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RANDOM TIME CHANGES AND CONVERGENCE
IN DISTRIBUTION UNDER THE
MEYER-ZHENG CONDITIONS!

By Tuomas G. Kurtz

University of Wisconsin—-Madison

An analog of conditions of Meyer and Zheng for the relative compact-
ness (in the sense of convergence in distribution) of a sequence of stochastic
processes is formulated for general separable metric spaces and the corre-
sponding notion of convergence is characterized in terms of the conver-
gence in the Skorohod topology of time changes of the original processes. In
addition, convergence in distribution under the topology of convergence in
measure is discussed and results of Jacod, Mémin and Métivier on conver-
gence under the Skorohod topology are extended.

1. Introduction. Meyer and Zheng (1984) give conditions under which a
sequence of stochastic processes {X,} is relatively compact (in the sense of
convergence in distribution) when the space of sample paths is topologized by
convergence in measure. It is clear from their paper that these conditions,
involving boundedness of the conditional variations of the processes, imply
much greater uniform regularity of the sample paths of the processes than is
implied by convergence in measure. In this paper we extend and refine the
results of Meyer-Zheng in a number of ways. We formulate an analog of the
Meyer-Zheng conditions for a general separable metric space; we capture
the greater regularity of the convergence under these conditions by showing
that they imply the existence of a sequence of random time transformations
{v,} such that {X,, o y,} is relatively compact under the Skorohod topology; and
we formulate simpler conditions, immediately implied by the Meyer-Zheng
conditions, that imply relative compactness under the topology of convergence
in measure.

For a cadlag, real-valued process X adapted to a filtration {#} (we will
assume that all filtrations are right-continuous and complete) define the
conditional variation V,(X) on the interval [0, ¢] by

(11) V(X) = sup E| L IE[ X(t,.1) — X(t)IZ]1],

where the supremum is over all partitions of the interval [0, ¢]. Considering a
sequence of cadlag processes {X,}, with X, adapted to a filtration {%"} and
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RANDOM TIME CHANGES AND CONVERGENCE 1011
V(X,) defined relative to this filtration, Meyer and Zheng require that

(1.2) sup(V(X ) + supE[IX, (s)l]) <o, t>0.

s<t

Under this condition, each X, is a local quasimartingale. Consequently, for
each n there exists a predictable, finite variation process B, such that
X, — B,, is a local martingale and E[T/(B,)] < V,(X,). [T(b) will denote the
total variation of a function & on [0, ¢].] The quasimartingale property also
implies

(1.3) P{ suplX, (s)l > c} < ¢ Y(V/(X,) + E[IX,(t)]]).

s<t

Let ¢ be convex, symmetric, C2 and satisfy ¢(0) = 0, ¢"(0) = 1, ¢" nonin-
creasing on [0,©) and ¢"(1) = 0. Then there exist increasing processes A,
such that for each b > 0 and 7} = inf{z: |X,(D)| Vv |X,(t —)| > b},

E[A, (2 AT)] <E[IX.()]] +2(1 +b)Vy(X,) + b%+ 20b,
and for each a > 0,

(1.4) o(X,(a+t) —X,(a)) — (A (a+1t)—A,a))

is a local supermartingale (Theorem 5.7). It is the analog of this observation
that we use to extend the Meyer-Zheng conditions to a general separable
metric space (E, r). Note also that A, generalizes the notion of a dominating
process employed by Jacod, Memln and Métivier (1983), and the next results
extend their work as well.

Dg[0,x) will denote the set of cadlag, E-valued functions on [0, ©) with the
Skorohod topology. T'[0, <) will denote the set of right-continuous, nondecreas-
ing functions a on [0,) with a(0) =0 and lim, _,, a(?) = », T,[0,x) will
denote the subset of strictly increasing functions and 7,[0, ) will denote the
subset of nondecreasing, continuous functions. For a € T'[0,»), we define
a 1) = inf{u: a(u) > ).

We will prove the following theorem.

1.1 THEOREM. Let {X,} be a sequence of processes with sample paths in
Dg[0,). Let ¢,: EXE —[0,0), n=1,2,..., be continuous and have the
property that for each compact K C E, there exists a nondecreasing
ag: [0,0) = [0,0) with ag(0) =0, ag(r) >0 for r >0 and inf, ¢,(x,y) >
ag(r(x,y) A1) for x,y € K. Suppose that the following conditions hold:

C1.1G) (Compact containment.) For each ¢ > 0 and T > 0, there exists a
compact K C E such that

(1.5) liminf P{X,(t) €K,t < T} >1—¢.

n—o
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C1.1Gii) For each n, there exists an increasing process A, such that for each
ty =0,

(1.6) Pa( Xa(to +8), Xo(t0)) — (Au(t +t9) — An(to))

is a local {#,}, }-supermartingale.
C1.1Gii) For each a > 0, there exist stopping times {1} such that
P{r® < a} < 1/a and for each t > 0, sup, E[A,(t A 73)] < .

Then the following hold:

(a) There exist processes {y,} in T,[0, »), with {y, '(¢)} stochastically bounded
for each t, and E-valued, cadlag processes {Y,} such that X,(¢) = Y,(y, '(¢))
and {(Y,,v,)} is relatively compact in the Skorohod topology on D, [0, »).

(b) Suppose the sequence {(Y,,,v,)} in part (a) converges in distribution to
(Y, y) in the Skorohod topology. Then (by the Skorohod representation theo-
rem) there exists a probability space on which are defined processes {(Yn, 7.}
converging almost surely to a process (Y,9) in the Skorohod topology
on Dy, gl0,) such that (Y,,9,) has the same distribution as (Y,,v,) (and
hence X, =Y, o 9. ! has the same distribution as X,,) and with probability 1,
X.@) - X@#) =Y o9~ Xt) for all but countably many t.

(¢) If v in part (b) is strictly increasing, then X,, = Y oy~ in the Skorohod
topology.

1.2 REMARKS. (a) The conditions of the theorem can be weakened to the
assertion that for each T > 0, there exist ¢,, ax and A, with C1.1Gi)
and C1.1(iii) holding for ¢, + ¢ < T and ¢ < T, respectively. C1.1(ii) is satis-
fied if for each + >0 and ¢ > 0, {A,(#)} is stochastically bounded and
sup, E[A, (¢t A 15)] < », where 7¢ = inf{s: A, (s) > c}.

(b) It is tempting to define a notion of convergence which states that
x, = x if there exist y,,y € Dgl0,») and y,,y € T[0,) such that x, =
Yoovi Y x =yecy ! and (y,,7,) = (y,7) in the Skorohod topology. Unfortu-
nately, this notion of convergence does not correspond to a metric.

(c) Without loss of generality, we can assume A, (¢t+h)—A,()>h
(otherwise replace A, (¢) by A,(¢) + t). Let A2 be the dual predictable projec-
tion of A,,. Then we will show that we can take vy, to be the inverse of A? and
Y, (u) =lim,_, ,, X,(7,(v) —). The conclusions of the theorem also hold with
this Y, replaced by Y,/ defined by Y,/ (u) = X, (y,(u)).

1.3 CoroLLARY. Let {X,} be a sequence of processes with sample paths in
Dpg#[0, ). Assume that the following condition holds.

C1.3 For each a > 0, there exist stopping times {77} with
P{r® < a} < 1/a such that for each t > 0, sup, E[IX;*#)|]] < © and
sup, V(X1") < o.

Then the conclusions of Theorem 1.1 hold.
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1.4 CoroLLARY. Let {f;} ¢ C(E) separate points in E. Suppose that the
compact containment condition, C1.1(i), holds and that for each i and t > 0,

(1.7) supV( f;° X,) <.
Then the conclusions of Theorem 1.1 hold.

Let M[0,») be the space of (equivalence classes of) E-valued, Borel
measurable functions topologized by convergence in measure. Clearly, by part
(b) of Theorem 1.1, the Meyer—Zheng conditions imply that the sequence {X,}
is relatively compact considered as a sequence of M0, x)-valued random
variables. This conclusion, however, follows under a much weaker set of
conditions.

1.5 THEOREM. Let {X,} be a sequence of measurable, E-valued processes.
Let ¢,: EXE - [0,0), n = 1,2,..., have the property that for each compact
K C E there exists a nondecreasing ag: [0,©) = [0,0) with ag(0) =0,
ag(r)>0 for r>0 and inf, ¢,(x,y) = ag(r(x,y) A1) for x,y € K. Sup-
pose that the following conditions hold:

C1.5(G) For éach e > 0 and T > 0, there exists a compact K C E such that

(1.8) limsup ["P(X,(t) € K} dt <.

n-—o 0

C1.5(ii) For each n, there is an increasing function a, such that for each
to =0,

(1.9) E[eu(Xa(to + 1), X,(0))] < an(t +to) — an(to).
C1.5(iii) For each t > 0, sup,, a,(t) < .

Then {X,} is relatively compact in My[0,%).

In Section 2, we examine time transformations and Skorohod convergence
and prove Theorem 1.1. In Section 3, we consider conditions more general
than those of part (c) of Theorem 1.1 under which the convergence is actually
in the Skorohod topology. In particular, we extend results of Jacod, Mémin and
Métivier (1983) to the present setting. Section 4 is devoted to the study of
convergence in M[0, ) and the proof of Theorem 1.5. Much of this material
appears in some form elsewhere [e.g., Dellacherie and Meyer (1978)]. We collect
it here as a convenient reference. Section 5 is an appendix collecting proofs of
the properties of quasimartingales mentioned earlier.
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2. Convergence under random time changes. We recall certain facts
about convergence in the Skorohod topology.

2.1 LEMMA. Let {x,} C Dg[0,). Then x, — x in the Skorohod topology if
and only if the following conditions hold:

C2.1G) If¢t, — ¢, then lim r(x,(¢,), x()) A r(x,(¢,), x(t —)) = 0.
C2.1Gd) Ifs, =t,, s, tnn - t and x,(t,) = x(t), then x,(s,) — x(¢).

Proor. See Ethier and Kurtz (1986), Proposition 3.6.5. O

2.2 LEmMA. Let {x,} € Dg[0,) and {y,} C Dg[0,®). Suppose x, = x in
Dg[0,) and y, — y in Dg[0,). Then (x,,y,) - (x, ¥) in Dg g,[0,) if and
only if for all sequences {s,} and {t,} converging to ¢ € [0, ),

(21) ’:lli_lgorl(xn(sn)’xn(sn _)) A r2(yn(tn)’yn(tn _)) A X(t,,#sn) = 0

Proor. The necessity of (2.1) follows from the necessity of C2.1().

Suppose ¢, — ¢. If either x or y are continuous at ¢, then C2.1(G) and
C2.1(i) are easily verified for the sequence {(x,,y,)}. Suppose both x and y
have discontinuities at ¢. Then there exist {s,} and {¢,} converging to ¢ such
that r(x,(s,), x,(s, — ) = rx(®), x¢ — ) and ry(y,(¢,), ., — ) -
ro(y(2), y(t —)). Consequently, by (2.1), ¢, # s, for only finitely many n and
the conditions of Lemma 2.1 follow. O

Recall that 70, <) denotes the space of right-continuous, strictly increasing
functions a on [0,%) with a(0) = 0 and a(¢) - « and note that a € T,[0,x)
implies that a~! € T,[0, %) and vice versa.

2.3 LEMMA. Let {x,},{y,} € Dgl0,®), {a,} c T,[0,) and x,(¢) = y,(a (1)
for t > 0. Suppose there exist y € Dg[0,») and a € T,[0,») such thaty, — yin
the Skorohod topology and a,(t) — a(t) at each continuity point of a. Define
x(t) = y(a(?)). Then

(@) x,(t) = x(¢) for all but countably many t.

(b) If on any interval [u,v] on which a™! is constant, y is constant except
for at most one jump, then x,, — x in the Skorohod topology. In particular, the
conclusion holds if a™! is strictly increasing, that is, if a is continuous. (Note
that since a is right-continuous and a(0) = 0, a~! is not constant on any
interval [0, v]. If we drop the assumption that a(0) = 0, then we must add the
requirement that y be constant in the interval [0, a(0)].)

© Ify,(u)=x,(a, (w)ory,(u)=lm,_,,. x,(a, (v) —), then the condi-
tions in (b) are necessary as well as sufficient for x, — x in the Skorohod
topology. [ Note that since a,, is strictly increasing, a;,(a,(t)) = t and hence in
either case y,(a ,(8)) = x,(2).]
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(@ If a,, — a in the Skorohod topology and y, is given by one of the
formulas in (c), then x, — x in the Skorohod topology if and only if for all
sequences {s,} and {t,} converging to t € [0, »),

(22) '}i_lgor(xn(sn)7xn(sn _)) A r(xn(tn)’xn(tn _)) A X(tnaes,,) =0.

24 ReMARk. (a) For a € T[0,©) and x € Dg[0, ), define y(u) =
lim,_,, x(a™(v) —). Then y(u) =x(¢) if u =a(?), and y(u) =x( - ) if
a(t —) <u <a(®).

(b) The limit in (2.2) essentially says that discontinuities cannot coalesce.

Proor. If ¢, — ¢, any limit point of {a,(¢,)} must be in the interval
[a(¢t — ), a(?)]. Consequently, any limit point of {x,(¢,)} = {y,(a,(¢,))} must be
in the set T, = {y(w),y(u —): u €[a(t — ), a(?)]}. Since there are at most
countably many values of ¢ for which a(¢#) # a(¢ — ) and at most countably
many values of ¢ for which y(a(#)) # y(a(¢) — ) (recall a is strictly increasing),
part (a) follows.

Under the hypotheses of part (b), I, = {y(a(t — ) — ), y(a(®))} =
{x(t =), x(®)} and if x,(¢,) = y,(a,(t,) = y(a®) =x(¢), s, > ¢, and s, — ¢,
then by Lemma 2.1, x,(s,) = y,(a,(s,) = y(a(?)) = x(¢) and (b) follows by
the same lemma. Part (c) also follows by Lemma 2.1.

To prove part (d) we verify the hypotheses of part (b). If a has a discontinu-
ity at ¢, the conditions on {a,} and {y,} ensure that y is constant on
(a(t —), a(?)), so to verify the hypotheses of part (b) we need only show that y
has a discontinuity at no more than one of the endpoints of the inter-
val [a(t — ), a(#)]. Suppose y has a discontinuity at both endpoints. Then
there exist w, = a(t —) and v, — a(¢) such that r(y,(u,),y(u,—)) —
r(y(a(t —)),y(a(t —) —)) and r(y,(v,),y, (v, — ) = r(y(a@®), y(a(®) —)). If
y(u) =x,(a;(u)), then taking s, =a, v,) and ¢, =a,%u,), y,(v,)=
x,(s,), ¥.{u,) = x,(¢,) and by the continuity of a;! we must have y, (v, — ) =
x,(s, —)and y,(u, — ) =x,(, — ) for n sufficiently large. Since s, — ¢t and
t, — t, we derive a contradiction of (2.2). If y,(u) = lim,_, ,, x,(a;'(v) -),
first observe that if y,(u) = x,(s — ) for some s, then y, is continuous at «.
Consequently, we can obtain a contradiction of (2.2) by the same argument as
before. O

2.5 LEmMMA. For a € T[0,), let b(u) =1lim,_, ,, a(a™(v) — ). Then
b(u) <uand if b(u) > b(u — h), then b(u) > u — h.

Proor. By Remark 2.4(a), if u = a(¢) for some ¢, then b(u) = a(?) = u.
Otherwise, a(t — ) <u <a(?) and b(u) =a(t —) <u. If bu)>b(u — h),
then there must be a v € (v — h, u] such that b(v) = v < b(u). O

We will need the following result from Kurtz (1975) [see Ethier and Kurtz
(1986), Theorem 3.8.6]. Let q(x,y) = 1 A r(x, y).
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2.6 LEMMA. Let (E,r) be complete and separable and let {X,} be a se-
quence of cadlag, E-valued processes, X, adapted to {%,"}. Then {X,} is
relatively compact in the Skorohod topology if and only if the compact contain-
ment condition holds [C1.1(1)],

(2.3) lim lim sup E[¢(X,(3), X,,(0))] = 0

n—o

and for each 8 > 0, T > 0 and n there exist random variables y(8) such that
E[q(X,(t +u), X, () F"]q(X(2), X, (¢ —v))

(2.4) r

<E[yi(&)lF],

0<t<T,0<u<6,0<v<édAt and

(2.5) lim limsup E[y7(8)] = 0.
-0

n—o

Proor oF THEOREM 1.1. Let A” denote the {%,"}-dual predictable projec-
tion of A,. Then the assumptions of the theorem hold with A, replaced by
AP Without loss of generality, we can assume that A2(¢ + h) — A2(t) > h
[otherwise replace AZ(¢) by AZ(¢) + t]. Let v, denote the inverse of AZ [note
that v, (¢t + h) — v,(¢) < h] and define Y, (¢) =lim,_,, X, (y,(s) —) and
B,(t) = lim,_,,, AZ(y,(s) —). Since v, is continuous, for each ¢, y,(¢) is an
{&, "}-predictable stopping time.

The fact that (1.6) is a local {#,", }-supermartingale for each ¢, implies that
for bounded stopping times 7, < 7,,

(26)  E[en(X,(rs), X, (1)) F ]| < E[AR(ry) — AL(m)| )]

(with the possibility of one or both sides being infinite) and the predictability of
v,(¢) implies

E[@n(Xu(valt + 1) =), Xa(a(2) =) F 70 -]
< E[AL(va(t +u) =) = AZ(va(8) =) F o]
and hence, letting & = N, %) _,
(28)  E[en(Yo(t +u),Y,(1)4"] < E[B,(¢ +u) - B,()l4"].

Fix K compact and define nX = inf{t: Y (¢) & K}. Note also that Y, is
constant on any interval on which B, is constant, that is, on intervals of the
form [A2(¢ — ), AR(¢)). Consequently, for § > 0,0 <u <6and 0 <v <¢ A §,

E[e (Y, (¢ +u), Y (1))£"]q(Y,(2), Y, (¢ — v))
(2.9) <E[B,(t+u) - Bn(t)lftn]/\’wn(t» B (t-v))

< 26,
where the last inequality follows by Lemma 2.5.

(2.7)
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FixT>0and 6 > 0. Foranye > 0,t<T,0<u<déand0<v <tASJ,
E[q(Y,(t +u), V()" q(Y,(2), V(¢ — v))
= E[f T Xk <1y T X{n§>T)“K(5)_1“K(‘I(Yn(t +u), Yn(t)))l.%"]
Xq(Y,(2), Y, (t = v))
< E[e + xur <1y + 20ax(e) 157].

(2.10)

Since the compact containment condition for {X,} implies the condition for
{Y,}, defining yT(8) = ¢ + XX <1y 28a,(e) !, by an appropriate choice of ¢
and K depending on 8, we see that (2.4) and (2.5) are satisfied for {Y,}. A
similar estimate gives (2.3) and we can conclude that {Y,} is relatively compact
which completes the proof of part (a).

Part (b) follows by Lemma 2.3(a) and part (c) follows by Lemma 2.3(b). O

ProoF OF COROLLARY 1.3. The compact containment condition C1.1(i)
follows by Lemma 5.3. (Note that the vector-valued case follows by treating
individual components.) Letting ¢ be as in Theorem 5.7, for x € R* define
#(x) = Lk ,p(x;). A, satisfying C1.1(ii) and C1.1(ii) is then constructed as in
the proof of Theorem 5.7. O

PrOOF OF COROLLARY 1.4. As in (1.4) (see Section 5), for each n and i,
there exists an increasing process A, such that

(211)  (A(Xalto + 1)) = F(Xu(t)))" = (AL(to + 1) — AL(o))

is an {% . )-supermartingale and E[A.(®)] < 6l f;ll.V(f;> X,) + |l fil2. For
T > 0, there exist {a;} such that -

Y alfilE<w and Y a; supll fill.Vp( fi° X,) < .

Define ¢, (x,y) = ¢(x,y) = La,(f(x) — fi(y)? A,=TYXa,A, and ag(u)=
infle(x, ¥): r(x,y) = u, x,y € K}. Then C1.1Gi) and C1.1(ii) hold for ¢ and
to + t restricted to the interval [0, T']. An examination of the proof of Theorem
1.1 shows that this is sufficient to verify the conclusions of the theorem. O

3. Additional conditions for Skorohod convergence. Let {X,} sat-
isfy the conditions of Theorem 1.1 and let A%, Y, and v, be as in the proof of
the theorem. We would like to know what additional conditions are necessary
to ensure relative compactness of {X,} in the Skorohod topology. With refer-
ence to Lemma 2.3(c), we have the following.

3.1 PropoSITION. Under the conditions of Theorem 1.1, suppose
(3.1) ’{in}) limsupE[1 A AE(h)] = 0.

n—o

Then {X,} is relatively compact in the Skorohod topology if and only if for each
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T>0andc >0,

’Ein%) lim supsup E| 3. q(X,.(t; 1), Xn(o'i))Q(Xn(Ti)’ Xn(ti))
(3.2) "o !
X(c AAB(t.y) — ¢ A Az(ti))] -0,
where the supremum is over all choices of {t;} satisfying 0=ty < -+ <

t,.1<T<t, and t;,, —t; < h and all choices of stopping times satisfying
t, <7, <0; <1,

Let vy, and Y, be defined as in Remark 1.2(c). Then along any subsequence
on which (Y,,v,) = (Y, y), the left side of (3.2) is bounded by

(3.3) E| ¥ Q(t)(A”(t) - A%(t —))],
t<T

where AP = y~! and Q(t) = sup{qg(Y(u, — ), Y(u )q(Y(v,), Y(v,)):

AP(t — ) <u; <u, <v; <uy, < AP}

3.2 REMARKs. (a) It is sufficient to show that the limit in (3.2) holds for
each £ > 0, with the supremum replaced by the maximum over the two
partitions given by taking ¢, = ih or ¢, = h/2 + (i — Dh and over 7, = ¢; ., A
inf{s > ¢;: q(X,(s),X,(¢,)) >¢} and o,=7, or o,=m;, =t Ainfls > 7;:
q(X,(s), X,(1,)) > €}.

(b) By Lemma 2.3(c), {X,,} relatively compact implies (3.3) is zero.

Proor. The necessity of (3.2) is immediate, since {X,} relatively compact
implies that

(34) lim limsupsup E[ supq(X,(:.1), Xa(0))a(X.(7), X,(2)] - 0.
To prove sufficiency, we only need to consider the two families of {¢,} defined in
Remark 3.2. Note that any interval [r, s] with s — r < h/2 is a subinterval of
some interval in one of these partitions.

To show that {X,} is relatively compact, it is enough to consider subse-
quences along which {(Y,,vy,)} converges in distribution, and hence, as in
Theorem 1.1, part (b), we may as well assume that {(Y,, y,)} converges almost
surely to (Y,y). Let AP =y~ ! Then, with probability 1, A2(¢) — AP(¢) at
every point of continuity of A”. Suppose v is constant on an interval [u, v] =
[AP(¢ — ), AP(¢)] and the condition of Lemma 2.3(b) fails for Y on this interval.
Then there exist ¢ > 0 and u <u; <uy, <v such that (v - u) A
q(Y(w), Y(u ) A q(Y(u,),Y(u,) > e. If this is the case, then there exist
t,<rl<r?<s, such that ¢, >¢, s, >t AL, — AP(t —), AE(s,) —
AP(t), X, (rD) — Y(u,) and X, (r2) - Y(u,). Let T, be the event that such an
interval exists. Then the probability of the event on which X, does not
converge in the Skorohod topology is lim, _, , P(T,). Consequently, we are done
if we show that P(T,) = 0 for each ¢ > 0.
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Fix € > 0. For each ¢;, define 7, =¢;,; A inf{s > ¢;: q(X,(s), X, (¢,)) > &}
and n;, = t,,; A inf{s > r;: ¢(X,(s), X,(7,)) = ¢}. Note that

q(X,(n;), Xn("'i)) < q(X,(t41)> Xo(m)) + 9(Xa(tiv1), X,(7))).
On the event I, for n sufficiently large, one of the two partitions previously
designated contains an interval [¢;, ¢, ;] on which 7, < ¢,, ;. In this case, for ¢
sufficiently large, the random variable in the expectation in (3.2) is greater
than £3. Since we only need consider the two partitions for each A, (3.2)
implies P(I,,) = 0, and we conclude that X, converges in the Skorohod
topology.
The bound (3.3) follows from the fact that X,(¢) = Y, (A2(¢)). O

The following lemmas are useful in verifying (3.2).

3.3 LEMMA. Suppose A2 = AP in the Skorohod topology. Then (3.2) holds
if foreach T > 0 and ¢ > 0,

lim limsupsup E| ) (¢ A A5(t,,,) — ¢ A AE(T)))

-0 550 i

(3.5)
Xq(Xn(Ti)’ Xn(ti)) =0,

where the supremum is over all partitions of [0,T] satisfying t;,,, —t,<h

and all choices of stopping times satisfying t;, < v, < t;, .

With Y, and v, as in Remark 1.2(c), if (Y,,v,) = (Y,y) and A2 = AP in
the Skorohod topology, then the limit on the left in (3.2) equals

E| Y. q(Y(A”(2)), Y(AP(2) —))q(Y(A(t -)), YP(A(t —) -))
(3.6) t<T
X(c NAP(t) —c NAP(t —))].

Proor. Writing
(c NAR(E 1) —c NAR(E)) = (e AAR(E, 1) — ¢ AAR(T))
+(c A AL(T) —c ANAR(E)),

we see that the expectation in (3.2) equals the sum of a term bounded by the
expectation in (3.5) and

(38) E[Z 4(Xo(ti1), Xo(0))(c A AB(r) =€ A Aﬁ(ti))]-

But as in the proof of Theorem 1.1, letting BX = inflt: X,(¢) ¢ K} and
7o = inf{¢: AZ(¢) > ¢} and using the predictability of 7,

E[q(Xn(ti+1)7 Xn(oli))l'gt;in]

<E[e + Xps npram + ax(e) (¢ AA(ti) — ¢ A AR(0))I T

(3.7)

(3.9)
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Consequently, (3.8) is bounded by

c(e + P{'r,f A B,If < T}) + aK(g)_l

(3.10) XE| ¥ (¢ A AR(ti11) — ¢ A AB(7,))(c A AZ(7,) — ¢ A AB(L;))

and the convergence of {A”} in the Skorohod topology ensures that the
expectation in (3.10) goes to zero as & — 0, uniformly in n. The probability in
(8.10) can be made small uniformly in n by taking c large and applying the
compact containment condition. Finally, ¢ is arbitrary, so the first part of the
lemma follows.

It follows from (3.3) that (3.6) is an upper bound for the limit in (3.2). To
see that (3.6) is achieved, drop the supremum on the left of (3.2), select the ¢,
to satisfy P{A(¢;) = A(¢; — )} = 1 and let o; = 7; be defined as in Remark 3.2.
Then the limit on the left of (3.2) is within ec of (3.6). O

3.4 LEMMA. Suppose A2 = AP in the Skorohod topology. Let oj(e) =0
and ol (¢) = inf{t > 0/(¢): AE(t) — AR(t — ) > €}. Then (3.2) holds if

lin:) limsupE| ) q(X,(0(e) =), X,(0/"(¢) — h))
7Y% now a(e)<T

(3.11)
X(c A AP(0"(e)) —c AN AB(a*(e) —))| =0

for each ¢ > 0, and hence if
(3.12) lim limsupE[q(X,(0"(e) =), Xu(07(¢) = h))Xopozm] = O

for each ¢ > 0 and i > 0.

Suppose for each ¢ >0, i >0 and & > 0, there exist 0 <hz <8 and
stopping times t»° such that liminf, . P{h® <0/ (e) —7/»° <8} > 1-§;
then (3.12) holds.

Proor. Let Y, and y, be as in Remark 1.2(c), and, as before, assume that
the convergence is almost sure. Suppose AP(0) — AP(c — ) > e. Then
there exists i depending on n such that ¢*(¢) » o. Recall that Y, (u) =
Y (A2(0(e) — ) = X,(0*(e) — ) for A2(0*(e) — ) < u < A2(0*(¢)). It follows
that

lim lim q(X,(7'(¢) =), X,(07'(e) — b))
(3.13) X(c A AE(a*(g)) — ¢ A AB(0"(g) —))
=q(Y(A?(0 -)),Y(AP(o —) =))(c AN AP(0) —c A AP(0 —))
and hence (3.11) implies that (3.6) is zero.
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For 7% as in the statement of the lemma, let B™° = inf{t > 7/*° A T

i

r(X,(t), X,(r7® A T)) > n}. Then

limsup E[q(X,,(07(£) =), X,(07 () = 1*))Xorer< )]
(3.14) noo
<8 + 27 + limsupP{B}° < o/*(e) < T}
The inequality in (2.6) and the predictability of o*(¢) imply that the probabil-
ity on the right of (3.14) is bounded by

ag(n) 'E[AE(a7(e) =) = AR(TP°) Xpro <y

(3.15)
+ P{X,(¢t) ¢ K,somet < T}.

Since { A2} converges in the Skorohod topology, we must have
lim limsup E[(c A A2(a*(¢)) — ¢ A AE(0"(&) —))
(316) 6—-0 n—o [( (
X(c AAE(a"(e) —) — ¢ A AB(a(e) — 8))] = 0.

Consequently, (3.15) can be made arbitrarily small by taking K large and &
small. O

The condition in the last statement of Lemma 3.4 can be thought of as a
uniform predictability condition. This type of condition plays a key role in the
results of Jacod, Mémin and Métivier (1983). We now extend Theorem 2.3 of
that paper to the present setting.

3.5 THEOREM. Under the conditions of Theorem 1.1, assume that there
exists a continuous function ¢: E X E — [0,®) such that ¢, — ¢ uniformly on
compact subsets of E X E. Let Y,, A2, v, and B,, be as in the proof of Theorem
1.1 and assume that (Y,,y,) = (Y,y) and A2 = AP in the Skorohod topology.
Define B(¢) = lim, _,,, AP(y(s) — ). Then the following hold.

(a) There exists a complete, right-continuous filtration {£)} to which
(Y, v, B) is adapted such that for each a > 0,

(3.17) Z,(t) =¢(Y(t+a),Y(a)) — (B(t+a)—B(a))

is a {Z,, J-supermartingale.

() Let H#, = Gyny,. If AP is {H#}-predictable (or more generally if the jump
times of AP are predictable in the sense that {(¢,w): A(t,w) + A(t — ,w)} =
U {(r(0), 0): @ € Q} for some sequence of predictable stopping times {7,}),
then X, = X in the Skorohod topology.

3.6 ReEMARks. (a) In part (a), we can always take &, = &° =
a{(Y(s), y(s), B(s)): s < t + }, but we may need &, to be larger, if possible, in
order to obtain the predictability of A? with respect to {Z,».)}.

(b) Conditions C1-C4 of Jacod, Mémin and Métivier (1983) imply the
{#,}-predictability of AP (with &, = £). In particular, the conditions on A?
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hold if A? is continuous, if the jump times of A? are deterministic, or if A” is
predictable with respect to the filtration #4” = o{AP(s): s < ¢8}.

Proor. Observe that (Y,,y,, B,) is adapted to {«#,"} and that
(8.18) Z}(t) =@, (Y, (t +a),Y,(a)) — (B,(t +a) — B,(a))

is a {#}-supermartingale. Since Z? = Z, and Z(¢) > —(¢t + a), it follows
that Z, is a {£% ,}-supermartingale which proves part (a).

Note that if 7 is an {-#}-stopping time, then AP(7) is a {,}-stopping time.
Fix ¢ty < T, and let 7 = T A inf{t > t,: AP(¢t) + AP(¢ —)). If 7 is predictable,
there exists a sequence of stopping times 7, < 7 such that 7, - 7 and A?(r —)
and AP(r,) will be {#Z)}-stopping times. As in the proof of Theorem 1.1, it
follows that

E[p(Y(A?(7 -)), Y(A?(y)))]
(3.19) < E[B(A(7 -)) — B(A%(7))]
<E[42( =) - A%(z,)], |
where the last inequality follows by Lemma 2.5. Since the right side goes to
zero as 7, — 7 and the left side converges to E[o(Y(A?(1 — ), Y(AP(1 — ) —))]

(recall that AP is strictly increasing), it follows that (3.6) holds. Consequently,
Lemma 3.3 and Proposition 3.1 give part (b). O

4. Convergence in measure. Let (E, r) be a complele, separable metric
space and let Mg[0, ©) be the space of equivalence classes of Borel-measurable,
E-valued functions on [0, ) (two functions being equivalent if they are equal
Lebesgue a.e.). For x,y € Mg[0, »), define

(4.1) d,(x,y) = ]:e“[l A r(x(t), y(t))] dt.

(Note that we will use the same notation for an equivalence class x in Mg[0, »)
and for an element of the equivalence class provided it makes no difference
which element we use.) Then d,, is a metric corresponding to convergence in
measure and (Mg[0, »), d,,) is a complete, separable metric space. We leave the
verification of separability to the reader. To see that the space is complete, let
{x,} be a Cauchy sequence. Select a subsequence such that

42 Y A%, %,,,,) = fme't Y 1Ar(x,(t),%,, (2))dt <o
k=1 0 k=1

and note that (4.2) implies that there is a set T c[0,%) of full Lebesgue
measure on which

(4.3) f LAr(x,(2),x,, (t))dt <o
k=1

Fort €T, x(¢) = lim, _,, x, (¢) exists, and, fixing x, € E, define x(t) = x, for
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t & T. Then
44)  dp(x(0), 2(8)) < d(a() 20 (D)) + T D 20,
i—k

and it follows that x, — x in Mg[0, ).

By Prohorov’s theorem, a critical factor in the study of weak convergence is
the characterization of the compact subsets of the metric space under consider-
ation.

4.1 THEOREM. A subset A C Mg[0, ) is relatively compact if and only if the
following conditions hold.

C4.1G) For every €, T > 0, there exists a compact set K C E such that
(4.5) supm{t < T:x(t) € K} <e.

x€A

C4.1(Gi) For every T > 0,

(4.6) lim supf 1A r(x(t+h),x(8)) dt =
h—>0x€A

4.2 REMARK. (a) Note that if a is a strictly increasing function with
a(0) = 0, then

(4.7) lim sup [a(1 A r(x(t + ), %(t))) dt = 0
h—>0xcA"0
implies (4.6).
(b) An examination of (4.12) shows that C4.1(ii) of Theorem 4.1 can be
weakened to the following.

C4.1(Gii) For every T > 0, there exists a sequence h, — 0 such that

(4.8) lim sup h) f f 1Ar(x(t+u),x(t))dtdu = 0.

k—ox x€A

ProorF. The proof of necessity is left to the reader. To prove sufficiency, we
will make use of the following lemma which will also have application else-
where.

4.3 LEMMA. Suppose A satisfies C4.1(1). Then A is relatively compact in
Mgl0, ) if and only if {f o x: x € A} is relatively compact in M[0,®) for every
fe C(E).

PrOOF. Again the proof of necessity is left to the reader. Let K; c K, C
be a sequence of compact subsets of E such that for every T > 0,
lim, ,,sup,c o mi{t < T: x(t) € K;} = 0. Let {f}} C C(E) satisfy || f,ll < 1 and
separate points in E. Then for each k, there exists a continuous function w,
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with w,(0) = 0, such that

(4.9) r(x,y) < wk( Y 27fi(x) - fi(y)l), x,y € K,.
i=1

Given a sequence in A,‘ by a diagonalization argument we can select a
subsequence {x,} such that for each f;, {f;°x,} is a Cauchy sequence in
M_[0, ). Consequently, by (4.9),

limsup d,,(x;, x,) < limsup (/we-twk( Y 27fex;(t) — fie xn(t)l) dt
0 i=1

Jyn—® Jjyn—ox

(4.10) +/ e_tX(xj(t)GS Ky, or x,(t) & Ky) dt)

= lim sup f e X(xj(t)e Ky or x,(t) & Ky} dt

J n—o

and by the definition of {K,}, the right side of (4.10) goes to zero as k — o,
The relative compactness of A follows. O

Proor oF THEOREM 4.1. It follows from Lemma 4.3 that it is sufficient to
verify the compactness of B;={z € M[0,): z=fox, x € A} for each fe
C(E).Let h > 0. For z € Bf, define z™ by

(4.11) 2M(t) = h‘lf 2(t+u)du.
0
Then for compact K C E,

sup f e (1 A lz®(2) — 2(2)l) dt

zEBf

< suph” fj e~tz(t + u) — 2(t) dtdu

z€By

(4.12) < suph- j’ f tlfox(t + u) — fox(t)|dtdu

x€A

fggh‘lj; /0 e‘t[wK(r(x(t +u),x(t)))

A

IA

+X(x(t+u)$$ Korx(t)& K)] dtdu,

where wg(u) = sup{lf(x) — f(»)|: x,y € K, r(x,y) < u}. Given & > 0, by mak-
ing K large and h small, the right side of (4.12) can be made less than e.
Furthermore, for each h > 0, I'® = {z®: z € B} is relatively compact by
Ascoli’s theorem (compactness in Cg[0, ) implies compactness in My[0, ©)).
Consequently, we have shown that for each & > 0, there exists a compact
subset I' © M[0, ©) such that B, c {z: inf, . d,(2, y) < €} which implies the
relative compactness of B;. O ‘
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4.4 CoroLLARY. Let K, K,,... be compact sets in E, and let h, > 0 satisfy
h, = 0. Let (K, K,,...,hy,hy,...) be the set of x € Mgl0, ») satisfying

(4.13) mit <k:x(t) € K,} < %,
(4.14) h,;lfo"”fOT1 A r(x(t + u), x(t)) dtdu < %.

Then ¥(K,,K,,...,h{, hy,...) is compact.

Proor. Note that #(K,, K,,..., hy, hy,...) is closed and satisfies C4.1(i)
and C4.1Gii). O

Let X be an E-valued stochastic process defined on a probability space
(Q, &, P). Then X is measurable if the mapping (¢, w) = X(¢, w) is H[0, ») X
Fmeasurable. A measurable stochastic process determines an My[0, «)-valued
random variable X (X(w) is the equivalence class containing X(-, w)) and
therefore induces a probability distribution on Mg[0,®). To see that X
is a random variable, note that

{w: d(X,x) < a} = {w: fowe"[l Ar(X(t o), x(8))] dt < a}.

The converse also holds in the sense that for any Mg[0, »)-valued random
variable X, there is a measurable process X such that X(-, w) € X(w). To see
that such an X exists, we construct a canonical £ € x for each x € M[0, »).

First note that for f € B(E) and 0 < a < b, the mapping x — [bf(x(2)) dt
is well-defined on Mg[0, ©) since the integral is the same for all functions in
the equivalence class. Furthermore, the mapping (x,%) — A~} +hf(x(s)) ds is
continuous for f € C(E) and hence (M [0, »)) X H[0, »)-measurable for all
f € B(E). It follows then that the mapping

(4.15) (x,1) > yp(x,t) = limsupn [ f(x(s)) ds

n—o t
is B(Mg[0,»)) X B[0,x)-measurable for all fe& B(E). Note that by the
Lebesgue differentiation theorem, y (x, ) € f o x.

Let D c E be a countable dense set and let {F;} be some ordering of the
collection of all closed balls in E with center in D and radius 2~ ! for some
positive integer k. Define h: E —» R” by h(x) = (xp(x), xg{x),...). Then h is
1-1 and the range I' of & is a Borel subset of R”. Fix x, € E and define

hYy), y€T,
Xg, yeR*-T.

Finally, define y;: Mz[0, ) X [0,) — R by

(4.16) gly) =

(4.17) yi(x, 1) = limsup n [*" xg(x(s)) ds
t

n—o
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and G: Mg[0,») X [0,0) > E by

(4.18) G(x,1) = g(3(%: 1), 72(%,1),...).

Then G is Borel measurable and G(x, -) € x for all x € M0, ). It follows
that for any M[0, »)-valued random variable X, X(¢, w) = G(X(w), t) defines
a measurable process and X(-, 0) € X(w).

4.5 PROPOSITION. Let X and Y be measurable stochastic processes. Then X
and Y induce the same distribution on Mg[0, ) if and only if form = 1,2,...
and (Lebesgue) almost every (t,,...,t,) €[0,0)™, (X(¢,),...,X(t,)) and
(Y(2,),...,Y(¢,)) have the same distribution on E™.

Proor. Consider the collection of functions on M[0, ) of the form

(4.19) F(x) = ,Ii fOT’ﬁ(t,x(t)) dt,

where for i=1,...,m,T; > 0and T; € C([0,©) x E). This collection of func-
tions is closed under multiplication and separates points in Mg[0,») and
therefore it separates measures on Mg[0, ©) [see Theorem 3.4.5 of Ethier and
Kurtz (1986)]. Consequently, X and Y have the same distribution on Mg[0, «)
if and only if E[F(X)] = E[F(Y)] for each such function, and the proposition
follows easily. O

Theorem 4.1 and Prohorov’s theorem give the following.
4.6 THEOREM. Let { X} be a family of measurable E-valued processes. Then

{XB} is relatively compact in Mg[0, ®) (that is, the set of corresponding distri-
butions is relatively compact) if and only if the following conditions hold.

C4.6(i) For every &, T > 0, there exists a compact K C E such that
T
(4.20) sn;pjo P{X,(t) ¢ K}dt <.
C4.6(ii) For every T > 0,

) T
(4.21) ’{1_1:% sgp E[j;) 1A r(Xg(t+h), Xg(t))dt| =0.

Proor. Fix & > 0 and select K, such that

k £
(4.22) sgpj;) P{Xy(t) ¢ K,\}dt < ¢
and A, such that

hy rk
4.23 E\R;* [ 1A t+u), X5(t))dtd s—.
(42)  supE |1 [ [ "L A r(Xle ), Xo(0) dede| < oz



RANDOM TIME CHANGES AND CONVERGENCE 1027

Let #= #(K,,K,,...,hy, hy,...) be as in Corollary 4.4. Then
P{X, & #)

=]

<) P{m{t <k: Xy(t) GEKk} > %}
(4.24) k=1

+ élp.{h;lfohkfokl Ar(Xg(t+u), Xp(t))didu > %}

< 2¢
and the theorem follows by Prohorov’s theorem. O
4.7 CoroLLARY. Let {X,} be a family of measurable E-valued processes.

Suppose there exists a dense set @ C [0,®) such that for each t € @, {X,(t)} is
relatively compact, and for every T > 0,

r .
4.25 lim su supE|1 A r(Xs(t+u), Xs(8))| dt =0.
(425)  Jim sup [Tsup E[1 A r(Xy(t +u), X(0))]
Then {XB} is relatively compact.

Proor. We must verify C4.6(G). Fix T > 0, 0 < ¢ < 1, and select A so that
the quantity in the limit in (4.25) is less than &2 Select {¢;} c @ so that
t1<hst2<"' <tm_1<Tstm and tl+1_tl<h’ i=1,...,m_1.
For compact K C E, let K° = {y: inf, _ g r(x,y) <e}. Then setting y(t) =
minf¢;: ¢t < ¢},

A "P{X,(t) & K*) dt

(428) [ [P{Xa(r()) & K) + P(r(Xa(0), Xa((2))) > e}]

< TmaxP(X,(t;) € K} + 7' [ sup E[1 A r(X(2), X(¢ + u))] dt
: 0 u<h
< Tmax P{X4(¢,) & K} +e.
By the definition of @, K can be selected so that the right side of (4.26) is
less than 2¢ for all B. For 6 > 0 and n = 1,2,..., let K, be a compact set

selected in this manner for ¢ = §/2", and let K, be the closure of N} _;K;".
Then K|, is compact (it is complete and totally bounded),

(427) ["P(X,(t) & Ko} dt < > [P{X,(t) & Kir)dt < T 2. = 25,
0 n=1"0 n=1

and C4.6(i) follows. O
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Theorem 1.5 now follows from Theorem 4.6.
Proor oF THEOREM 1.5. C4.6(1) follows from C1.5(i); consequently, it

remains to show how to estimate the expectation on the left of (4.21) using
C1.5Gi). For ¢ > 0 and K C E compact,

E[[OT1 A r(Xo(t + 1), X, (2)) dt]
<eT + 2E[m{t < T + h: X,(t) € K}]
+ () | [Tar(L A r(X,(t+ B), X (1)) dt]

<eT +2E[m{t < T + h: X,(t) € K}]

(4.28) + aK(s)_lELfOT(pn(Xn(t +h), X,(2)) dt]

<eT +2E[m{t < T+ h: X,(t) € K}]

+ aK(e)“ljoT(a,,(t +h) —a,(t))dt

<eT + 2E[mft < T + h: X,(¢) € K}]

+ aK(s)_l(fTT+han(t) dt — jo"a,,(t) dt).

The first term on the right can be made arbitrarily small by taking & small, the
second term can be made small by the choice of K and the third term goes to
zero uniformly in n as A — 0 by C1.5(iii). Consequently, C4.6(ii) holds and the
theorem follows. O

If a sequence of measurable processes {X,} converges in distribution in
M[0,x), then {X,(¢)} need not converge in distribution for any ¢; how-
ever, relative compactness of {X,} and convergence in distribution of
{(X,(t),. .., X,(t,))} for each m and almost every (¢,,...,t,) € [0©)™ imply
convergence in distribution of {X,}. More generally, we have the following.

4.8 THEOREM. Let {X,} be a sequence of measurable processes and suppose
that {X,} is relatively compact in Mg[0, ). Then {X,} converges in distribution
in M4[0,) if and only if for each m = 1,2,... and each f € C(E™), the
sequence of functions F: (¢,,...,t,,) = E[ f(X,(¢), ..., X,(¢,))] converges in
measure.

4.9 REMARK. If {X,} converges in distribution in Mg[0, ), then there
exists a set B c[0,©) of measure zero and a subsequence along which
(X,(t)),..., X,(¢,)) converges in distribution for all ¢, ¢ B.
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4.10 CoroLLARY. Let {X,} be a sequence of measurable processes and
suppose that {X,} is relatively compact in M[0, ) and for each T > 0,

(4.29) lim sup sup E[1 A r(X,(t+ h),X,(¢))] = 0.

h—>0 n 0<t<T
Then {X,} converges in distribution in Mg[0, ) if and only if
(X, (&), ..., X,(t,)} converges in distribution in E™ for each m = 1,2,...
and each (t,,...,t,) € [0,0)™.

Note that the conditions of Theorem 4.6 only involve the finite dimensional
distributions of the processes (in fact, only the one- and two-dimensional
distributions). It is natural to conjecture that if a consistent family of finite
dimensional distributions satisfies these conditions, then the corresponding
process has a measurable version. Unfortunately, this conjecture is not cor-
rect. Take, for example, the finite dimensional distributions corresponding to a
process X such that the random variables X(#) are i.i.d. nondegenerate for ¢
in the Cantor ternary set I' and X(¢) = 0 for # € I'. Of course, these finite
dimensional distributions uniquely determine a probability distribution on
M0, ) (the zero process), and this observation is true in general.

4.11 THEoREM. Let {v, ., € P(E™): (t,...,t,) €[0,0)™", m =
1,2,...} be a consistent family of finite dimensional distributions such that
(y,...5t,,) = v, ,(B) is Borel-measurable for each B € B(E™) and the
following conditions are satisfied.

C4.11() For each € > 0 and T > 0, there exists a compact set K C E such
that

(4.30) [Tvi(Keydi <.
0
C4.11(i) For each T > 0,
. T
(4.31) ’113})/0 J1 A (%, 9)9, 00n(dx, dy) = 0.

Then there exists an Mg[0, ©)-valued random variable X such that

E[i_]—[lf()Tiﬂ(t, X(1)) dt]
(4.32) -
= [T [ [ TT fltis 5)vsy oo (s dxy) iy oo dy,
0 0 i=1
for all T; > 0 and f;, € B([0,©) X E).
Proor. For n=1,2,..., let 73 =0 and let 7} <73 < --- be the jump

times of a Poisson process N, with parameter n. Let {Y;"} be E-valued
random variables such that the conditional distribution of (Y, Y7*,...,Y,”)
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given N, is vo . . Define X, (t) =Yy, m; <t<p,;. C411() and

C4.11Gi) imply that {X,} satisfies the conditions of Theorem 4.6 so {X,} is
relatively compact and a tedious calculation shows that

lim E[f[lfoT‘ﬁ(t, X, (1)) dt]

n—oow

(4.33)
T T, [ 1
=f lf /l—[fi(ti’xi)ytl...tm(dxl’""dxm) dt;...dt,
0 0 i=1

for all T, > 0 and f; € C([0,) X E). O

5. Processes with finite conditional variation. In this section we
collect some results on processes for which V,(X) is finite. Throughout the
section, X wiil be a cadlag, real-valued process adapted to a filtration {%}.

5.1. Proposition. Suppose that E[|X(#)|] < ©and V(X) < »foreacht > 0.
Then X has a unique decomposition X = M + B, where M is a local martin-
gale and B is a predictable finite variation process and B satisfies E[T(B)] <
V,(X).

Proor. Since X is a local quasimartingale [see, e.g., Protter (1990), Sec-
tion 3], the desired decomposition X = M + B exists and is unique. Let
XT(t) = X(t) — E[X(T)|F1for0 <t < T and X7(t) = 0 for ¢ > T. Then XT
is a quasimartingale with V(X7) = V;(X) and hence XT = U — U/, where
U and UJ are positive supermartingales with E[U{(0) + U (0)] = Vp(X)
[see the construction in Protter (1990), Section III.3]. There exist predictable
increasing processes AT with AT(0) = 0 such that U] + AT is a local martin-
gale. Since for a localizing sequence of stopping times {r,}, E[AT(r, A T)] <
E[UT(r, A T) + AT(7, A T)) < E[U7(0)}, it follows by the monotone conver-
gence theorem that E[ AT(T) + AL(T)] < V(X). Since X(¢) + AT(¢) — AT(®) =
XT@) + AT(t) — AT(t) + E[X(T)| %] is a local martingale for 0 <t < T, the
uniqueness of the decomposition implies B(¢) = AT(¢) — AL(¢) for 0 <¢ < T,
and hence E[T(B)] < E[AT(T) + AT(T)] < Vi(X). O

5.2 LEMMA. The conditional variation of X satisfies

)

(5.1) Va(X) = sup B| T B[ X(ri0) = X(m)1

where the supremum is over all collections of stopping times satisfying 0 <
70< '+ <7, <T. For any stopping time t, E[|X(r A T)|] < Vp(X) +
E[1X(T)I].
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Proor. Let XT = UL — UJ be as in the proof of Proposition 5.1. Then

B[ L B[ X(r00) - X(15 |
|

(5.2) = E[Z |E[XT(r;11) = XT(r)I )]

< E[UT(0) + UF(0)]
= VT(X)

and (5.1) follows. For any stopping time 7, E[|X(r A T)|] < E[|E[X(T) -
X(r A DIF L rll + 1X(D)I] < V(X)) + E[IX(T)I]. O

5.3 LEmMMA. Suppose that E[|X(#)]] < ©» and V(X) < » for each t > 0.
Then for each ¢ > 0,

(5.3) cp{ sup 1X(¢)l = c} < Vo(X) + E[IX(T)I].

0<t<T
Proor. Let 7 = inf{#: |X(¢)| > ¢}. Then by Lemma 5.2,

cP{ sup |X(¢)l > c} <E[|X(7 A T)|]

(5.4) 0<t<T

< Vp(X) + E[IX(T)]

and the lemma follows. O

5.4 LEMMA.  Suppose that E[|X(¢)]] < © and V(X) < « for each ¢t > 0. Let
7 be a stopping time and define X(t) = xo,,,X(¢). Then

(5.5) Vi X) + E[IX(t)l] < Vi(X) + E[X(2)I].

Proor. For any partition of [0, ¢],
L |E[R(tih1) - R Z ]|
13

< LIE[X(ti1) = Xt Fo 51

+ T | B[ R(tin) - X410l 7]

Xir>t)

(5.6)
< L |E[X(t1.1) — X(8:)| 7]

Xz > t;)
+ Z |E[(X(t) - X(ti+1))X(t,-<TSti+1)|Zi]|

+ Z IE[X(t)X(t,-«stm)I'Zt] "
2
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and taking expectations it follows that
61 B[ T|E[ 2 - X5 || V0 + EIX O zo]
Noting that E[|X(®)I] = E[IX(t)|X(,;t)], the lemma follows.

5.5 LEMMA. Let ¢ be convex and satisfy |¢'| < K. Then for L' random
variables X and Y and any o-algebra 2,

(5.8) |E[e(X) — ¢(Y)I2]l < 2KIE[X - YIZ] + E[¢(X) — o(Y)IZ].
ProOF. Let 6 = x (g (x)—p(vy21<0) TheN
E[o(X) — o(Y)I 2]l = E[¢(X) — ¢(Y)|2Z] - 20E[¢(X) — ¢(Y)| 2]
= E[¢(X) - ¢(Y)|2]

(5.9) - 20E[¢(X) —o(Y) - ¢ (Y)(X - Y)|2]
— 204(Y)E[X - Y12]
<E[o(X) - o(Y)I2] + 2KIE[X - Y12]. O

5.6 LEMMA. Suppose that E[|X(¢)|]] < © and V(X) < » for each t > 0. Let
¢ be convex and satisfy l¢'| < K. Then

(510)  V(e-X) < 2KV,(X) + E[¢(X(2)) - o(X(0))].
ProoF. The inequality follows immediately from (5.8). O

5.7 THEOREM. Suppose that E[|X(¢)|]] < ©» and V(X) < o for each ¢ > 0.
Let ¢ be convex, symmetric, C* and satisfy ¢(0) = 0, ¢"(0) = 1, ¢" nonincreas-
ing on [0,%) and ¢"(1) = 0. Then there exists an increasing process A such
that for each a > 0,

(5.11) o(X(a+1t) —X(a)) — (A(a +t) — A(a))
if a local {Z,, }-supermartingale and for =, = inf{¢: | X(#)| Vv |X(¢ — )| = b},
(5.12) E[A(7, A T)] < E[IX(T)I] + 2(1 + b)Vy(X) + b + 2b.

Proor. Let X =M + B be the decomposition of Proposition 5.1, let

AX(s) =X(s) — X(s — ) and let [X]° denote the continuous part of the
quadratic variation of X. Define

1 c
(5.13) At) =T(B) + (XL +4L ¢

s<t

[0

Note that ¢(x) < |lul A u?, so A@t) < T(B) + [X], < « for each ¢ > 0. More
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precisely,
A(t) <T,(B) + 21X(¢t) - X(¢t )l + [X],-

< T(B) + 21X(¢) - X(t =)l + X2(¢t —) + 2/0‘)((3 —)dX(s)

< T,(B) + 2IX(t) — X(t —)| + X2(¢ -)

(5.14) +2['X(s =) dB(s) + 2 X(s —) dM(s)
0 0
< T(B) + 21X(t) — X(t —)| + X%(¢ -)
+ 2/:|X(s ~)|dT,(B) + 2[(:X(s —) dM(s).
Consequently,
A(t, AT) < (1 + 2b)Tp(B) + 21X(7, A T)| + 2b + b2
(5.15)

+2["""X(s —) dM(s)
0
and (5.12) follows by Proposition 5.1 and Lemma 5.2.

We verify that (5.11) is a local supermartingale assuming that a = 0 and
X(0) = 0. By Itd’s formula, for ¢ > u,

[#(X(s =) dM(s) = (X(1) = p(X(w))

- [[¢(X(s ) dB(s) ~ § ['¢"(X(s =) d[ X1}

- X (e(X(s)) — e(X(s -))

u<s<t

(5.16)

~@(X(s -)) AX(s))
> p(X(1)) — o(X(u)) — (A(t) — Au))

and since the left side is an increment of a local martingale and the right side
is locally integrable, the right side is an increment of a local supermartingale.
O

The following theorem is essentially Theorem 4 of Meyer and Zheng (1984).
Let V,°(X) denote the conditional variation of X defined relative to the natural
filtration &,* = o(X(s): s < t).

5.8 THEOREM. Let {X,,} be a sequence of cadlag, real-valued processes such
that for each t > 0,

(5.17) C(t) = sup(V(X,) + E[IX,(t)]) < .
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Then {X,} is relatively compact in Mg[0, ©) and any limit point X has a cadlag
version satisfying V,°(X) + E[|X()]] < C(¢) for all but countably many t.

Proor. The relative compactness of {X,} and the existence of a cadlag
version for any limit point is a consequence of Theorem 1.1. Let Y, and v, be
defined as in Remark 1.2(c). By Theorem 1.1, part (b), we can assume (at least
along a subsequence) that X, =Y, oy, %, (Y,,7,) = (Y, y) as. in D0, ) and
that X,(¢) - X(¢) = Yoy~ X¢) as. for all but countably many ¢. Let n¢ =
infl¢: |Y, ()] V1Y, (¢ =)l >c}. For all but countably many c, n¢ - n°=
inf{¢: |Y(#)| Vv |Y(¢ — )| > ¢} a.s. Select such a ¢ and define 7, = vy, o n¢ (= inf{¢:
X, v X,(¢ =) >c) and X5(¢) = X, (t)x(,,,(t), with X°¢ defined similarly
using 7 =yen°=1lim, .7, Then X(¢) - X°(¢) as. for all but countably
many ¢. Let D be the countable exceptional set.

For i =1,2,..., let g, € C(R™) satisfy ||g,|l. < 1. Then for any partition
{¢;} of the interval [0, ¢] with ¢, € D and any choice of s/ & D,

L E[(X(tie1) = X(t))gi(X(s)), -, X(s[™))] + EIX(1)]]

(518) ,Fi‘;(zi E[(X(ti11) = X(2))8:( Xa(s]), -, Xo(s1))]

+EX;(0)]])

< C(¢t),
where the last inequality follows from Lemma 5.4. Letting ¢ — « on the left
and then taking the supremum over the g; gives the desired inequality. O
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