consider (2.52). Choose any ¢ > 0. Noting that S, (n;'vi(n,)) =,
I1(vi(n,)), where II(-) is as in Lemma 2.5, we see that by (2.45)

(2.55) P(Snr(n;lvl(n,)) > vl(n,)&lf/(lﬂ)) <exp(—(1+¢)l(n,)).

Since the series formed by the right side of (2.55) is summable in r, the
Borel-Cantelli lemma implies that

(2.56) limsupl(n,)_ISnr(n,‘lvl(n,)) <804, Aas.

Letting £0 in (2.56) completes the proof of (2.52). Assertion (2.53) is
proven in much the same way.

Finally, consider (2.54). Notice that for all r sufficiently large, D/(A) <
D*(A), where

Dx(A) = sup |Snr(n,‘1vl(n,)t) =8, (n;'vl(n,)s)

O0<t—s<1-A"
O<s<t<1

which in turn is equal in distribution to ®(vi(n,), 1 — A~2), where (-, - ) is as
in (2.44). Thus for all ¢ > 0,
P(Dr*(’\) > 5(1 - )‘_2)8(:/8)(1—,\—2)/(1+s))
= P(@)(Ul(nr): 1-17%)>§(1- /\_2)8(11/8)(1—).'2)/(1+s)):
which by (2.46) taken with § = 1/2, a =1 — A2 (note that a <& < A < V2
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for A > 1) and b = vi(n,) is less than or equal to
160(1 — A~2) ‘exp(—(1 + £)i(n,)).

Assertion (2.54) now follows as above.
To complete the proof of (2.51), observe that

I(n,)"'D,()
<U(n,)H{DYA) + Dy(A) + (1 = U(n,) /l(n,41))S, (n;wi(n,))}.
Therefore, by (2.52), (2.53) and (2.54),

limsupl(n,) "D, (1) < (A —1)vd +,,_y + 5(1 - A28 ey1oa-t
(257)  roo

= (1) a.s.

Since ¢8 — 0 as ¢ |0 [see, e.g., Shorack and Wellner (1986), page 433],
(2.57) completes the proof of Lemma 2.7. Note that this lemma remams valid
with S* replacing S, in (2.50). O

Denote by || - || the supremum norm on I(0, 1). For any £ > 0 and .27 c 1(0, 1),
denote by ©&7° the subset of I(0, 1) such that, for every ¢ € .&7¢ there exists
an fe o/ with ||f—qll <e.

LEMMA 2.8. Let A, be as in (2.30). Then, for anyv > 0 and € > 0,
(2.58) P(i(n) ' f,, € 4% i.0) =0,
where f, , is as in (2.50).

Proor. Choose by Lemma 2.7, 1 < A < V2 such that

(2.59) limsupl(n,) 'D,(A) < 3¢ as.
It is easy to see by (2.59) that
(2.60) {l(n)™f, , & A& 00} (Ur) 7 o0 & A2 i.0.}.

Since the complement % of A%/2 is a closed subset of (I(0,1), ;) and
Un)" Y, v =4 Z, n, Where Z, ; is as in Lemma 2.6, we have by (2.48) that

limsupl(n,) " log P(I(n,) "', , & &%) < =d, (F).

It is straightforward to show using lower semicontinuity of J), , and
compactness of A, for all v > 0 (see Lemma 2.1) that necessarily SF)> 1.
Therefore, for some y > 1 and all large r,

P(U(n,) " o, & &%) < exp(=7I(n,)).
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An application of the Borel-Cantelli lemma now shows that
P(i(n,) " f,,, & &Y 10, (in r)) =0,
which by (2.60) gives (2.58). O
For any f€ I(0,1) and ¢ > O let B.(f) ={q € I(0, 1): || f — qll < €}.

LEmMMma 2.9. Forallfe A, v> 0 and ¢ > 0,
(2.61) P(i(r)7'f,,,€B,(f)i.0.)=

Proor. Choose £ > 0 and A > 1. It is routine to verify as in the proof of
Lemma 2.7 that
(2.62) limsupl(n,)"lsnr_1 n;tvl(n,)) < (v/A)8;, as.

r—o

Set for r =1,2,..., and ¢ > 0,
W, (8) =fr, () = S, _(n;'vl(n,)t)
=8, (n;"i(n,)t) = S, (n;'vl(n,)t),
W, (t) ={n./(n, —n,_)}W,(t)

and

Pn, = n;l(nr - nr-—l)l(n )
Since I(n,)"'W, =; Z,,,,, we have by (2.49) and the fact that B, 4(f) is
open

(2.63) liminfp(n,) 'P(I(r,) "W, € B, 5(f)) = = (B, 5(f))-
Now there always exists a ¢ € B, ,3(f) such that J, (g) < 1, i.e., choose
q(t) =(1-0)f(t) + 6tws; for0<t<1,

where v’ > v and 6 > 0 are sufficiently small and use convexity of J, ,(-) to
show that J, ,(¢) < 1. By (2.63), it follows that for all r sufficiently large

P(l(n,)”'W, € B, 5(f)) = exp(—vi(n,) /(1 - A7)

for some 0 < y < 1, which by making an initial choice of A large enough is for
some 0 < y’' < 1 greater than or equal to

exp(—v'l(n,)).

Thus, by using independence of the W, ’s and the Borel-Cantelli lemma, we
obtain for all large enough A > 1,

(2.64) P(i(n,)"'W, € B, () i0.) = 1.
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From (2.62) and (2.64) we have for any given A > 1 sufficiently large, that
-almost surely, there exists a subsequence {r’} c {r} such that for all r’,

(2.65)  U(n,) 'W; €B,,4(f), Un.) W, ]I<2e+Ifl,
(2.66) U(n,) W, — W, I <A~ (ke +IIf1),
(2.67) ) = Wy Il < (0/0)8],, + 2e.

Noting that (v/A)8,’,, — 0 as A — = we see that by selecting A so large that
the right sides of (2.66) and (2.67) are each less than 3e, by (2.65) we have
along {r'},

U(n,) " fr,o € BUF).
This finishes the proof of (2.61). O

Combining Lemmas 2.8 and 2.9, we obtain the following proposition.

ProrosiTION 2.2. Let 0 <v < and let f, , be as in (2.50). Then the
sequence {f, ,, n = 1} is relatively compact in (1(0,1),U) with set of limit
points equal to A,, where A, is as in (2.8).

Proor oF THEOREM 2.1. As noted earlier, Propositions 2.1 and 2.2, jointly
with the observation that ||S, — S*I| < 1 a.s., imply that Theorem 2.1 holds
for all sequences {k,} of the form «, = vl(n) for 0 < v < «. It remains to prove
that the same result holds for all sequences satisfying

(2.68) 0<k,<n and k,/loglogn - v e (0,»).

Choose & > 0. Using the fact that {{(n)"'aU/(n"'v(1 + £)l(n)I)} is rela-
tively compact, and the observation (see, e.g., Example 2.2) that A, C
AC I(0, 1), we see that, w.p.1, any subsequence of {{(n)~'nU,(n"',I)} con-
tains a further subsequence which converges in (Ix(0, 1), U) to a function of
the form f(¢) = f,(¢/(1 + ¢)), where f, € A, ,,,. Since evidently

fo(w)

U(]. + 8) du =< Jh,v(1+e)( fs) =< 1:

(2.69) J, (f) =v(1+ s)fol/“”’h(

we see that, under (2.68), {{(n) 'nU/(n"'%,I)} is relatively compact in
(Igc(0,1), U) with set of limit points included in A,. Conversely, take f € A,
and define f, by

_[f(t(1+¢e)) for0<t<1/(1+¢),
(2.70) £.8) = {f(l) for1/(1+¢)<t<1.

By (2.11) and (2.69), we see that J, (f) =}, ,q4.(f.). Thus, since f, is
w.p.1 the limit of a subsequence of {{(n) "X (nU, (n"'v(1 + &)l(n)I))}, f is the
limit of a subsequence of {{(n)~'(nU,(n "', I))}. The proof of Theorem 2.1 is
now completed. O
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3. The first nonstandard LIL in the extreme case. In this section, we
consider nonstandard LILs obtained for the sequences {A(n, k,)a,(n" ', 1)}
and {B(n,,)B,(n"1,1)}, where A(n,«,) and B(n,l,) are as in (1.18), in the
extreme case when «k,/loglogn — 0 and /,/loglogn — 0 as n — «. A second
type of nonstandard LIL will be presented in Section 4.

3.1. Theorems. We use throughout the notation introduced in Section 2.1.

THEOREM 3.1. Assume that {k,, n > 1} satisfies the conditions

(3.1) 0<k,<n, k,/loglogn - 0 asn — o,

there exists a sequence y, such that

loglog n
(3.2) X, 10and x, = (1 + o(l))log(ﬂ—)/loglogn asn — o,
K

n

Then the sequence of functions

{ nU,(n"%,t) . ( loglog n
)

,0—- <t<1+
loglog n ) }

n

is almost surely relatively compact in (Igc(0,1), W) with set of limit points
given by

(3.3) Ay ={f€Izc(0,1): f(1) <1}.

THEOREM 3.2. Assume that {l,,, n > 1} satisfies the conditions
(34) o0<!,<n, l,/loglogn -0 and I, > asn — .

Then the sequence of functions

{nVn(n'llns)

,0—<s=<1+
loglog n

is almost surely relatively compact in (1(0,1),W) with set of limit points
given by

(3.5) T, ={geI(0,1): g(1+) < 1}.

REMARK 3.1. In the range covered by Theorems 3.1 and 3.2, we can replace
nU, by n'/2%a, and nV, by n'/%8,.

REMARK 3.2. It is remarkable that the limit sets A, in (3.3) and T, in (3.5)
are composed of right-continuous and left-continuous distribution functions
for all nonnegative measures on [0, 1] having total mass less than or equal to 1.
Thus both limit sets coincide up to the conventions of left or right continuity
used for U,(-) and V,(-).
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REMARK 3.3. Set «, =vloglogn for 0 <v <. By Theorem 2.1, the
sequence

K

{nUn(n‘IKnt) (loglog n
lo

,0—-<t<1+
loglog n ) }

n

nU,(n"%,t) 1
={—————log|~|,0- <t<1+
loglog n (v)

is relatively compact in (1(0, 1), U). The corresponding set of limit points is
given by {f € I5(0, 1): v/dh(f(x)/(v1og(l/v))) dx < 1}. Since

it o e - =

we see that the integral in the above limit set reduces for v = 0to /¢ f(x) dx =
f(1). Hence the statement of Theorem 3.1 is in agreement with that of
Theorem 2.1.

Likewise, if I, = wloglog n for 0 < w < », by Theorem 2.2, the sequence

{nVn(n‘llns)

,0—<s<1+
loglog n

is relatively compact in (1(0, 1), W) with limit set equal to

r,= {g eI(0,1): g(1+) —w — wf:log(g(u)/w) du < 1}.

By letting w — 0 in this expression, we obtain that this set reduces to
{g € I(0,1): g(1+ ) < 1}. Thus the statement of Theorem 3.2 is also in agree-
ment with that of Theorem 2.2.

REMARK 3.4. If we have

loglog n
log(ﬁ—)/loglog n=v>0,

n

then [see Theorem 1 of Kiefer (1972) and Theorem E in the sequel]

limsupnU,(n~,) = [1/v] as.

A version of Theorem 3.1 valid in this case will be given in Section 4. We will
also consider in Section 4 the case when [, is constant in Theorem 3.2.

3.2. Proofs. We start with the following proposition which shows that
Theorem 3 and (3.9) of Kiefer (1972) [see, e.g., Shorack and Wellner (1986),
(12), page 234] hold under (3.1) and (3.2).
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ProposITION 3.1.  Assume that {k,, n > 1} satisfies (3.1) and (3.2). Then

(nUn(n‘lkn) log( loglog n ))

loglog n

(3.6) lim sup

n—o

=1 a.s.
n

Proor. Let U, =V,(i/n) for 1 <i <n be as in Remark 1.2. We have
evidently the event identity {(nU,(n"%,) > k,} = {nU,, . <«,}. Let x, 10 be
as in (3.2). It is straightforward that all we need for (3. 6) is to prove that, for
any 0 <& <1,

(3.7) P(nU, ,<k,i0.)=0 fork, =%k, =|(1+¢)/x,|,
and
(38) P(nU, ,<k,i0.)=1 fork; ==k} =|1/(x,(1+¢)).
Since (3.1) and (3.2) imply that, for &, = k, or &/ and all n sufficiently
large,
1<k,<n, k,to and £k,/loglogn -0 asn— oo,‘
we may apply (1.17) to show that

1

k’ loglogn]io.| =0,

1+e
(3.9) P(nUk;”n <k} exp —(

1+ 3

and

1+ %e 1 .
(3.10) P|nU,, , <k,exp|— Floglogn io.| =1.

A simple analysis now shows that we have ultimately in n — «,
1+ %s 1 1+ )\ 1
k! exp| — Floglogn <k, <kl exp|— —1—@ k'

Thus (3.9) and (3.10) imply (3.7) and (3.8), which completes the proof of the
proposition. O

loglog n )

The following sequence of lemmas is directed to prove Theorem 3.1.

LEmMa 3.1. Under (3.1) and (3.2), the sequence of functions
{nUn(n‘IKnt) | (loglog n
o

(3.11)

loglog n K,

), 0-<t<1 +}
is almost surely relatively compact in (15:(0,1), W).

Proor. It is an obvious consequence from Helly’s selection lemma and
Proposition 3.1. O
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In the sequel we shall use the following notation. Let m ; = |exp(j log? j)|
for j =1,2,.

i i
Xj,N(i) = Smj(ﬁmj‘ ij) - Smj—l(]_v—mj_lkmj)
(3.12)

for 1 <i <N, and

loglog m ;

m

(3.13) x; = (loglog m j) log( ) for j > j, sufficiently large.

J

LEMMA 3.2. Assume that (3.1) and (3.2) are satisfied. For any ﬁxed integer
N = 1, ¢ > 0 and coefficients Ay, ..., Ay such that

N

(3.14) A >0,...,Axy>0 and Y A, <1,
i=1

we have

(3.15) n{ n(i) e [Al xj, (A, +€)x )}z o.(inyj)

Proor. Let P; y(i) = P(X; y(i) € [A;xj, (A, + £)x)) and @ y(i) =
P(X; (@) = Ax)). “First we show that, as j — o,

(3.16) P, n(i) ~@Q; n(i) = exp(— (1 + o(1)) A, loglog mj).

For this, with the notation of Lemma 2.5, observe that @; y(i) =
P(II(A)) = A;x;), where A;=m;'(m;-m; )N 'k, ~N~ Kj—o(xj)as
Jj— . Recall the Well-known 1nequa11t1es for the P01sson distribution [see,
e.g., Shorack and Wellner (1986), (8), page 485]

Dby

(3.17) P(II(A) =k) =p, <P(II(A) 2 k) < T—_——m for k> A > 0.

By an application of Stirling’s formula to p, = (A*/k!)e~", routine argu-
ments show that for any fixed A > 0,

(3.18) P(H(Aj) > ij) = exp(— (1 + o(1)) A loglog mj) as j o oo.

This, jointly with the observation that P(II(A;) > (A + &)x;) =
o(P(II(A;) = Ax)) as j — =, proves (3.16).
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Next, by (3.16) and using the independence of the X; y(i)’s, we have, as

J 7%,

P( N {X; n(i) € [Nz, (A + E)xj)})
(3.19) o

= exp(—(l + o(1))( f Ai)loglog mj).

i=1

Since the right-hand side of (3.19) is not summable in j, the Borel-Cantelli
lemma implies (3.15) as sought. O

LEmMA 3.3. Assume that (3.1) and (3.2) are satisfied. Then
(3.20) lim (Smj_l(mj'lkmj)/xj) =0 a.s.

Jj—oo
Proor. Choose any ¢ > 0. We have
(3.21) P(Smj_l(mj‘lkmj) > exj) = P(H(Aj) > exj),

where A j=m;_mj IKmJ. Now by using (3.17), Stirling’s formula and
m;_,/m; - 0 as j - » one can easily show that for any A > 1 one has for all
J large enough

(3.22) P(H(Aj) > sxj) < exp(—Aloglog m;).

Noting that the right side of (3.22) is summable in j, the Borel-Cantelli
lemma yields (3.20). O

Proor or THEOREM 3.1. By Proposition 2.1 and the arguments used in the
proof of Theorem 2.1, a joint use of Lemmas 3.2 and 3.3 shows that, for any
integer N> 1, ¢ > 0 and Ay,..., Ay satisfying (3.14), we have infinitely often

nU,(n"%,(k/N)) log( loglog n )

k
El(’\" —e) < loglog n

k
<Y (A+e) fork=1,...,N.
i=1

This, jointly with Lemma 3.1 and Proposition 3.1, suffices for our needs. O

We now consider the proof of Theorem 3.2. Let (see Proposition 2.1)
(3.23) T;(¢t) = S,;“j(t) - S,’,’;}_l(t) fort>0and j > 2.
Define the corresponding left-continuous inverse by

(3.24) R,(s) = inf{t > 0: T;(¢) = s} fors=>0.
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LEmMMA 3.4. Assume that {l,, n > 1} is a sequence such that
(3.25) 0<l,<n and l,=0(loglogn) asn — «.
Then, with probability 1, there exists a j,; < © such that, for all j > j,,
(3.26) ij(mj'ls) =R;(s) forall0<s<l,, .
Proor. First, using Theorem C, Theorem E below and the notation of
Remark 1.1, we see that almost surely for all n sufficiently large

(3.27) U, <mjllog’m;<m;_jlog?m; 1 <Uyp ..

mjme

Next, we use (2.43) in the proof of Proposition 2.1 to show that almost
surely for all large n,

nU,(n"'t) = (n = 1)U,_(n7') = 8¥(n7't) =S¥ (n7't)
forall 0 <t < n'/4.

Thus by (3.27) and (3.28) there exists w.p.1 a j; < % such that for all j > j,
and 0 < ¢ < (loglog m ;)?,

(3.29) ijmj(mJTIt) = ijmj(mJTIt) - mj_lUmj_l(mj‘lt) = T;(mj't),
which by (3.27) (again) implies (3.26). O

(3.28)

In view of (3.12), (3.13) and (3.26), let

. i l - .
(3.30) Y, n(i) = Rj(ﬁlmj) - Rj(_N_lmJ) fori=1,...,N,
and
(3.31) y;=mj'loglogm; forj > j, sufficiently large.

LEmMMA 3.5. Assume that (3.4) is satisfied. Then for any fixed integer
N > 1, and coefficients Ay, ..., Ay such that (3.14) holds, we have

N
(3.32) P( Ol{Y}’N(i), € [Ay;, (A, + €)y;)} i.0. (inj)) =1.

Proor. The proof follows along the same lines as the proof of Lemma 3.2
with small changes. Notice that the Y; y(i), i =1,..., N, are independent
with each following a I'(p; ;, m; — m;_,) distribution, where

|Pi,j - (1/N)lmj| <2,

and I'(p, u) denotes a distribution with density u?T'(p)~'2#~le ## for z > 0. In
order to use the arguments of the proof of Lemma 3.2, all we need is to show
that, for any fixed A > 0, we have uniformly over 1 <i < N,

(3.33) P(Y; y(i) > /\yj) = exp(—(1 + o(1))A loglog mj) as j — o.
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Since T;(-) given in (3.23) takes integer values, so does p, ;. Therefore we
may use the well-known relation between gamma and Poisson d1str1but10ns to
obtain

(3.34) P(Yj,N(i) > )tyj) = P(H((mj - mj_l))\yj) <p; ;- 1).
Next, we have [see, e.g., Shorack and Wellner (1986), (9), page 485]

Dy

(3.35) P(HUU==k)=pkszH(A)Sk)S'f:1;X

for0 <k <A.
We now apply the inequality (3.35) with £ =p, ;, — 1 and A =

_ (m; — m;_,)y; and Stirling’s formula. Then routine computations using (3.4)
yield (3.3). This suffices for the proof of Lemma 3.5. O

Proor oF THEOREM 3.2. The proof of Theorem 3.2 is identical to the proof
of Theorem 3.1 with Proposition 2.1 replaced by Lemma 3.4 and Lemma 3.2 by
Lemma 3.5. Therefore we omit the details. O

4. The second nonstandard LIL in the extreme case. Following
Remark 1.2, we see that the process {V(n",s), 0 — <s <1+} is deter-
mined by {U, ,, 1 <i <k,}, where k, = [1,]. In the case where {,, = O(1) as
n — o, it is therefore simpler to work directly with {U, ., 1 <i<k}for a fixed
k>1 rather than with the functional versions considered up to now. In the
following Section 4.1, we shall derive a LIL for the sequence {U; ,, 1 <i < k}.
Finally, we complete our study in Section 4.2 by investigating the limiting
asymptotic behavior of {U,(n"'k,s), 0 — <s <1+ } when «, > 0 is so small
that nU,(n"'k,) = O(1) almost surely as n — .

4.1. Strong laws for a fixed number of extreme order statistics. Using the
notation introduced above, we shall prove the following theorem.

THEOREM 4.1. Let k > 1 be fixed. The sequence {(loglog n)~'nU, ,, 1 <
i < k} is almost surely relatively compact in R* with set of limit points equal to

(4.1) L,={(uq,...,up):0<u,; < -+ <u,<1}.

Proor. In the first place, by (1.13), we have almost surely

U, U,
(4.2) OSJLEL5~-SJLEL51+MD asn — .
loglog n loglog n

Thus, if £,() = (loglog n)~'nU, , for 1 <i <n, {£,(), 1 <i <k} is almost
surely relatively compact in R* (endowed with the usual topology) with set of
limit points included in L,. Ina order to complete our proof by showing that
the limit set is equal to L,, we use Lemma 3.4 to reduce the argument to the
proof of the following lemma.



NONSTANDARD FUNCTIONAL LILS 1719

LemMA 4.1. Under the notation of Lemma 3.4, for any fixed k > 1, V, > 0,
i=1,...,kwith L*_V.<1land ¢ > 0,

k (R.(i)—R.(i — 1
iol{mj( J(IZLIOg’:lil )) e[Vi’Vi'f'E)} lO(an)) = 1.

Proor. The proof of Lemma 4.1 boils down to showing that, for any fixed
A >0,

(4.3) P

(4.4) P(Rj(i) - R;(i—1) > Aamj ' loglog mj)
. =exp(—(1+o(1))/\loglogmj) as j — .

But since R;(i) — R;(i — 1) follows an exponential distribution with mean
m; — m;_;, the proof of (4.4) is a direct consequence of the fact that (m; —
m;_y)/m; —> 1as j — . Thus (4.4) and (4.3) hold. This completes the proof

of Lemma 4.1 and Theorem 4.1. O

4.2. Extreme tails for the empirical process. We complete our investiga-
tions by considering the limiting functional behavior of the empirical process
U(-) considered in an interval [0,n '«,], where k, is so small that
nU/(n"'%,) = O(1) a.s. as n — . This case is covered by Theorem 1 of Kiefer
(1972), which we state in Theorem E below.

THEOREM E. Assume that {x,, n > 1} satisfies the conditions
(4.5) 0<k,<n and «,|.
1

Then, for any integer k > 1, P(nU,(n~

(4.6) Y nlkt <wor =,
n

k,) = ki.0) = 0 or 1, according as

For any sequence {k,, n > 1} satisfying (4.5), define K = K({x,}) as the
maximal value of % such that the series in (4.6) diverges (K = « if this value
does not exist). If K < o,

(4.7 P(nU,(n"'%,)=Kio)=1 and P(nU,(n"%,) =K+ lio.)=0.

The following theorem describes the tail empirical process when K < «. By
Remark 3.4, we see that this covers the case left open by Theorem 3.1 for
small values of «,,.

THEOREM 4.2. Assume that {k,, n > 1} satisfies the conditions, for some
integer K > 0,

(4.8) 0<k,<n, nl%,l, Lnkf=o and ¥ n kit <o
n n

Then the sequence of functions {nU (n"'k,t),0 — <t <1 + } is almost surely
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relatively compact in (Iyc(0,1), W) with set of limit points consisting of all
functions of I3:(0, 1) taking integer values in the interval [0, K ).

Proor. By Theorem E, it is straightforward that {nU,(n" 'k, 1)} is almost
surely relatively compact, and that the limit set is included in the set described
above. Therefore all we need is to show that both sets are equal. For this, we
use the sequence v, = 2/, j=0,1,..., and observe, as in Kiefer (1972), page
235, that the divergence of L ,n 1K entails the divergence of L ; KK Next, we
use (2.43) in the proof of Propos1t10n 2.1 to show that almost surely for all j
sufficiently large and all 0 < ¢ < 1,

VJ-U,,,(VJ-_IK,,,t) v;_ 1U (V K, t)

(4.9)
= S*(V K t) S,,’;_l(vj_ K,,jt) = T;(¢).
Fix an integer N > K and an integer sequence 1 <i; < -+ <ig<N.
Consider the event
K
(4.10) H;= N{T(N"%,) - T,(N"'(i, - 1)) > 1}.

=1
We have

K
P(H;) = ((1 - exp(—lk ))) .

Using the easily proved fact that * . K,, = o o ¥ P(H;) = «, the indepen-
dence of the H;’s implies by the Borel Cantelli lemma that P(H; i.o.) =
1 whenever T. 2 kK = Since we also know that P(nU, (n~ W) =
K+1io0)=0 under (4 8), we see that all functions f in (0, 1) which are
constant on [(i — 1)/N,i/N) for i = 1,..., N, and take integer values belong
to the limit set if we have, in addition,

(411) f(1) =K and f(i/N) <f((i -1)/N) +1 fori=1,...,N.

If we repeat the same argument for the functions {nU,(2n "' ,#),0 < ¢t < 1},
we see that we obtain also the functions f such that 0 < f(1) < K. The proof
of Theorem 4.2 may be now completed by an easy argument, based on the fact
that the functions f introduced above are dense in (Ix(0,1), W). O

5. Conclusion. The theorems presented in this article can be applied to
obtain strong laws for statistics of the form O(f,,), where f, is a tail empirical
or quantile process and ® a continuous functional on the space where f,
varies. If .2 denotes the almost sure limit set of the sequence {f,}, then we
may conclude that @(.2") is the almost sure limit set of the sequence @(f,). In
particular, by compactness of ., there exist f,;, and f,_,, suchthat f,, €7
fmax € 2 and almost surely

O( frin) = }n_f/®(f) = liminf@(f,) < limsup®(f,)

= supO(f) = O( frax)-
fe£
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Thus the problem of finding strong limiting bounds for @(f,) reduces to
that of finding the extrema of @(f) for f& _#. This method also has the
advantage that it gives additional insight on the behavior of f, when the
limiting bounds of O( f,) are reached through the extremal functions f,;, and
fmax- The explicit derivation of these extremal functions requires specific
techniques which are beyond the scope of the present paper. We will content
ourselves with the following simple example.

ExampLE. Let {¢(s), 0 < s < 1} be any bounded nonnegative continuous
function on [0, 1]. Define the statistic W, (x,) by (with the convention that
Z 1] = 0)

Wik, = ¥ ¢(x;'nU,,).

i:nU; <k,

Since evidently

W(x,) = [ "6(t) dn U,(n",t),

we see that under the assumptions (3.1) (i.e., 0 < k, < n and «,/loglog n — 0)
and (3.2) of Theorem 3.1, we have

. W.(k,) loglog n
lim sup Tox oz 7 lo -
(5.1) now 0BTOB g
1
= sup [ ¢(s) df(s) = sup 4(t) as,
fer, "0 0<t<1

whereas, under assumption (2.29) [i.e,, 0 <k, <n and «,/loglogn — v €
(0, )] of Theorem 3.2, we have
(52) fimsup T~ aup [14(3) £(5) d

. imsup ——— = su s)f(s)ds a.s.

n_,wp loglog n fefv 0

Further applications of our theorems include nonstandard LILs for tail
estimators [see, e.g., Deheuvels, Haeusler and Mason (1988)] and sums of
extreme values [see, e.g., Deheuvels and Mason (1988)]. In Deheuvels and
Mason (1990), we provide general techniques for computing the values of the
constants that appear as the limit in expressions like (5.2).

We end with some concluding remarks. A referee has pointed out to us that
in the proof of Theorem 2.1 we could have substituted Lemma 2.7 by an
application of Theorem 2 of Vervaat (1987) which roughly says that whenever
a functional LIL holds among all geometric subsequences it holds along the
full sequence. Also the Associate Editor remarked that results related to those
in Section 4 may be found in Wichura (1974) and Mori and Oodaira (1976).
Indeed, the following result comparable to Theorem 4.1 can be inferred from
Corollary 6.2 of Mori and Oodaira (1976). For each fixed integer k2 > 1 the
sequence

log(nU, ,) log(nUy,,)

. - ., = +1,...
(5.3) loglogn 7’ loglogn |’ n=kk T
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is almost surely relatively compact in R* with set of limit points equal to

k
(5.4) {(xl,...,xk):xlz - >x, > 0and Exjsl}.
j=1

Finally, Jon Wellner has kindly directed our attention to the fact that
versions of Theorems 2.1 and 3.1 can be found in an unpublished dissertation
of McBride (1974).
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