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SOME POTENTIAL THEORY FOR REFLECTING BROWNIAN
MOTION IN HOLDER AND LIPSCHITZ DOMAINS

By RicuarD F. Bass! anp Pr1 Hsu?

University of Washington and Northwestern University

Bounds are found on the transition densities and Green functions for
Brownian motion with normal reflection in Hoélder and Lipschitz domains.
For Lipschitz domains, reflecting Brownian motion and boundary local
time are constructed, a Harnack inequality valid up to the boundary is
proved, a probabilistic solution to the Neumann problem is given and the
Kuramochi boundary is identified.

1. Introduction. Quite a bit is known about Brownian motion with
normal reflection in C2 domains (see [16]), and even C! domains (see [13]). On
the other hand, Fukushima [8] has given a construction of reflecting Brownian
motion in arbitrary domains in R¢; much less is known here, although see [11]
for some recent work related to this subject.

This paper is concerned with some intermediate cases where the domains
have some regularity but not a great deal. In Section 2, we consider Hoélder
domains and obtain an upper bound on the transition densities for reflecting
Brownian motion (abbreviated as RBM) by means of results of [5] and [6]. We
then turn to Lipschitz domains in R%, d > 3, in Section 3. We consider upper
and lower bounds on the transition densities and on the Green functions. We
establish a Harnack inequality valid up to the boundary for harmonic func-
tions having zero normal derivative on the boundary and also the Holder
continuity of such harmonic functions.

Using the estimates in Section 3 and the theory of Dirichlet forms, we prove
in Section 4 the existence of RBM on a bounded Lipschitz domain. We also
construct the boundary local time corresponding to surface measure on the
boundary. In Section 5, we discuss the Neumann boundary value problem for
Lipschitz domains and give a representation of the solution in terms of RBM
and its boundary local time. Finally, in Section 6 we consider the ideal
boundary for the Neumann problem and RBM. In particular we look at the
Kuramochi compactification for bounded Hélder and Lipschitz domains.

The letter ¢, with or without subscripts, will denote constants whose value
is unimportant and which may change from line to line. The open ball of
radius r with center x will be denoted B(x;r). Other notation will be
introduced as needed.
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2. Holder domains. The main result of this section is an upper bound on
the transition densities for RBM in a Holder domain. Our sole contribution to
this result is the observation that [5] supplies the Sobolev inequality needed in
[6].

Let D be a bounded C” domain, y € (0, 1). By this we mean the following:
There exist a finite number of balls B(x;;r;,), i =1,..., N,, whose union
contains D, and for each i = 1,..., Np, there exists a C” function F;: R -
R such that for some coordinate system, B(x;; r;) N D is equal to the intersec-
tion of B(x;; r;) with the region above the graph of F,.

THEOREM 2.1. Suppose 0 <& < 4y/(d — 1 — y). Then

d
(2.1) lullz+e < 01(8)(|Iullz + X ||0u/0x,-||2).

i=1
(Here || - ||, denotes the L? norm on D.)

Proor. Let a; = y~!. Define

d-1 172
I={(xl,...,xd):0<xd<b1,0<(fo) <b2x§1},
i=1

where b,, b, are small numbers to be chosen later. If f is a C” function on
R~ with f(0) = 0 and if x € R%"!, then

IF () = If(x) — F(O) < clxl”.

Hence if b, is small enough, I c {(x,): x € R"1, y > f(x)}.

Therefore taking b, and b, small enough and m large enough, we see that
there exist a finite number of orthogonal transformations of R¢, say w, ..., ®,,,
such that at least one of the translates x + w,I, i = 1,..., m, is contained in
D whenever x € D.

Writing I(x) for x + w,I for some w; such that x + w;I ¢ D, Lemma I.1 of
[5] says that

(y) H _yl—al(d—l) dy,
ay;

13

2.2 lu(x)l <e

(2:2) (@l <ef [

while Lemma II.1 of [5] says that

(2.3) flxl“ﬁ dx < o . whenever B < ay(d — 1) + 1.
; I

Welet r=1,9g=2,a,=a,(d—1)+1and B=2+e¢. Note rg =2 <a,
and B < qa,/(a, — rq). Hypothesis (2.1) of [5], page 115, is satisfied by the
proof of Lemma I.1 of [5]. Then Theorem 1.2 of [5] gives our result. O
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COROLLARY 2.2. Let v =2 + 4/¢. Then
lwllZ ™" < eq[Nul3 + IVull3]luli’.

Proor. Write

fuz(x) dx = flu(x)|(2+s)/(1+e>|u(x)le/me) dx

e/(1+¢)

1/(1+¢)
< [ﬂu(x)r“f dx] [j|u(x)| dx] ,
and then apply (2.1). O

TuEOREM 2.3. If p(t, x,y) is the transition density for reflecting Brownian
motion in Dand v > (d — 1 + vy)/y, then fort < 1,

(2.4) p(t,%,5) < cg(v)t™/ 2 exp(—Ix — y1*/cyt).

Proor. We know that p(¢, x,y) exists and is continuous in x and y (see
Remark 4.1). It is well known ([9]) that reflecting Brownian motion is associ-
ated with the Dirichlet form

e(f, f) = %fDIVfIZ(x) dx, D(&)={feL¥D):&(f,f) <=}
Fix x4,y, € D, ty < 1. Set @ = (y, — x,)/4t, and ¢(x) = « - x. Note that
e Vel ? = [Vyl* = lal’,  e2Ve VI* = |VyYI* = |af”.
Now by Theorem 3.25 of [6],
(2.5) p(t,x,y) <ct™/? exp(—lqp(y) —¢(x) + 2t|a|2), ae. .y, t<1.
By the smoothness of p, we may drop the a.e. Taking ¢ =t¢,, x =x, and
y =Y, in (2.5) completes the proof. O

For large ¢ we have:

THEOREM 2.4. There exist T > 0 and c5 > 0 such that for all (x,y) € D X D
andt > T,

1
p(t,x,y) — Dl < e %,

In other words, the transition density function approaches the stationary
distribution uniformly and exponentially.

Proor. Let {—1,,¢,}, n ="0,1,... be the normalized eigenpairs of the
generator ;A of P,. We have the eigenexpansion

1
ot E e ', (%) da(y).-

(2.6) P(t%,9) = I
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Hence
p(t,x,x) — Z e Ml (x)°
(2.7) < e M/ Y eTht/% (x)
n=1

)

ID| |’

Note that by (2.6), p(¢, x, x) is decreasing in ¢. Thus by Theorem 2 3, there
exists ¢ > 0 such that for ¢ > 1,

< e"‘l"/z[p(t/Z, x,x) —

1
p(t,x,x) — D <° ~ht/2,

Now

1
Using the Cauchy—Schwarz inequality, we obtain

. ‘p(t,x,y) - %‘

1 1
< \/p(t/Z,x,x) ~ D \/P(t/z,y,y) D] =4 M2,
The theorem is proved. O

The eigenfunction expansion (2.6) provides some additional useful informa-
tion. For example, using Cauchy—Schwarz as in (2.8),

(2.9) p(t,x,y) < supp(t,2,2).
4
Taking the Laplacian in either variable of p(z, x, y),

|Ap(t, x’y)l = |3P(t,x,y)/at| = Z Ane_l\ntd)n(x)¢n(y)’
n=1

1/2

< ( Y /\ne"‘"t¢n(x)2) ( P /\ne"‘"t¢n(y)2) ,
n=1 n=1

using Cauchy—Schwarz. But since A,e~*+*/2 is uniformly bounded in 7,
(2.10) |Ap(t,x,y)| <csupp(t/2,2,2) <cgt™*/?, t<1.
r4

Fihally note that if 7 > 0 and f(-) = — 1 Ap(T, -, y), then Dynkin’s formula
(or the eigenfunction expansion) tells us that

(2.11) [ [ pt. - 2) F(z) dedt = (T, ).
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Let G(x,y) = [q e *p(¢, x,y) dt be the A-resolvent kernel. If K is a com-
pact subset of D with smooth boundary, we use pX(t,x,y) to denote the
transition density of the Brownian motion which is reflected at dD and
absorbed on dK. The corresponding resolvent kernel is denoted by GE(x, y).

COROLLARY 2.5. For any v >(d — 1+ y)/y, we have G,\(aé, y) <
ce(v, Mlx — yI7"*% and GE(x,y) < cglx — Y

Proor. Given t,, the estimate in Theorem 2.3 is valid for ¢ <, by
adjusting c; and c,. So using Theorem 2.3 for ¢ small and Theorem 2.4 for ¢
large, the case of G,(x, y) follows by integration. As for G{(x, y), we have

GE(x,y) = [PX(t,x,y) dt + [ p(t,%,9) dt.
0 1

Since pX < p, the bound for the first term is given by Theorem 2.3 as before.
For the second term, we have the inequality pX(¢, x,y) < e~ for all x,y in D
and ¢ > 1. The proof of this inequality is similar to the proof of Theorem 2.4.
Using this inequality, we see that the second term is bounded by a constant.
The corollary is proved. O

Since the kernel |x — y| 7 *? is not locally integrable for v large, it is useful
to have:

COROLLARY 2.6. G&1,(x) < c,|AI*”.
(Here |A| denotes the Lebesgue measure of A.)

Proor. Using Theorem 2.3 and (2.9), pX(¢,x,y) < ct™*/? for ¢ small,
while as in the proof of Corollary 2.5, pX(¢, x,y) < cexp(—c't) for ¢ large.
Hence pX(¢,x,y) < ct™/2 for all ¢.

Since [, pX(s, x,y) dy < 1, we write

GFL(x) ST+ [ [ p¥(s,2,5)1a(y) dyds

< T+ clA|IT!¥/2,
Setting T = |A|>/” completes the proof. D

,An important consequence of Theorem 2.3 is that it allows us to obtain a
tightness estimate for Brownian motion. In the next theorem we assume that
D is smooth (in order that RBM be well-defined), but cg and cy depend only on
the constants used in the definition of D as a Holder domain and not on any
additional smoothness assumptions on D.
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TueoreM 2.7. Ift <1, x € D, then

(2.12) P#| suplX, — x| = A| < cgt@ /2 exp(—A/cqt).

s<t

Proor. Integrating (2.4), we get
(2.13) P*[IX, — x| = A] < ct@ "2 exp(—N*/c't), t<1,
if A2 > 4¢. Since v > d, (2.13) holds for A? < 4t as well.

Now let 7, = inf{z > 0: |X, — X,| > A}. By the strong Markov property, we
have

P*| sup |X, — x| > /\]

O0<s<t

<P*[IX, - x|l 2A/2] + P"[rA <t,|X,-X,|=> ,\/2]

< P*[X, -zl 2 /2] + [E*[PX[X,_, - X, 2 4/2]; 7, € ds]
0

<P*[IX,-xl =A/2] + sup P’[IX, -yl > /2]

yeD,0<ux<t

<2 sup PIX,-yl=Ar/2].
yeD,0<u<t

Using this and (2.13), we obtain (2.12). O

3. Lipschitz domains. In this section we suppose that d > 3. For this
section we also suppose that we have a function F: R¢-! - R that is uniformly
bounded and Lipschitz with constant v,

and that our domain D is given by
D={(x,y):x € R, F(x) <y <}

Without loss of generality we may assume y > 1. We assume F is smooth, but
our estimates will only depend on y and not on any further smoothness of F.
We introduce the notation

(3.1) D, = {x € D: dist(x,dD) <¢},
(3.2) A(x;r) =B(x;r) nD,

and if X, is RBM in D,

(3.3) 7, = inf{t: 1X, — Xl > 1},
(3.4) Ty = inf{¢: X, € B} for Borel sets B.

Note that if a is a constant, aX, ,: is again a Brownian motion in the
interior of aD, and it is easy to check that aX, ,: is RBM in aD. Also aD is
the region above a Lipschitz function with the same Lipschitz constant y as F.
We refer to this property as scaling.



492 R. F. BASS AND P. HSU

Let H = R%~! x [0,). We start with the Sobolev inequality (see [15], page
124):

(3.5) leell2g /-2y < cllVullz.
By considering functions that are symmetric about dH, (3.5) gives
d/(d-2)
(3.6) f lu(x)?4/ P dy < c[f [Vu(x)? dx]
H H

Define ¢(x, y) = (x,y + F(x)), let v be a function on D and let u: H —» R be
defined by u = v o ¢.
Since F is Lipschitz, the Jacobians of both ¢ and ¢~! are bounded. Then

d/(d-2)
flv(x)lzd/(d_z) dx < cf Iu(x)IZd/(d_z) dx < c[/ IVu(x)I2 dx]
D H H
(3.7
d/(d-2)
< c[f IVu(x)I? dx]
D

We now have:

THEOREM 3.1. If p(%, x,y) is the transition density for reflecting Brownian
motion in D, then for all t > 0,

(3.8) p(t,x,y) <cip™%%exp(~lx — yI*/cyt).

ProOF. As in the proof of Corollary 2.2, Hélder’s inequality and (3.7) yield
the Nash inequality
(3.9) ol **/? < ellVaulllult’?.

We then proceed just as in the proof of Theorem 2.3, the only difference being
that we take i smooth with |Vy| bounded by |a| and ¢(x) =« - x for |x| <
2(lxol + lyoh. D

Just as with Theorem 2.4, we get:

THEOREM 3.2. P*[sup|X, — x| > Al < cgexp(—A%/cyt), t>0,x€D.

e<t

Let G(x, y) be the Green function for D. Integrating (3.8) gives:

COROLLARY 3.3.

x,y €D.

’

(3.10) G(x,y) < cslx — y|7¢+2

We now work on a lower bound for p(#, x, y). Recall that if W, is Brownian
motion in R? and ¢(s), s € [0, ], is a continuous curve with ¢(0) = x, then we
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have the support theorem ([17], pages 168-169):
(3.11) P"[suple —y(s)l < s] > 0.

s<t

Moreover, if ¢(s) is a Lipschitz curve, one can give a lower bound for the
probability in terms of ¢, ¢ and the Lipschitz constant of . ‘

THEOREM 3.4. For all t,
(3.12) p(t,%,y) 2 cgt™ 2 exp(—Ix —y|°/cst), x,y€D.

Proor. Suppose x,y € D with |x — y| < 1. We can find a point z € D and
a constant cg independent of x and y such that dist(z,dD) > 2¢cg but
lx — 2|, ly — 2| < 2. Using Theorem 3.2, we can find A > 0 such that

(3.13) Px[supIXs —x| > A] <3

s<1
By the fact that F' is Lipschitz,
D, N B(x;A)l < ce,
and so using (3.10),

P[X,eD, N B(x;A) forall s < 1] < E"[[llD B Xs) ds
| D0 BG

(3.14)
</ G(x,w)dw <
D.NB(x; 1)

if &, dependent only on v, is sufficiently small. So from (3.13) and (3.14), we
have

P*[X, € A(x;A) — D, for some s < 1] > 3.
By the strong Markov property and the support theorem (3.11), there exists
8 > 0, depending only on y (via cg, A and &) such that
(3.15) P*[ X, € B(z;¢5)] = 6.

Let p° be the transition density for Brownian motion killed on leaving
B(z,2c¢g). It is well known that p°(l, -, -) is bounded below on B(z;cg) X
B(z;cg). Since p > p°® on B(z;2cg) X B(z;2cy), there exists 8’ > 0 such that

p(3,x,w) = &', w € B(z,cg).
The same estimate holds when x is replaced by y. Using the symmetry of p,

(3.16) p(6,x,y) = fB

« Using scaling (i.e., the fact that aX, 2 is RBM on aD), we see that there
are constants ¢ and ¢’ such that

)p(3,x,w)p(3, w,y) dw > (8)?B(z,cg)l = c.
Cs

2,

p(t,x,y) > c whenever |x —y| <c'Vt.
We now apply the argument of [7], Section 3, to obtain our result. O



494 R. F. BASS AND P. HSU

Integrating (3.12), we get:

—d+2
=,

COROLLARY 3.5. G(x,y) > colx — x,y €D.

We now turn to some properties of functions which are harmonic in a part
of D and have zero normal derivative on dD. First we need: :

ProposITION 3.6. Let x € D. Given m, there exists § depending on n but
not x, such that if C c A(x;1) and |C| > n, then

(3.17) P*[Tg < 73,] > 8.

Recall that [C| is the Lebesgue measure of C, that T, and 7, are defined by
(3.4) and (3.3) and that y > 1.

ProoF. As in the proof of Theorem 3.4,
D, N B(x;1)| < ce,
where D, is defined by (3.1). So if ¢ is taken small enough, C' = C — D, will be
a positive distance from dD and |C’| > n /2. We can find a large integer N,
depending only on ¢, n and v, such that we can cover B(x;2) — D, by at most
N balls of radius £/4 with centers in B(x;2) — D,. For at least one of these
balls, say B(y;s/4),
|C" N B(y;e/4)| > n/2N.
We then take C” = C' N B(y; ¢/4), and we show there exists § such that
Px[TC" < 7'37] > 6.
Arguing as in the derivation (3.15), by Theorem 3.2 we can find ¢, such that
P, <ty] < 1.
As in the proof of (3.14), we can take &' € (0, £ /4) sufficiently small so that
P*[X,e D) forall s <t,] < %.
So )
P*[X, € A(x;1) — D, for some s < 7,] > 3.

By the strong Markov property, the support theorem (3.11) and geometrical
considerations, there exists 8’ such that

(3.18) P*[ X, € B(y;£/4) for some s < 75,| > &'.

And if z € B(y; ¢/4), ‘

(3,19) P*[Te <17,5] 2 [ p°(1,2,w) dw = clC"],
o

where p° is the transition density for Brownian motion killed on exiting
B(y; £ /2) (cf. proof of Theorem 3.4). The strong Markov property, (3.18) and
(3.19) give our result with § = ¢né'/2N. O
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Define
(3.20) Oscf = supf — inff.
C c c

ProposITION 3.7. There exists p € (0, 1), depending only on vy, such that if
x € D, r > 0, h is harmonic in A(x;r) and continuous on B(x;r) N D and h
has zero normal derivative on B(x;r) N dD, then

(3.21) Osc h <p Osc h.
A(x;r/3y) Alx;r)

Proor. By considering ah + b for suitable ¢ and b, we may assume
SUP4(x; -y B = 1, inf,,. .y b = 0. Moreover, by considering 1 — h if necessary,
we may assume

l{x € A(x;r/3y): h(x) = )| = 3lA(x;r/37)l.
Let C = {x € A(x;r/3y): h(x) = 1}. Then by Proposition 3.6, scaling and the
fact that D is smooth,
h(y) = B’[h(X, r1,)] = $P’[Tc<7.]1 28>0, yeA(x;r/3y).
Since & < 1in A(x;r/3y) by the maximum principle,

Osc h<1-6=(1-9) Osc k.
A(x;r/3y) A(x;r)

Now take p =1 —68. O

CoroLLARY 3.8. Suppose h is as in Proposition 3.7. Then there exist ¢y,
and a, depending only on v, such that

Ih(x) = h(y)] < cxo sup hllx 5%, x,y € A(x;1/3y),
A(x;r)

i.e., h is Holder continuous.

We can now prove a Harnack inequality valid up to the boundary of D for
harmonic functions with zero normal derivative.

THEOREM 3.9. There exists c,;, depending only on v, such that if z € D,
r > 0, h is nonnegative and harmonic in A(z;6r) and h has zero normal
derivative on B(z;6r) N dD, then

(3.22) et <h(x)/h(y) <cy, x,y € A(z;1r/3y).

Proor (cf. [4]). Fix y € A(z;r/3y) and assume h(y) = 1. Recalling that
dD is smooth, we may assume h is bounded in A(z; 5r); we need to show that
we can bound & in A(z;r/3vy) by a constant depending only on 1.

First we obtain an estimate on hitting small balls. Suppose x € A(y; 3r). By
Proposition 3.6 and scaling,

Py[TA(x;r/i‘ly) < T4r] 2z 87
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for some & depending only on y. If w € D, with |w — x| = r/3y, then
Pw[TA(x;r/Q'yz) < 72,.] > 8.
So by the strong Markov property,
Py[TA(x;r/Q‘yz) < 7'4,.] 2 82.
Continuing by induction,
(3.23) Py[TA(x;r/(3'y)k) < 74,.] > ak.
We use (3.23) to get a bound on % over small balls. Since

1=h(y) 2 E’|h(X s Tace: r /by < Tar| = 6% inf A,
(y) [ ( TA(x;r/(ay)k)) A(x;T/(3Y)%) 4 ] A(x;r/(3‘y)k)

then
(3.24) inf h<87%  xeA(y;3r).
Ax;r/(3y)®)

Next we want to compare the oscillation of 2 on small balls. Recall from

Proposition 3.7 that there exists p < 1 such that
Csc h> Osc h, x €D.
Ax;r/(3y)") A(x;r/By)Hh
Taking m large enough so that p™™ > §72/(67! — 1) and letting M = (3y)™,
-2
(3.25) Osc h=2p™ Osc h>=_———- Osc &h.
ACx; Mr/By)*) AGir/Gy 07 = 1 AGir/@yh

We now proceed to bound A on A(y;2r). Take K so that M(3y) ¥ < 1.
Suppose there exists x, € A(y;2r) such that A(x,) > 8 %X-1. We use in-
duction to construct a sequence xg, x;,.... Suppose we have x, €
A(x,_1; Mr/@y)¥* "~ with h(x,) = 67%7*"1 Since |r; — x; 4| <
Mr/@By)X*-11 <j <n, and |x, — y| < 2r, then

(3.26) lx, —yl < 3r.
By the induction hypothesis, A(x,) > 6 ¥ "~1, By (3.24),
inf h <87 %n,

Alx,;r/By)E+n)

So
Osc h>8K"(s"1-1).

Alx,;7/By)E+m)
By (3.25),

Osc h =8 %-n-2
A(x,; Mr/(8y)X*™)
Since & > 0, this implies there exists a point x,,; € A(x,; Mr/(3y)¥*") with
h(x,. ) =8 %""2
But then we have a sequence x,, x4,... , lying in A(z;4r) by (3.26), with
h(x,) — . This contradicts the boundedness of & on A(z; 5r). Therefore A is
bounded on A(z;r) by 6 %-1, O
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ReEMARK 3.10. We learned from Jerison and Kenig an alternative way to
prove Theorem 3.9. Recall the map ¢ defined following (8.6). One can show
that the function A o ¢ satisfies an elliptic equation in divergence form with
bounded measurable coefficients in the open upper half space H. By symmetric
reflection one can extend the equation and the function to the lower half space
so that the resulting function satisfies an elliptic equation of the same type on
the whole space. The condition of zero normal derivative on the boundary is
used here to ensure that no boundary terms appear. After this reflection,
Theorem 3.9 can be obtained from Moser’s Harnack inequality.

With some extra work, Theorems 3.1 and 3.4 can also be obtained along the
same lines. After applying the map, we transpose the problem of constructing
the heat kernel with Neumann boundary condition on D to the same problem
for Ay, the Laplace-Beltrami operator with respect to the transformed metric;
this operator is in divergence form with respect to the Riemannian volume
measure. We now extend A to the whole space by reflection o: (x,y) —
(x, —y). The resulting operator is an elliptic operator with bounded measur-
able coefficients on the whole space which is in divergence form with respect to
the Riemannian volume measure. For these operators, the argument in [7] still
applies and we obtain a heat kernel q(¢, x, y) (defined on the whole space) for
Ay with respect to the Riemannian volume measure. The desired heat kernel
on H with Neumann boundary condition is then p(z x,y) = q(¢, x,y) +
q(¢, x, oy). The upper bound and the lower bound in [7] then give the bounds
we have proved in this section.

REMARK 3.11. In the remaining sections of this paper, we will consider
bounded domains. Bounded Lipschitz domains satisfy the cone condition ([1],
page 66), and hence we have ([1], pages 95-112) the Sobolev inequality

lulla a-2y < c(llullz + IVullz).

By following the proofs of Section 2 closely, we get the estimates of Theorem
2.3 and Corollary 2.5 with v = d. With only minor modifications to the proof,
the analogue of Theorem 2.7 still holds. By the definition of bounded Lipschitz
domain, if r is sufficiently small, then A(x;6r) equals the intersection of
B(x;6r) with a domain of the type defined in the beginning of this section.
Hence Corollary 3.8 and Theorem .3.9 remain valid provided we add ‘for
r <r, for some ry > 0” to their statements. With a little more work, one can
show using a localization procedure that the lower bounds also hold provided
t <1 and x and y are sufficiently close; this is a bit lengthy, and since we do
not need this in what follows, we omit the proof.

4. Reflecting Brownian motion on Lipschitz domains. The exis-
tence of RBM on a smooth Euclidean domain (say, C 2) is well known. The goal
of this section is to prove the existence of RBM and boundary local time on a
bounded Lipschitz domain. A proof of this seems not to have appeared in print
before. Fukushima’s method ([8]), for example, leads only to RBM on a certain
compactification of the domain D, not necessarily on D itself.
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In this section, we assume that D is a bounded Lipschitz domain. Let
p(t, x, y) denote the transition density whose various estimates we have dis-
cussed in the last section. Let G,(x, y) be the A-resolvent as before. These are
the density kernel and the resolvent kernel of the L2(D)-semigroup P, associ-
ated with the Dirichlet form, _

&(u,u) =3[ IVu(x)?dx, D(&)=HY(D).
D
Here HY(D) is the set of functions whose H(D) norm is finite, where
luldioy = (u,u) + E(u,u), (u,u)= jDuZ(x)dx.

(See [9] for details about Dirichlet forms.) Furthermore, p(¢, x, ) is smooth on
(0,0) X D X D and G)(x,y) is smooth on D X D off the diagonal. We will
prove that in the case of a Lipschitz domain, these functions can be extended
continuously to D, the Euclidean closure of D.

REMARK 4.1. The existence of G,(x,y) and p(¢, x,y) can be proved for
arbitrary bounded domains without any smoothness conditions. They can be
constructed by the usual L2-method. The smoothness of these functions in the
interior can then be verified by a standard interior regularity argument (cf.
[10]. It can also be proved that if K;, K, are two compact subsets of D such
that K, and K, are disjoint, then G,(-, - ) is bounded on K; X (D — K,). See
[8] for details.

WARNING. We let A denote both twice the infinitesimal generator of the
. strongly continuous semigroup P, associated with the Dirichlet form & and
the Laplacian; it should be clear from the context which one we mean. As the
generator of a semigroup, A is more than just the Laplace operator. Each
function z € D(A), the domain of A, satisfies a lateral (boundary) condition. If
D is smooth, this condition is simply du /dn = 0 on the boundary (cf. [9], pages
21-22).

LeEMMA 4.2. Suppose that u € C%D), both u and Au are bounded on D,
and u € D(A). Then u is uniformly continuous on D and may be extended to a
continuous function on D.

Proor. Choose x, € D and ¢, > 0 such that B(x,;2¢,) € D. Let K(¢) =
B(xq;€). Let D, be a sequence of smooth domains increasing to D, all
conta1n1ng B(xy;2¢,), such that the Lipschitz constants y, are uniformly
bounded in n. Let GX®(x, y) be the A-resolvent kernel for the Brownian
motion which is reﬂected on 4D, ‘and absorbed on 4K ().

Now if ¢ < ¢, and g = G} K(s)f for bounded functions f and g, we write

(4.1) g(x) = [ GE¥O(x,9) f(y) dy.
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For any x, € D,, we split the integral in (4.1) into two integrals I; and I,;
the first one is on the set D, — B(x;;8), and the second is on the set
B(x,;;8) N D,. Recall that we have the upper bound G2 XC)Xx,y) <
clx — yl ~4+2 For a fixed positive 8, the first one is a continuous function of x
on D, N B(x,;6/2), by Corollary 3.8. The second integral goes to zero uni-
formly as 8 — 0 by the upper bound on G X©)X(«, y) given by Corollary 2.5
(see Remark 3.11). It follows that g is uniformly continuous on D, —
B(xy; 2¢,), with the modulus of continuity independent of n and ¢ < ¢,.

Next suppose ¢ < g, and g = G?'E@f for bounded functions f and g. By
the resolvent equation,

g=GyXO(f-g),
and by what we just proved, g is uniformly continuous on D, — B(x,; 2¢,)
with a modulus independent of n and .

If E7 is the expectation operator corresponding to RBM on D,, it is not
hard to see that E; exp(—T,,)) — 0 as ¢ — 0 uniformly in D, — B(x,; 2¢,) at
a rate 1ndependent of n. It follows that G X©®f - G2 f unlformly on D, —
B(x,; 2¢,) at a rate independent of n, and hence that 1f g = GIf for bounded
functions f and g, then g is um'formly continuous on D, — B(xo; 2¢,) with
modulus of continuity independent of n. (Here G is the resolvent operator
for RBM on D,.)

Finally, by [8], Lemma 2.5, G}f = G, f uniformly as n — «. Soif g = G, f
for bounded functions f and g, then g is uniformly continuous on D —
B(x,; 2¢4).

Now let u satisfy the hypotheses of the lemma. Clearly we need only worry
about z near the boundary of D. But using the hypotheses, u = G, f for a
bounded function f. It follows that u is uniformly continuous on D and
therefore may be extended to be continuous on D. The lemma is proved. O

LEmmA 4.3. (a) The function p(¢, x,y) defined on (0,0) X D X D can be
extended continuously to (0,%) X D X D so that it is a transition density
function on D. Moreover, p(t, - ,y) € D(A).

(b) The resolvent kernel G\(x,y) defined on D X D off the diagonal can be
extended continuously to D X D off the diagonal so that it is a resolvent kernel
on D.

(c) Forall (x,y) € D x D,

(4.2) Gz, = [ “eMp(t, x,y) dy.

ProorF. By (2.10) and Remark 4.1, we see that' p(¢, - , y) will satisfy the
hypotheses of Lemma 4.2 provided we show that p(¢, - ,y) is in D(A). Let P,
be the semigroup associated with p(¢, - , - ). Note we have the identity

P(t, . vy) = GlGlf()
for f=(1 — A/2)%p(t, - ,y). But then ]
f(:) =p(t, - ,y) —Ap(¢,-,y) + (AP, 5)(Ap(¢/2, - ,¥)) /4,
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and so by (2.10), f is a bounded function on D. This implies that G, f is in the
closure of D(A) and hence G,G, f € D(A), as required.

Therefore by Lemma 4.2, p(t, - , y) may be extended to be continuous on D.
Since p(¢, x,y) is symmetric in (x,y), the same argument applies to the y
variable. The fact that p(¢, x,y) is jointly continuous in (x,y) now follows
from ’

p(t x,y) = fD p(t/2,%,2)p(t/2,2,y) dz

and the dominated convergence theorem. Finally, the conservativity [i.e.,
[p p(t,x,y)dy = 1] and the Chapman-Kolmogorov equation hold for the ex-
tended kernel by passing to the limit in the same formulas for the interior
points.

Since we know that (4.2) holds for x, y in the interior, assertions (b) and (c)
follow by passing to the limit again. Note that p(#, x, y) is uniformly bounded
fort>1. 0 '

THEOREM 4.4. There is a unique D-valued, continuous, normal strong
Markov process (RBM) whose associated Dirichlet form is &.

ProOF. According to the theory of Dirichlet forms (Theorems 6.2.1 and
4.5.1 of [9]), we need to verify that the Dirichlet form & is regular on D, i.e.,
we need to show that the set Z = H'(D) N C(D) is dense in both H'(D) and
C(D) (with their respective norms). That Z is dense in C(D) is clear, since
every continuous function can be approximated uniformly on compact subsets
by smooth functions. Now suppose u € HY(D). We have to demonstrate a
sequence of functions in C(D) tending to « in H (D). Due to the special form
of the norm IIuII%p( py = &(u,u) + (u, u), we see that the bounded functions in
HY(D) form a dense subset. Therefore, we may assume without loss of
generality that u is bounded. Define u, = AG,u. We claim that u, - u in
H(D). We have first of all #, — u in L%(D) by the general theory of strongly
continuous semigroups. On the other hand, since HY(D) = D(Y— A) = D(&),

E(uy—u,uy—u)=(V—A(u, —u), V- A(u, —u))
= (V= Au,V-A2u) - 2)G,V- Au,V~- Au)
+ 202G\ -Au, G- Au).
Hence as A — «, we have
E(uy—u,uy, —u) > (V= Au,V=Au) - 2(V— Au, V- Au)
jl-(\/——Ku,\/——Ku)=0.

Thus we have proved that u, » u in HYD). It remains to show that
u, € C(D). It suffices to show that the resolvent operator G, maps bounded
functions on D into C(D). If u is a bounded function on D, then by Lemma
4.3, P,u is continuous on D for each s, where P, denotes the semigroup
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operator associated with . That G,u is continuous on D follows by integra-
tion and dominated convergence.

Up to now, we have proved that & on a bounded Lipschitz domain is a
regular Dirichlet form. This implies by the general theory of Dirichlet forms
that there is a (Hunt) process X associated with &. To prove X has continu-
ous sample paths, we need to show that & has the local property (see Theorem
4.5.1 of [9]): If u,v € HY(D) and the measures u(x) dx, v(x) dx have disjoint
supports, then £(u,v) = 0. This is easy and can be proved with the help of
Lemma 7.7 in [10]. _

So far, we have not proved the existence of P* for all x € D, because the
theory of Dirichlet forms only asserts that P* exists except for a set of
capacity zero. For any x € D, we define P* by

(43) Vt>0,Ae ¥, P [A-9,]= [p(t,x,y)Py[A] dy,
D

where 6, is the shift operator and % is the filtration generated by X,. This
uniquely defines a probability measure P* on %. Note that the right-hand
side of (4.3) makes sense because a set of capacity zero has Lebesgue measure
zero. It is routine to verify that the family of probabilities {P*} . thus
defined is a Markov process whose associated Dirichlet form is &

The normality of the process, i.e., that P*[ X, = x] = 1, follows immediately
from the upper bound (3.8), using Remark 3.11. O

We now turn to the boundary local time. Recall that o is the surface
measure of the boundary.

THEOREM 4.5. There is a unique positive continuous additive functional L,
(the boundary local time) such that for any x € D and any A > 0,

(4.4) G,o(x) = Ex[[:e-ﬂ dL,].

Proor. We first show that the measure o has finite energy integral;
namely, for any u € H(D) n C(D), :

(u,0) < Cyllullayp) .

First, we claim G,o € D(Y— A). In fact, let D, = {x € D: dist(x,dD) < ¢} and
0,(dx) = ¢ "1, (x) dx. The fact that G,(x,y) is continuous on D X D off the
diagonal and the estimate G,(x,y) <clx —yl ~@=2 imply that G,o.(x) is
uniformly bounded in x, ¢ and converges uniformly to G,o(x) on D as ¢ — 0.
Hence the convergence also takes place in L2(D). On the other hand, as ¢ — 0,
e -0,
(V=124 G,0,,V= A G,0,) = (—AG,0,,G,0,)

= 2(0-5’ G)\O-e') - 2A(G/\0-5’G/\O-e')

- 2(o,G,0) + 2MG,0,G)0).
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It follows that |V— AG,o. — V— AG,0.llL2py—> 0 as ¢ > 0, ¢ — 0. Since
V— A is closed in L*(D), we have G,o € D(Y— A).
Now assume u € H(D) n C(D). We have

2(u,0) = ((1- A)Gl/zu,o-)
(4.5) = (Gypou,0) + (V=AG,sV=Bu,0)
= (u,G,,0) + ,\IEEO(AG"‘/__—A_GI/Z \/_——A_u,a).
The second term on the right is equal to
(\/—_Au s AGy )2 \/—_AGAU) = (\/_——A_u , /\G)‘\/_——KGI/za)
<IV="24ulzlV-AG, 5ol
It follows from (4.5) that
2(u,0) < ull2llG, 5ol + IV=AullolV— AG, ollz < G, ol aypyllel ayp).

By Theorem 5.1.1 of [9], the boundary local time L, exists and (4.4) holds
quasi everywhere, hence except for a set of measure zero. Let us show that it
holds for all x € D. Denote the right-hand side of (4.4) by #(x). Since
¥(x) = G,o(x) almost everywhere and P, has a density, we have for any
x €D,

limEx[ e dLs] = lime™Py(=)
t t—

t—0

= tli_l)l(l)e_)‘tPtG,\a'(x) = G,o(x).

¥(x)

In the last step we used the continuity of G,o. The theorem is proved. O

REMARK 4.6. We could have constructed RBM directly from the transition
density function p(t, x, y), which, as we have shown, has a continuous exten-
sion to the closure D. This transition density generates a nice Feller semi-
group P, which sends the space of bounded measurable functions into C(D).
The sample path continuity can be proved by verifying Dynkin’s condition: For
all ¢ > 0,

lim i supP"[Xt € B(x;e)c] =0,
t201 yep

which follows immediately from Theorem 38.2. The existence of boundary local
time can also be proved by showing that the potential G,o satisfies the
conditions of Theorem 4.22 in [2]- We adopted the approach of Dirichlet forms
because we wanted to emphasize the fact that the Dirichlet form & is regular
on a bounded Lipschitz domain. Furthermore, using the Dirichlet form & with
D(&) = HY(D) is an easy way to identify the process as RBM without referring
to any smoothness conditions on D.
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5. The Neumann boundary value problem. We consider the following
Neumann boundary value problem on a bounded Lipschitz domain D:

Au=0 onD,
(5.1) du

— =f ondD,

an

where f € B(dD) (the space of bounded measurable functions),

j;Df(x)a(dx) =0

and n denotes the outward pointing normal. A rigorous definition of a
generalized solution is given as follows.

DEFINITION 5.1. A function u € C(D) is said to be a generalized solution to
the Neumann boundary value problem (5.1) if for any ¢ € C*(D), we have

a
(5.2) [Du(x) Ad(x) dx + [wf(x)qb(x)a(dx) = [wu(x)g‘g(x)a(dx).

REMARK 5.2. It is not difficult to verify that our definition is equivalent to
the definition of generalized solutions used in [12]. Hence, by [12], Section 4, a
generalized solution has the property that the normal derivative equals f a.e.
on the boundary. The existence and uniqueness of a generalized solution is
also given there.

Note that for smooth domains, the classical solution to the Neumann
problem (5.1) satisfies (5.2) by virtue of Green’s second identity.

In this section, we want to derive a representation for the solution to the
Neumann problem in terms of RBM. Such a probabilistic representation for
smooth domains was discussed in Brosamler ([3]).

THEOREM 5.3. Let D be a bounded Lipschitz domain and let f € B(6D)
with [;p f(x)o(dx) = 0. Then there is a unique generalized solution u to the
Neumann boundary value problem (5.1) satisfying the condition [p, u(x)dx = 0.
Furthermore, we have for each x € D,

(5.3) u(x) = lim E[ fo‘f(Xs)dLs],

where X is reflecting Brownian motion on D and L, is boundary local time

for X.
In order to prove the above theorem, we need Lemma 5.4.

LeEMMA 5.4. Let ¢ € C¥D). Then

1 t .

Ef dsf p(s,x, ) Ad(x) dx
(5.4) o P ) 3
=P ¢+ 5[ ptx, )5 (x)o(dx).
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Proor. Let D, C D be a sequence of smooth domains exhausting D such
that for any ¢ € C%(D) and ¢ € C(D), we have

o
f IO .

Let p*(z, x, y) be the transition density function for RBM on D,. The proof of
Lemma 4.2 and the uniform boundedness of p*(¢, x,y) show in fact that
p*(t, x, - ) (for fixed ¢, x) is a sequence of uniformly continuous functions on
D. Hence a subsequence of p*(t,x, - ) converges, say, to q(¢,x, ). But then
q(¢, x, y) must be the transition density function for the RBM on D, i.e., g = p.
Indeed, (4.2) holds if we replace G, by G} and p by p*. Since G} - G, by 8],
Lemma 2.5, passing to the limit we have G,(x,y) = [; e *'q(¢, x, y) dt. By the
uniqueness of Laplace transforms we must have q = p. Hence we have
p*(t, x,y) - p(¢, x,y) (even without taking subsequences). Since the D, are
assumed to be smooth, (5.4) holds with D replaced by D, and p by p*
[Green’s second identity and the relation dp(¢, x,y)/0t = Ap(t, x, ¥)/2]. We
obtain (5.4) for the domain D by passing to the limit. The lemma is proved. O

ad
op,(dx) = /D¢(x)5‘§a(dx)-

k

We now turn to the proof of Theorem 5.3.

PROOF OF THEOREM 5.3. We know existence and uniqueness by [12]. So we
must show that the function defined in (5.3) is indeed a solution to the
problem. We have for x € D,

| B ['7(X) L] = [ ] p(s,2,9) F)o ()
(5.5) : 1
= fodew[p(s,x,y) - ﬁ]f(y)ff(dy%

[We leave the verification of the first equality for general f & B(dD) to the
reader.] Hence we have

¢y 1|
< [ faD’p(s,x,y) _ |ﬁ]lf(y)lawly).

E[ [z dLs]

It follows from Theorem 2.4 that the convergence in (5.3) is uniform over D
and in fact '

1 11
(516) u(x) = Ej;) ds /(;D[p(s,x,y) — ﬁ]f(y)a(dy)'

Using the boundedness of f, the continuity of p(z, x,y) on_]._) and the upper
bound (3.8) for p(¢, x, y), we can verify easily that u € C(D). It is also clear
that [pu(x)dx = 0. To show that u satisfies (5.2), let u/(x) denote the
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expression after the limit sign in (5.3). We have

ft[pr(s’ x,5) f(y)a(dy)] ds, A¢)

0

(undd) = 5

1 t
5 | 10| [P, dso(an.
Using the preceding lemma we have immediately

(2,89) = [ f(Pi ~ )
(5.7) 1 o ,: .
+ ELDE(x)a(dx)j;ds/aD[p(s, x,y) — ﬁ] f(y)o(dy).

Here we have used the assumption that [, f(y)o(dy) = 0. We have u, > u
and P,p - ¢ = |D|”Yp ¢(x) dx, both uniformly on D. Letting ¢ — « and
using (5.6), we obtain (5.2). O

6. Kuramochi boundary. Analytically and probabilistically, the
Kuramochi boundary of a bounded domain is the ideal boundary for the
Neumann problem and RBM just as the Martin boundary is the ideal bound-
ary for the Dirichlet problem and absorbing Brownian motion. In this section,
following Ohtsuka ([14]), we recall the definition of the Kuramochi boundary of
a bounded domain. Then we state the result that RBM with continuous sample
paths exists on the Kuramochi compactification. The proof of this result is
similar to [8] where RBM is constructed on a slightly different compactifica-
tion. The main result of this section is that if D is a bounded Lipschitz
domain, then the Kuramochi boundary coincides with the usual Euclidean
boundary. We will also prove that in the case of Lipschitz domains,
every boundary point is minimal. For Holder domains we prove that two
Euclidean boundary points cannot collapse into one Kuramochi boundary
point.

We start by recalling the definition of the Kuramochi boundary, which is
rather similar to the definition of Martin boundary. The reader is referred to
[14] for further details. Let D be a bounded Euclidean domain (without any
smoothness conditions). Take a compact subset K € D with smooth boundary.
For example, one may take K to be a small ball. Let G¥(x,y) be the
A-resolvent kernel of the Dirichlet form &% with domain D(£¥) = HY(D) n
HUR? — K). Here HYR? — K) means functions in H'(R? — K) that vanish
on dK. In other words, GX(x,y) is the resolvent kernel of the Brownian
motion which is reflected at D and is absorbed at dK. We will denote G&
simply by GX. The function G¥(x, y) is smooth on (D — K) X (D — K) off the
diagonal and is harmonic in x on D — K — {y}. A sequence x, € D — K with
no accumulation point in D is called fundamental if the limit GX(x,, y) exists
as n - « for every ¥ € D — K. Two fundamental sequences are said to be
equivalent if they give rise to the same limiting harmonic function. The set of
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equivalence classes of fundamental sequences is denoted by A. For x* € A, we
define G%¥(x,y) = lim, _,,G¥(x,,y), where x* = {x,} is a fundamental se-
quence of x*. A is called the Kuramochi boundary of D. Let D* = D U A. As
in the Martin boundary case, D* can be made into a compact metrlc space by
introducing the metric

_ IGX(x,2) ~ GX(y, 2)l
p(x,y) = [D—Kl +1G%(x,2) — GX(y,2)l

It can be shown (by taking a large compact set K covering two compact sets
K, and K,) that the compactification thus defined is independent of the choice
of K. D* equipped with the metric p defined above is called the Kuramochi
compactification of D. We refer to A = dD* as the Kuramochi boundary or the
ideal boundary of D.

The probabilistic implication of the above definition is Theorem 6.1.

dz.

THEOREM 6.1. There exists a unique D*-valued continuous strong Markov
process (RBM) whose associated Dirichlet form is & with D(&) = HY(D).

In order to save space we will not prove Theorem 6.1 here. See the remarks
at the beginning of this section. Note that in general the RBM may not be
normal on D, i.e., there might be branching points. However, if D is Lipschitz,
all points are nonbranching (see Section 4).

LEmMMA 6.2. Suppose D is a bounded Lipschitz domain. If v is a (signed)
measure on 3D with GXv = 0, then v = 0.

ProOF. Let ¢ € C(D). We have
(G¥op,v) = (6,G%v) =0
and
(PXG%p,v) = (PFo,GEv) = 0.
(P is the semigroup corresponding to GX.) Since PX is a semigroup, we have
GXp — PXG*p = ['PX¢ ds.
0

It follows that

[/(PE$,v)ds =0,

0

or equivalently, (PX¢,v) = 0 for almost all ¢ > 0. If D is a bounded Lipschitz
domain, we have PK¢(x) - ¢(x)-as t - 0 for all x € D — K. It follows that
(¢, v) = 0, and therefore v = 0. The lemma is proved. O

THEOREM 6.3. Let D be a bounded Lipschitz domain. Then its Kuramochi
compactification is equivalent to its usual Euclidean compactification.
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Proor. The key to our proof is part (b) of the proof of Lemma 4.2, in
which we have shown that for each fixed y € D — K, the function GX(-,y)can
be extended continuously to D — K — {y}. Let x* = {x,} be a fundamental
sequence in D. By choosing a subsequence, we may assume that x, — x° € aD.
It follows that GX(x,,y) » G¥(x?, y). Therefore GX(x*,y) = G¥(x%, y). If x°
and 2’ are two distinct boundary points, it follows from Lemma 6.2 with
v =3, — 8,, where 8, denotes point mass at y, that GX(x? - ) # GE(27, -).
Hence x° depends only on x* and is independent of a particular fundamental
sequence representlng x*. Therefore we can define a map o: A - dD by
setting o(x*) = x°. On the other hand, if x° is a point on the boundary, then
by the continuity of GK on the closure D, any sequence {x,} of points in D
which converges to x° is fundamental and thus defines a unique ideal bound-
ary point x* = {x,}. This shows that the map o is one-to-one from A onto dD.
Define i: D* - D by ilp = identity and i|, = 0. The map i provides the
desired homeomorphism between D* and D. This completes the proof of our
theorem. O

Let x* € A be an ideal boundary point. x* is said to be minimal if whenever
u is positive and harmonic in D and u(-) < G¥(x*, - ), then u = cG¥(x*, -)
for some constant ¢ < 1. The concept of minimality is independent of the
choice of K. We have:

THEOREM 6.4. If D is a bounded Lipschitz domain, then every boundary
point is minimal.

ProoF. Suppose u is positive and harmonic in D and u < G¥(x*, ).
By [14], there exists a finite positive measure u; on A such that u =
GXu,. By Theorem 6.3, we see that u, is a measure on dD. Similarly, since
GE(x*, - )—u < GK(x*, -), there exists a finite positive measure w, such
that GX(x*, - ) — u = GEu,. Hence GX¥(x*, ) = GX¥(u, + p,)+). By Lemma
6.2 applied to v = &, (/.L1 + my), we have u; + uy = 8,4 Or pg = cd, . for
some ¢ < 1. Hence u = cGE¥(x*,-). O

Finally, we prove a property of bounded Hélder domains.

THEOREM 6.5. Let D be a bounded Hélder domain and let D* = D U A be
its Kuramochi compactification. Then two distinct Euclidean boundary points
do not collapse into one ideal boundary point.

Proor. We will sketch the proof and leave the details to the reader.

(a) The statements of Lemmas 4.2 and 4.3 hold if we replace D throughout
these two lemmas by D*. To see this, we note that we only need to verify that
in, the present case, the integral I, in Lemma 4.2 still goes to zero uniformly
on D as 8 — 0. But we may pass to the limit in Corollary 2.6 by taking smooth
domains increasing to D in a suitable way. Once we have the analog of Lemma
4.2, the analog of Lemma 4.3 follows word by word. In particular, p(t, x, y) can
be extended continuously to D* X D*.
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(b) Let x* € A. To prove our theorem, we have to show that each funda-
mental sequence {x,} for x* converges in the Euclidean metric to a unique
boundary point x° € dD depending only on x*. Let us suppose x, — x°. We
have by the continuity of p(¢, x, ¥) on D* X D* and Theorem 2.3,

P¥[IX, — x°| > A] p(t,x*,y) dy

/B(x"; A¥ND

lim p(t, x,,y) dy
n—0YB(x,;A)°ND

< cy|DIt "2~/ st

Letting ¢ — 0, we find lim, _, , P"*[IXt —x% = A] = 0 for any A > 0. It follows
by the sample path continuity that lim,_, X, = x’, P*" a.s. Thus x? is
uniquely determined by x*. The theorem is proved. O
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