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We show that if f is a probability density on R™ wrt Lebesgue measure
(or any absolutely continuous measure) and 0 < f < 1, then there is an-
other density g with only the values 0 and 1 and with the same (n — 1)-
dimensional marginals in any finite number of directions. This sharpens,
unifies and extends the results of Lorentz and of Kellerer.

Given a pair of independent random variables 0 < X, Y < 1, we further
study functions 0 < ¢ < 1 such that Z = ¢(X,Y) satisfies E(Z|X)=X
and E(Z|Y) =Y. If there is a solution then there also is a nondecreasing
solution ¢(x,y). These results are applied to tomography and baseball.

1. Introduction. Let u,v be a given pair of finite measures on R!. In
1949, Lorentz [12] gave a necessary and sufficient condition on w,v so that
there is a set whose marginals are p and v. Here, a set is also regarded as a
0, 1-valued density g on R2. In 1961, Kellerer [6], page 340, gave a necessary
and sufficient condition on w,» so that there exists a density f on R2 with
0 <f <1, whose marginals are u and v (see Strassen [16], page 432, and
Jacobs [4] for different proofs). It is not hard to verify (see [3]) that the Lorentz
and Kellerer conditions are actually equivalent. Thus it follows that for any
integrable density 0 < f < 1 on R? there is a set with the same marginals.

This carries over to R™. For instance, Kellerer [9], Theorem 1.7, already
showed that if 0 < f < 1 is a density in R", then there is always a set (i.e., a
0, 1-valued function g), with the same (n — 1)-dimensional marginals as f.
This remains true if the reference Lebesgue measure A(dx) = dx for f and g
is replaced by any absolutely continuous measure A(dx) = q(x)dx on R™.
Employing a very different proof, we will prove a more general result, of
considerable importance in tomography. (Romanovskii and Sudakov gave a
very similar proof for a related theorem; see [11].) Here, the above set of
(n — 1)-dimensional marginals is generalized to the collection of measures
induced by any fixed finite set of linear functions onto lower-dimensional
spaces, such as the set of marginals (of the measures fdA and gdA) in any
finite number of directions. The general statement is given in Theorem 2.

There is a similar result, [5], page 265, that if a finite number of moments
of a function f, 0 <f < 1, are given, then there is a g = 0 or 1 with these
same moments. Our condition that f have given marginals amounts to an
infinite set of moment conditions on f. Our theorems are also closely related
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1782 GUTMANN, KEMPERMANN, REEDS AND SHEPP

to Lyapounov’s theorem; [10] and [5], page 266, that the range of a nonatomic
vector-valued measure is convex. See also [7, 8] for related results.

An application of Theorem 2 is given in Section 3 to the following problem
which was our initial motivation. Given a pair of independent real random
variables X,Y with 0 < X,Y < 1, when does there exist a function ¢(x, y), for
which Z = ¢(X, Y) has the properties

(1.1a) E[Z|X] =X,
(1.1b) E[Z|Y]=Y,
(1.1c) 0<Zc<1.

Note that the existence of Z is a condition only on the distribution functions F
and G of X and Y. Taking expectations in (1.1a) and (1.1b) shows that
EX = EY is necessary for (1.1). The problem arose in a model for computer-
ized baseball, where X represents the batting average of a random batter and
Y the “batting average” of a random pitcher. Here, the batting average of a
given pitcher is interpreted as the chance that a randomly chosen batter will
get a hit against him. The above problem asks us to determine for what pairs
F, G there exists a compatible (randomized) rule Z = ¢(X, Y). It could be used
in constructing a somewhat realistic computer game. One would interpret
¢(x,y) as a possible version of the (unknown) chance function ¢(x,y) that a
hit will be obtained, in a situation where the batter has batting average X = x
and the pitcher has ‘“batting average” Y = y.

The problem is discussed in detail in Section 3 where a necessary and
sufficient condition on the pair F,G is obtained using the Kellerer—Strassen
theorem. Provided F and G are continuous and (1.1) has a solution, one can
even achieve (1.1) with a Z or ¢ which assumes only the values 0 or 1. Such a
deterministic Z would be somewhat pathological in the corresponding com-
puter game, since it would cause hits and outs to be completely predictable.
Note that the assumption that X and Y are chosen independently is reason-
able unless one wants to allow the subtleties of pinch-hitting with lefty batters
against righty pitchers.

We further show (Theorem 5), for general F and G, that there always exists
a solution ¢(X,Y) of (1.1) having the additional property

(1.2) ¢(x,y) increases in each variable separately,

whenever a solution to (1.1) exists at all. However, we will see that in general
there is no ¢ which satisfies both (1.1) and (1.2) and also ¢ = 0 or 1.

Note that the main theorem (Theorem 2) has a somewhat negative and
paradoxical application to CT (tomography). It implies that for any human
object and corresponding projection data there exist many different reconstruc-
tions, in particular, a reconstruction consisting only of bone and air (density 1
or 0) but still having the same projection data as the original object. Related
nonuniqueness results are familiar [15] in tomography and are usually ignored
because CT machines seem to produce useful images. It is likely that the
“explanation” of this apparent paradox is that a point reconstruction in
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tomography is impossible. CT machines produce useful images because all
functions 0 < f < 1 with the same line integrals have (essentially) the same
integrals over ‘‘nice” sets. In other words, it is likely that all functions f with
0 < f < 1 and with the same line integrals have nearly identical integrals over
pixels which are not too small. But we have neither a proof nor a precise
statement of this heuristic idea. (I.. Khalfin and L. Klebanov have recently
proved f*¢ and g*¢ are close when ¢ is Gaussian with large enough
variance, in a quantitative and precise statement.)

2. Main theorem. In general, let S be a fixed measurable space supplied
with a finite measure A. Let J be an arbitrary finite or infinite index set. For
each j€dJ, let Y, be a fixed measurable space and 7;: X - Y, a fixed
measurable function, also called a projection from X onto Y;. We will be
interested in (finite) measures du = gdA with 0 < g < 1 on S having given
marginals m;u, j € J.

We will work with the spaces L(A) and L™(A); in particular, functions on S
that are equal a.e. A(dx) will be identified. Recall, [2], page 289, that L*(A) is
precisely the dual of L(A). We will assign to L*(A) the L(A)-topology of
L>(A), usually called the weak* topology of L*(A). It is the coarsest topology on
L”(A) such that

(2.1) g~ [g(x)h(x)A(dx)

is a continuous function on L*(1), for each choice of A € LY(A). It is an easy
result due to Alaoglu, [2], page 424, that any closed ball in L*(A) is compact. In
particular, the closed and bounded set K = {g: 0 < g < 1} is (weak™) compact.
That K is closed follows from the fact that g € K is equivalent to

(2:2) 0< [g(x)h(x)\(dx) < [h(x)A(dx) forall b € L}(A), h 2 0.

DEerFINITION. Let the system of projections ;, j € J, be fixed. We will say
that the (finite) measure A is rich if for any choice of the measurable function
f: S = R such that 0 <f < 1 there exists a measurable function g: S - R,
taking only values 0 and 1, such that, for all j € J, the m;-marginal (also called
the m;-projection) of the measure gdA on S is equal to the 7;-marginal of the
measure fdA on S. The latter means that

(2:3) [1a(mx)g(x)A(dx) = [15(m;2) f(x)A(dx),
for all j € J and all measurable subsets B of Y;. Equivalently,
(2.4) Joi(mx)e(x)A(dx) = [&;(mx) f(x)M(dx),

for all j €J and all functions ¢;: Y; > R, provided either ¢; > 0 or else
¢,(m;x) f(x) € L'(A). In particular, [gdA = [fdA.
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In this direction, Kellerer [7], Theorem 6.1, already established the following
important result. Let the measure space (S, p) be the direct product of finitely

many nonatomic o-finite measure spaces (S;,p;), i =1,...,n, and take
AMdx) = q(x)p(dx), where q(x) > 0. Further, choose J ={1,...,n} and
mi{(x) = (%q,...,%;_1,%;41,...,%,), j €J. Then to any measurable function

0 <f<1on S there corresponds a measurable subset A of S such that fda
has, for each j € J, the same 7;-marginals as 1, dA.

DerFiNITION. Let f be a fixed measurable function f: S —» R satisfying
0 <f<1; thus fe L)) c LY(A). By M(f) we denote the collection of all
g € L™(1), such that 0 <g <1, and that further gdA has the same m;-
marginal as fdA, for all j € J. One has f e M(f); thus M(f) is nonempty.
Moreover, [gdA = c for all g € M(f), where ¢ = [fdA < A(S) < .

The above marginals condition can be expressed by (2.3) with B as a
measurable subset of Y. Here, 15(m;x) € L*(A) c L'(A); thus (2.3) defines a
closed subset M(f) of L®(A). Consequently, M(f) is a compact and convex
subset of L*(A). )

From the Krein—Milman theorem, [2], page 440, M(f) is the closed convex
hull of the set E(f) of extreme points of M(f); in particular, E(f) is
nonempty. Our hope, which is true if the number of 7’s is finite and they are
each linear projections as in Theorem 3, is that each g € E(f) only takes the
values 0 or 1 (a.e. [A]). In any case, each g € M(f) with that property (if any)
must belong to E(f).

REMARK. In this connection, it is of interest to consider the strictly
convex functional N(g) = [g(x)?A(dx) on M(f). Since /N(g) =
sin{fgwdA: [lw|®dA = 1}, the function g — N(g) is (weak*) lower semicon-
tinuous. Consequently, its restriction to the compact set M(f) assumes its
smallest value inf{ N(g): g € M(f)} at a unique point g, € M(f).

On the other hand, it is not clear why there should exist any maximal
element g# in M(f), by which we mean any g* € M(f) such that N(g*) =
sup{N(g): g € M(f)}. Necessarily g* € E(f), because N(g) is strictly convex.
Thus a maximal element (if it exists) is merely a special type of extreme point
of M(f).

Maximal elements do exist when A is rich. For then there is a 0, 1-valued
g% € M(f) and such an element g* is always maximal. After all, N(g#) =
Jjg*dA = ¢, where ¢ = [fdA. Any other g € M(f) has 0 <g < 1; thus
N(g) < [gdA = c. The latter inequality holds with equality if and only if g is
0,1. Note that minimizing (maximizing) N(g) is the same as minimizing
(maximizing) [[g(x) — 1/2]2A(dx).

Let g € E(f) be fixed and suppose that g were not a 0,1 function. Then
there exists 0 < ¢ < 1/2 such that

(2.5) AMD) >0, where D={xeS:e<g(x) <1-¢}.
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Let A: S = R be any bounded measurable function, not equal to 0 a.e. A(dx),
which is supported by D [i.e., h(x) = 0 if x € D¢ = S\ D]. We claim that it is
impossible that the associated signed measure A dA has zero m-marginal, for
all j € J; equivalently,

(2.6) [1a(mx)h(x)A(dx) = 0 forall jE€J, BCY;.

After all, otherwise, if |h| < C = constant and 0 <8 <¢/C then g + 6h €
M(f); g — 6h € M(f) while g = (1/2X(g + 8h) + (g — 6h)) and g would
not be extreme. These considerations lead to the following definition.

DEFINITION. The measure A on S is said to be strongly rich (relative to the
given system of projections 7;: 8 - Y, j € J) if the following holds for each
measurable subset D of S with A( D) > 0. Namely, there must exist a
bounded measurable function A: S — R, not 0 a.e. A(dx), which is supported
by D, and such that the signed measure h(x)A(dx) has its m-marginal equal
to 0, for all j € J.

The same idea appears in Kingman and Robertson [10], who use the term
thin rather than rich. Note that the zero measure is trivially strongly rich. The
above argument proves the following theorem, which is due to Kingman and
Robertson [10].

THEOREM 1. A sufficient condition for the finite measure A to be rich is that
it be strongly rich.

PROPOSITION. Let A and u be finite measures on S. If they have the same
sets of measure 0, then either both A and u are strongly rich or neither A and
w are strongly rich. More generally, suppose A is strongly rich and p is
absolutely continuous relative to A. Thus u(dx) = q(x)A(dx) with q(x) = 0,
g € LYA). Then A strongly rich implies that u is strongly rich.

ProorF. Let A and u be finite with u(dx) = g(x)A(dx) and A strongly rich.
We must prove that u is strongly rich. Let D be a measurable subset of S
with u(D) = [pq(x)A(dx) > 0. Let D, = {x € D: q(x) > ¢}. For ¢ > 0 suffi-
ciently small, we have that A(D,) > 0. Because A is strongly rich, there exists
a bounded measurable function A: S — R, not equal to 0 a.e. {A], which is
supported by D, and such that the signed measure n(dx) = h(x)A(dx) has all
its marginals equal to0 (e, mmn =0forall jeJ ). Now consider the function
H(x) = h(x)/q(x) on S. It is supported by D,, and thus by D, while H is not
0 a.e. relative to u(dx) = q(x)A(dx). Moreover, H is bounded, since h is
bounded and q(x) > & whenever h(x)# 0, always with x € D,. Finally,
n(dx) = H(x)u(dx) has all its marginals equal to 0. This proves that u is
strongly rich. O

In most applications, each x € S is uniquely determined by the set of
images m;x, x €J, and each one-point subset {x} of S and {y;} of Y, is
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measurable (j € J). In such a situation, in order that a measure A on S be
rich, it is necessary that A be nonatomic. That is, a measure A having a
positive mass A({x,}) > 0 at a single point x, cannot possibly be rich (and
certainly not strongly rich either). After all, consider du = fdA with f(x,) =
1/2 and f(x) = 0, otherwise, and suppose that dv = gdA satisfies m;v = m;u,
for all j € J. Since u is carried by {x,}, we have, for all j € J, that v = m;u
is carried by {m;x,}; hence v is carried by A; = {x € S: X = wjxo} But
NjcgA;={xo}, show1ng that thus also v is carried by {x,}, which forces that
v = thus 8(xy) = f(xy) = 1/2.

On the other hand, A can be nonatomic without being rich. For example
take S = R" together with the one-dimensional projections ; (x4, %,) =
J =1,...,n. Furthermore, let A be one-dimensional Lebesgue measure on a
fixed finite line segment L in R”; thus A is nonatomic. Nevertheless, A is not
rich. For, consider f = 1/2. As is easily seen, in order that dv = gd\ have the
same projections as fdA, it is necessary that g = f (a.e. [A]) in which case g is
not 0, 1-valued. The bas10 idea here is that no subset A of L can satisfy
AA N B) = A(B)/2 for every subinterval B of L.

DerFINITION. The following situation will be referred to as the classical case
[with (n — 1)-dimensional projections]. Here, we take S = R" and each T,
J € dJ, as a parallel projection of R™ along lines of fixed direction wj Here
w; € R", w; # 0. Naturally, w; = t;w; is entirely equivalent to w , t; €R;
¢ 9& 0. One may take Y; as any hyperplane in R™ which is not parallel to w;,
thus dim(Y)) = n - 1, j edJ.

Further m(dx) = dx will denote n-dimensional Lebesgue measure on R™.
In the results below it is assumed that J = {1,..., N} is finite. These results
do not carry over to the case where J is denumerably infinite.

THEOREM 2. Suppose one is in the above classical case, with S = R" and
J ={1,..., N} finite. Furthermore, let q(x) > 0 be a fixed Lebesgue integrable
function on R". Then the ( finite) measure A(dx) = q(x)dx on R™ is strongly
rich; hence it is rich.

CoroLLARY. The same conclusion obtains when instead m, J €EJ, is an
arbitrary finite collection of linear projections m: R" >Y, provlded the Y; are
linear spaces of dimension less than or equal to n—1.

PrROOF OF THEOREM 2. Let A(dx) = g(x) dx and let D be any subset of R”
such that A(D) > 0. We must show that there is a bounded measurable
function h: R™ — R, supported by D, not 0 a.e. A(dx), such that A(x)A(dx)
has all its marginals equal to 0. Replacing D by a bounded subset, we may
assume that D is contained in a finite cube K. It suffices to prove the above
for A replaced by its restriction to K. And in view of the above proposition, it
therefore suffices to consider the case that A is precisely the restriction of
n-dimensional Lebesgue measure to K.
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Thus let D c K satisfy m(D) > 0. Furthermore, let V denote the set of 2V
vectors s = (sy,...,sy) with s; =0 or 1. Define further w(s) = s;¢,w, +
-+ +sytywy, s € V. Here, the ¢, # 0 are fixed real numbers such that all
the 2V vectors w(s) are different. This is always possible; in fact, ¢ =

(t5,...,ty) € RN merely needs to avoid a certain set of N-dimensional
Lebesgue measure 0. Replacing w; by w} = ¢;w;, one may as well assume that

t; = 1for all j; thus w(s) = s,w, + - +sywy. Let
8 = min{lw(s) —w(s)|:s #s';s,8' € V};

thus 6 > 0.
For p € R, define

D(p) = ﬂS(D —pw(s)) and ¢(p) =m(D(p)).
Using the regularity of Lebesgue measure, the function ¢(p) is easily seen to
be continuous. Since ¢#(0) = m(D) > 0, we have ¢(p) > 0 when |p| is suffi-
ciently small. Let p > 0 be fixed such that ¢(p) > 0. Next, choose A as a
measurable subset of D(p) such that m(A) > 0 and that A has its diameter
less than pd. For s € V, define

A(s) = A + pw(s) = {x € R": x — pw(s) € A}.

These 2V translates of A are disjoint, since the 2V distinct vectors pw(s),
s €V, are at least pé apart. Now define 2: R - R by

h(x) = {(—1)‘8', if x € A(s),s €V,
0, otherwise.

Here, |s| = s; + - +sy. Since A € D(p) € D — pw(s), we have A(s) = A +
pw(s) c D, s €V, showing h is supported by D. It is obvious that A is
bounded and not 0 a.e; thus it only remains to verify that the 7;-marginal of
h(x)dx equals 0, j = 1,..., N. When j = 1 this means that

-+ 00
f h(x, + tpw,) dt =0 forall x, € R".
But note that x =x,+ tpw, is in A(s%) = A(0, s,,...,sy) if and only if
x*:=x +pw,; is in A(s!) = A, s,,...,sy) while in that case h(x) +
h(x*) = 0. This shows that, for each s € V, the contributions of A(s®) and
A(s') to the latter integral precisely cancel each other. This completes the
proof of Theorem 2. O

SumMARy. Consider the classical case as defined above. We have shown
that any finite measure A(dx) = g(x) dx on R™ is rich and even strongly rich.
Let f: S > R be measurable with 0 <f <1 and consider the associated
(weak*) compact and convex set M(f), consisting of all 0 < g < 1 such that
gdA has the same marginals as fdA. Then M(f) has at least one extreme
point and, moreover, each extreme point g of M(f) is of the form g = 1, with
A as a (Lebesgue) measurable subset of R”. In particular, there exists at least
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one set A such that 1,(x)A(dx) = 1,(x)g(x)dx has the same marginals as
f(x)q(x) dx.

The previous result can be considerably generalized as follows.

THEOREM 3. Consider any finite system (m;, j=1,...,N) of central pro-
Jections in R". Furthermore, let q(x) > 0 be a Lebesgue integrable function on
R". Then the measure q(x)dx on R™ is strongly rich; hence it is rich.
Consequently, for each measurable function 0 < f <1 in R" there is a mea-
surable g with only the values 0 and 1, such that the associated measure
8(x)q(x)dx has the same m;-marginal as the measure f(x)q(x)dx, j =
1,...,N.

Here, we do allow the center P; of the central projection m; to be a point at
. In that case, ; is to be 1nterpreted as a parallel projection along the lines of
direction P;, onto a fixed hyperplane Y; not parallel to P;. Below we present a
proof of Theorem 3 for the case of two centra.l prOJectlons in R2. The full proof
is deferred to a separate paper, to be written by J. H. B. Kemperman.

CoroLLARY 1. Given finitely many central projections m; in R" and inte-
grable functions 0 < q,(x) < g,(x) on R", there always exists a measurable
subset A of R™ such that the measure 1,(x)q,(x) dx has, relative to each of the

m;, exactly the same marginals as the measure q,(x) dx.

CoroLLARY 2. Let AM(dx) = q(x) dx with q(x) > 0 an integrable function on
R"™. Given any finite number of central projections in R™ and any measurable
subset D of R™ with M(D) > 0, there exist disjoint measurable subsets A, and
A, of D of positive A\-measure and possessing exactly the same projections,
when regarded as measures 1,(x)dA.

REMARK 1. One moral of Corollary 2 is that additional central projections
tend to yield additional information. It is true that some very special sets A
(such as sets which are additive, relative to the given set of projections T
J € J; see [3]) are sets of uniqueness in the sense that they are umquely
determined by the associated set of projections r; ik, j €, of the measure
uldx) = 1,(x) dA. And in that very special case, addltlonal projections do not
supply any new information about A. However, whatever the given set A, we
infer from Corollary 2 that, for any preassigned arbitrarily small set D with
A(D) > 0, there exists a modification of A within the set D only, such that the
resulting perturbation A’ of A is no longer determined by its projections. If A
happens to be a set of uniqueness and D is sufficiently small then, as is easily
seen, A’ is at least ‘‘nearly” determined by its projections.

REMARK 2. Conversely, Corollary 2 implies Theorem 2. Actually, one could
formulate Corollary 2 as still another characterization of strongly rich mea-
sures. After all, the following proof makes no use whatsoever of the special
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structure of the projections on hand, nor of the fact that there are only finitely
many projections.

Proor oF CoroOLLARY 2. All functions considered here will be 0 outside D.
From Theorem 3, the measure A, and thus its restriction to D, are strongly
rich. Hence there exists a function —1 < h(x) < 1 on D which is not 0 a.e. [A]
and such that A(x)dA has all its projections equal to 0. Now consider the set
M(h,) of measurable functions 0 < g <1 on D such that g(x)dA has the
same projections as h_(x) dA. It is convex and compact in the weak* topology
and contains the distinct members A_ and & ,; hence M(h ) possesses at
least two distinct extreme points. From the proof of Theorem 1 (applied to D
instead of S), these extreme points are characteristic functions of distinct
subsets A; and A, of D as desired (deleting A; N A,, one can achieve that
A,, A, are disjoint). O

We will now present a proof of Theorem 3 in the special case of just two
central projections 7, and 7, in S = R2, having corresponding centers P, =
(1,0) and P, = (0, 1). The coordinates x,, x, of x € R? will also be denoted as
u and v. A straight line L through P, typically has equation au + v = 1 and
thus arc length ds = (1 + a?)'/2 du. Knowing the ,-projections of a signed
measure h(x)dx = h(u,v) dudv is the same as knowing the function

0,(a) = f_+:h(u, 1—-oau)du.

Similarly, knowing the analogous w;-projection is the same as knowing the
function

8,(b) = f_+:h(1 — bu, v) dv.

We would like to prove that each finite measure g(x)dx is strongly rich
relative to the pair 7, m,. In view of the proposition following Theorem 1, it
suffices to show that, for each bounded measurable subset D of R2? with
m(D) > 0, there is a bounded function A: R? — R which is supported by D, is
not equal to 0 a.e. and has 6,(b) = 6,(a) = 0, for almost all choices of the real
numbers a and b. Replacing D by a smaller set, one can achieve that D has a
positive distance to the line u + v = 1 through P, and P,.

The idea is to use a projective transformation T sending P, = (1,0, 1) and
P, =(0,1,1) (in homogeneous coordinates) to the point @, = (1,0,0) and
Q. = (0,1, 0), respectively. Relative to the original Euclidean plane, the latter
are points at . And the central projection by lines through P, then becomes a
parallel projection by lines in direction @,, i = 1,2. In homogeneous coordi-
nates, one such transformation T is given by the matrix

1 0 O 1 0 0
0 1 0| withT!'= 0 1 0.
1 1 1 -1 -1 1

T=
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For “ordinary’’ coordinates, this means that we transform the pair (u, v) € R?2
to the pair (x, y) = T'(u, v) by means of the equations

x=u/(l-u-v), y=v/(l-u-v)
and
u=x/(1+x+y), v=y/(1+x+y).

Note that (1 + x + yX1 — u — v) = 1. The T-marginal of the line u + bv = 1
through P, = (1,0) is the horizontal line (line through @,) y =1/(b — 1).
Similarly, the T-marginal of the line au + v = 1 through P, = (0,1) is the
vertical line (line through @,) x = 1/(a — 1). Let H(x,y) be defined by

y 1
l+x+y’ 1+x+y)(1+x+y)°
[where (1 + x + y)~2 is not the Jacobian; the latter equals (1 + x + y)~3
instead]. The function # is carried by D if and only if H is carried by its image
TD. Since the latter set is bounded (by our condition that D stay away from

u + v = 1), we have in this case that A is bounded as soon as H is bounded.
One easily calculates that

1 1
6.(b) = 37— lfH(x, — l)dx,

0y(a) = ailfH(ai 1,y)dy.

Thus our aim is now to choose H as a bounded function supported by the
bounded set TD, not 0 a.e.,, and such that the H(x,y) has all vertical and
horizontal line integrals equal to 0. But since m(TD) > 0, we know from
Theorem 2 that such a function H always exists.

H(x,y) =h

3. Baseball. Given a pair of independent random variables X and Y
with 0 < X,Y < 1, we want to know when there exists a random variable Z
satisfying

(3.1a) E(Z|X) =X,
(3.1b) E(Z|Y)=Y,
(3.1c) 0<Zc<1.

Note that EX = EY is necessary and sufficient for (3.1a) and (3.1b) (take
Z = X + Y — EX for sufficiency). Henceforth, we assume that EX = EY = K
(say). The added conditions (8.1c) is imposed for the following application to
baseball. Let X be the batting average of a random batter, and Y the ‘‘batting
average”’ of a random pitcher that is, the probability that a random batter gets
a hit against him. Since additional randomness in Z is irrelevant for existence,
by replacing Z by Z' = E(Z |X,Y ), one may as well take Z in (3.1) to be of the
form ¢(X,Y). Then ¢(x,y) is an a priori possible version of the probability
that a batter of batting average x gets a hit against a pitcher of ‘““batting



EXISTENCE OF PROBABILITY MEASURES 1791

average” y. Such a function ¢(x, y) is also needed in computer programs such
as the commercial program called Micro-League Baseball, Micro League Sports
Association, 1985. The programs play out games where real hitters and batters
are represented by their actual statistics. The independence of X and Y arises
from the assumption that the choice of batter and pitcher are independent of
each other.

Because X and Y are independent, (8.1) is merely a condition on the
(right-continuous) distribution functions F and G of X and Y (where 0 <
X,Y < 1). We will use the same symbols to denote the corresponding mea-
sures. Clearly, (3.1) with Z = ¢(X,Y) now becomes

(3.2a) [01¢(x,y)G(dy) —x  ae (F),
(3.2b) [#(xnF(dx) =y ae(G),
(3.2¢) 0<¢(x,y) <1, 0<x,y<1l.

THEOREM 4. A solution ¢(x,y) of (3.2) exists if and only if
(8.3) U(s) +V(t) <K+ [1-F(s)][1-G(¢)] forall 0<s,t<1.

Here, K=EX =EY = U0 — ) = V(0 — ). Further U and V are the right-con-
tinuous functions

U(s) = [ xF(dx) < min(K,1 - F(s))
and

V(t) = [1yG(dy) < min(K,1 - G(t)).

Proor. Consider S = [0, 1] X [0, 1] with product measure
d\ = F(dx)G(dy).

Condition (3.2) requires the existence of a function 0 < ¢ < 1 on S such that
¢ dA has the measures u,(dx) = xdF(x) and uy(dy) = yG(dy) on [0, 1] as its
marginals. Since each of u,, u, has mass K, it follows from Theorems 5.1 and
2.2 of Kellerer [6] (see also [16], page 437, and [13], pages 541-547) that such ¢
exists if and only if u,(A) < uy(B€) + AMA X B) for all A, B c[0,1] (the
necessity is obvious since A X [0, 1] is contained in the union of [0, 1] x B€
and A X B). Here, A(A X B) = F(A)G(B) and u,(B€) = K — u,(B), leading
to the condition that

(34)  uy(A) + py(B) <K+ F(A)G(B) forall A, B c[0,1].

Given G(B) = t, one may as well maximize u,(A) — tF(A) = [(x — t) dF(x)
leading to A = (¢,1]. Similarly, given F(A) =s, one may as well choose
B = (s, 1]. Finally, note that condition (3.4) with A = (s,1] and B = (¢,1] is
precisely condition (3.3). O
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ExampLE 1. Let X and Y be discrete with P(X=a;) =p;, i =1,..., M,
and P(Y=0b)=gq;, j=1,...,N. Here, Lp,=Xg;=1, 0<a;< - <
ay<1and 0<b, < -+ <by < 1. Moreover, L;p;a, = X ;q;b; = K (say).
One easily verifies that now condition (3.3) takes the form
M N
> pi) ) qj),

i=m j=n

M N
(3.5) Y pa;+ Y qujsK+
i=m j=n

whenever 2 <m <M and 2 <n < N. In view of the last part of the above
proof, one only needs to verify (3.5) for the pairs (m, n) which satisfy

N M
@n1< L g;<a, and b, ;< ) p;<b,.
j=n i=m

In the special case M = N = 2 there is only the single condition p,a, +
qsb, < K + pyq,. It is trivially satisfied unless a; < g, < a, and b; < p, < b,.
In the special case F = G, that is, b, = a; and ¢; = p;, i = 1,2, one is led to
the condition:

Either a, > a®orelse |p — a| > y/a? — a,, where p = p,
and a = (a; + ay)/2.

Thus ¢ would for instance not exist when a; < a® and p = «.

PROPOSITION. Suppose that (3.2) has a solution ¢; equivalently, (3.3)
holds. Suppose further that F and G are continuous. Then there even exists a
solution ¢(x,y) of (3.2) which satisfies

(3.6) ¢(x,y) €{0,1} forall0<x,y <1.

Proor. Using the notation of the proof of Theorem 4, this assertion
follows from the fact that presently the marginals u,(dx) = xdF(x) and
u(dy) = yG(dy) on [0, 1] are nonatomic, namely, by applying the result of
Kellerer [7] mentioned in the paragraph following (2.4). In the special case that
F and G are absolutely continuous, the result also follows from Theorem 2
since then dA = F(dx)G(dy) is absolutely continuous relative to two-dimen-
sional Lebesgue measure. O

ReEMARK. The corollary breaks down if one of F, G is allowed to be discon-
tinuous. Suppose for instance that F is continuous but that G = §,, where
b = EX = [xF(dx). Then only the values ¢(x, b) are relevant and, in fact, (3.2)
requires that ¢(x,b) =x ae. (F). It follows that (3.6) fails unless F is
supported on {0, 1}.

ExaMPLE 2. Suppose F = G = uniform on [0,1]. Then (3.3) becomes
11 -5+ 310 —t,) < 5 + (1 — sX1 — ¢), which is true. In this case, we can
take ¢(x,y)=1if x+y>1 and 0 if ¢(x,y) > 1. In view of the latter
corollary, the existence of a 0, 1-valued ¢ comes as no surprise.
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In the present example, the solution ¢(x,y) =1, ., of (3.2) is even
unique. For, suppose ¢ were another solution of (3.2). Then

0= [*[(W(x5) ~ #(x,9))(x +y ~ 1) drdy.

But since 0 < ¢ < 1, the latter integrand is a.e. nonpositive implying that
¥ = ¢ a.e. After all, y(x,y) > ¢(x,y) implies ¢(x,y) =0thus x +y — 1 < 0.
Similarly, ¢(x,y) < ¢(x, y) implies ¢(x,y) =1 and thus x +y — 1 > 0.

The same type of reasoning applies to any 0, 1-function ¢ = 1, for which A
is an additive set. In the present setting, a subset A of S = [0, 1]? is said to be
additive (see [3]) if there exist functions a(x), b(y), which are integrable
relative to the marginals F(dx) and G(dy) of dA = F(dx)G(dy), such that

={(x,y) € S: a(x) + b(y) = 0}. If so there exists no other 0 < ¢ < 1on S
such that ¢ dA has the same marginals as ¢ dA = 1, dA.

The baseball origin of the problem motivates two additional conditions that
we might ask ¢ to satisfy

(3.7 min(x,y) < ¢(x,y) < max(x,y),
(3.8) ¢(x,y)T inxandy.

The first of these contends, for example, that it would be strange for a .300
hitter to be transformed into a .350 hitter when he faces a (tough) .250
pitcher! The second argues that a hitter improves against inferior pitching
(and vice versa). But note that Example 2, and the subsequent remarks, show
that (3.7) cannot always be satisfied.

ExampLe 3. Let F =G = (5, /8 +85,3). To satisfy (3.2), take (for in-
stance) ¢(3, D=9¢4,2= ¢(3, =3 and #(2,2) = 1. Note that ¢ satisfies
(3.8). It is easy to check, however, that for this F and G there is no ¢’
satisfying (3.2) and (3.6). Nor does there exist any ¢’ satisfying (3.2) and (3.7).

Returning to Example 2 (with F and G uniform), we found ¢ which
satisfies (3.2), (8.6) and (3.8) simultaneously. Even for general F and G, such a
¢ = 1, if it exists must of course be of the form

#(x,y) =1 ifandonlyif y > b(x) [or y > b(x)],

where b(x) is nonincreasing. Thus A would be additive and ¢ = 1, is then the
only solution of (3.2). Using Theorem 4, it is easy to show the following result.

PRrOPOSITION. Suppose F and G are continuous. Then there exists ¢ satis-
fring (3.2), (3.6) and (3.8) if and only if
G(1-F(x))=1-x, O0<x<1;
or, equivalently, G(F(x)) = x, where F=1—-Fand G =1 - G.

ExaMpLE 4. Let F = G, where F(x) = x2. It is easy to see that (3.3) holds
and the hypothesis of the last proposition fails. Thus here we have a case
where there is a ¢ satisfying (3.2) and (3.6), while there is no ¢ satisfying
(3.2), (3.6) and (3.8).
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THEOREM 5. If there is a ¢ satisfying (3.2), then there is one satisfying
(3.2) and (3.8).

ReMARK. Consider Example 4, where (3.2) does have solutions ¢. By
Theorem 5, there always exists a solution ¢ which is increasing (i.e., nonde-
creasing). By the above corollary, there also exists a solution satisfying ¢ €
{0,1}. On the other hand, as we have seen, there is no solution ¢ satisfying
both conditions. The proof of Theorem 5 will be based on the following result,
which relates to [14], Chapter 6.

THEOREM 6. Let (¢,;) be an m X n matrix with 0 < ¢,; < 1 having nonde-
creasing row sums and nondecreasing column sums. In other words,

n m
(39) & = Zd’ij: i=1,...,m; nj=z¢ija J=1,...,n,
j=1 i=1

satisfy §, < &,,1,i=1,...,m — 1, and M; < Mj+1,J =1,...,n — 1. Then there
exists another m X n matrix (i, ;) with 0 <y,; <1, which has exactly the
same row sums and column sums as (¢,;), such that ; ; is nondecreasing in

both i and j. Thus
(3.10) Uij<¥iv1,J and ¥ <y ..

Proor. Let (y;;) be the (unique) m X n matrix with 0 < y, ; < 1, having
the same row sums £; and column sums 7; as (¢, ), and such that T, ;(y P is
as small as possible. It suffices to show that (i, ;) satisfies (3.10). Suppose
instead that, for some (i, j),

(3.11) 0<¥isr,; <¥;; <1
Since L ,¢;, = & < €41 = L4414 there exists 1 < k < n for which
(3.12) 0<y; ) <diy1,=<1l

But for small enough ¢ > 0, if we increase ¢, +1,; and ¢, by ¢, and decrease
$;; and ¢, , by e, then we arrive at a new matrix (¥/;) with 0 < v <1
with the same row and column sums such that ; (¥/)* < T, ()%, contra-
dicting the minimality of (¢,;). D

The same proof would go through if instead we had minimized I ; W ;)
with f as a fixed strictly convex continuous function on [0, 1], such as
f(u) =ulogu + (1 — u)log(l — u). In order to prove Theorem 5, we need the
following continuous version of Theorem 6.

THEOREM 7. Let ¢ = ¢(x,y) be measurable on [0, 1] X [0, 1] and such that
(3.13) 0<¢(x,y) <1,

(3.14) é&(x) = fld>(x,y) dy is nondecreasing in x,
0

(3.15) n(y) = f1¢(x, y) dx is nondecreasing in y.
0



EXISTENCE OF PROBABILITY MEASURES 1795 -

Then there exists y(x,y) measurable on [0,1] X [0, 1] satisfying 0 < ¢(x,y) <
1, having the same marginals as ¢, that is,

(3.16) /;)ltp(x,y) dy =&(x) a.e.,
1
(3.17) j;)tp(x,y) dx=n(y) a.e.
and such that
(3.18) Y(x,y) 71 in x and y separately.

Proor. We will prove Theorem 7 by applying Theorem 6 to a certain
discrete approximation. Let A(n,i) denote the half-open interval

A(n,i) =[(i-1)2™,i27"), n=1,2,...,i=1,2,...,2"

For fixed n, the A(n,i) define a partition of [0, 1) into 2" disjoint intervals
each of length 27". Let &, denote the finite field consisting of all possible
unions of the A(n,i). Note that &, c &, ;. Also let E(n,i, j) = A(n,i) X
A(n, j); thus the E(n,i,j) define a partition of S =[0,1)? into disjoint
half-open squares of area 22", Further consider the averages

biy(n) =2 [ p(xy) drdy

— n — n
fl(n) 2 '[A(n,i)f(x) dx’ nj(n) 2 fA(n
i,j=1,...,2". Since 0 <¢ <1 one has 0 < ¢,(n) < 1. From (3.14) and
(3.15), the ¢,(n)2" and 7,(n)2" are precisely the row sums and column sums
of the matrix (¢, ;(n)). Also note that £,(n) and 7,;(n) are nondecreasing in i
and j, respectively. From Theorem 6, there exists a matrix (¢,;(n)) of the
same size with 0 < ¢,,(n) < 1, having these same row sums ¢,(n)2" and
column sums 7,(n)2", with the additional property that ; (n) is nondecreas-
ing in both i and j. Now define ¢,: S — [0, 1] by letting ¢,(x,y) = ¢, ;(n) for
all (x,y) € E(n,i, j). Clearly, ¢,(x, y) is nondecreasing in each coordinate and
satisfies 0 < ¢, < 1. Let

un(x) = [ Wo(x,y)dy and v, (y) = A (%, y) dy.

n(y) dy,
)

Then
[ &x)dx=27"¢(n) =27 % ¢,5(n)
A(n,i)

"I

Thus u,(x) — £(x) integrates to 0 over every A € %,. Equivalently, ¢,(x, y) —

x,y) dxdy = u,(x)dx.
Blay)dedy = [ un(®)

n,i,j
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&(x) integrates to 0 over every set A X [0,1] with A € %,. Similarly,
¥,(x, y) — n(y) integrates to 0 over every set [0, 1] X B with B € &,.

Now draw a weak* convergent subsequence from the sequence {¢,} with
limit . Then ¢ has all the required properties. It is obvious that 0 < ¢ < 1.
Moreover, ¢(x,y) is nondecreasing in each coordinate. For that property can
be expressed as [, < [p¥ with C and D as arbitrary disjoint subsets of
S = [0, 1]? of equal area, such that D is northeast of C. Moreover, ¢(x,y) —
&(x) integrates to 0 over every set A X [0,1] with A € &, where = U ,.%,.
This in turn implies (3.16). Equality (3.17) follows similarly. O

To prove Theorem 5, note that (3.2) is equivalent to 0 < ¢ < 1 together
with

(319)  [o(FU2),6 ) dy=FX(x), xeC,

1

(319b) [ $(F(x),G7(0)dx=GT(y), yEC,

where C, and C, are the continuity points of F~! and G~'. By Theorem 7,
there exists a function 0 < ¢(x, y) < 1 which is nondecreasing in x and y and
has its marginals equal to £(x) = F~1(x) and 5(y) = G~ (y). Thus (3.19) holds
with ¢ replaced by

(3.20) (x,5) = ¥(F(x),G(y))-

In fact, the latter function 0 < ¢ < 1 has all the properties promised in
Theorem 5.

Finally, we remark that the above proof of Theorems 6 and 7 immediately
carries over to dimension % > 2, but only for one-dimensional marginals.
Thus, given an integrable function 0 < ¢ <1 on R* having nondecreasing
one-dimensional marginals, there exists a nondecreasing function 0 < ¢ < 1
on R* having exactly the same marginals.

That, for instance, Theorem 6 does not carry over to two-dimensional
marginals can be seen by choosing & =3 and ¢, ;, =BG +j + k) with
i, J,k €{0,1}. Its two-dimensional marginals are nondecreasing as soon as
B(0) < B(2) and B(1) < B(3). On the other hand, choosing B(1) = 0 and B(j) =
1 otherwise, the resulting ¢ fails to be nondecreasing and, moreover, there is
no other 0 < ¢ < 1 having the same two-dimensional marginals as ¢.

Acknowledgments. We conjectured Theorem 2 only after a discussion
with Walter Carrington of related results in his thesis [1]. We are grateful to
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Theorem 3 and which is our first remark in the paper.
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