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STRONG LAWS FOR SMALL INCREMENTS OF
RENEWAL PROCESSES

By JOSEF STEINEBACH

Universitit Marburg

Let {N(2), t > 0} be the (generalized) renewal process associated with an
iid. sequence X, X,,... of random variables having finite moment gener-
ating function on some left-sided neighborhood of the origin. Some strong
limiting results are proved for the maximal increments supg.;<r-x
(N(¢t + K) — N(2)), where K = K is a function of T such that K 1,
but K;/logT |0 as T — «. These provide analogs to a recent extension
due to Mason (1989) of the Erdds-Rényi strong law of large numbers for
partial sums.

1. Introduction. Let X, X,,... be a sequence of independent random
variables with common distribution function F such that:

() X, is nondegenerate with 0 < u = EX; <  and
(i) (—o0 <)s, = infls: ¢(s) = E exp(sX;) < } < 0.

Let Sg=0, S,=X;+ --- +X,, for n > 1, and consider the corresponding
(generalized) renewal process {N(¢), ¢ > 0} defined by

N(t) = max{n >0:S,,...,S, <t} forz=>0.

Note that in the case of nonnegative X,, X,,..., the process {N(¢), ¢ > 0}
coincides with the ordinary renewal process given by

N(t) =max{n >0:S, <t} forz=>0.

The purpose of this paper is to study the strong limiting behavior of the
maximal increments of {N(¢), ¢ > 0} over small subintervals of size K,. Here
and throughout the sequel {K, T > 0} will denote a positive function satisfy-
ing Ky 1o, but K/log T |0 as T — . Define

(1.1) D(T,K)= sup (N(t+K)-N()).
0<t<T-K

Several results have been obtained concerning the limiting behavior of
D(T, K;) for functions {K;, T > 0} of “large” size (K;/logT — «) or
“medium” size (K, ~ ClogT: ‘“Erd6s—-Rényi” case); see, for example,
Deheuvels and Steinebach (1989) and the references mentioned therein. In the
latter paper it was shown that, via a duality between events, it is often possible
to deduce the strong laws for D(T', K ;) from the knowledge of the correspond-
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ing minimal increments of partial sums,

(1.2) M(n,b,) = 0<’£nin , (Sk+s, = Sk)

for suitable choices of 1 < b, < n. But also in the partial sum situation, the
cases b,/logn — » or b, ~clogn have received much interest [cf.
Deheuvels, Devroye and Lynch (1986) for further references], whereas little
work has been done on the small increments [see, e.g., Book (1976), de Acosta
and Kuelbs (1983), Steinebach (1983) and Huse and Steinebach (1985)]. Re-
cently, Mason (1989) has achieved remarkable progress in this field by provid-
ing suitable conditions for an extension of the Erdds—-Rényi law to the case
b,/log n — 0. The following theorem is a simple consequence of his main
result [cf. Deheuvels and Steinebach (1989)].

THEOREM A. Assume, in addition to (i), that
(iii) a = essinf X; > 0.

Then, for all {Ky, T > 0} such that K; 1% and K;/logT |0 as T — «, we
have

(1.3) }im D(T,K;)/Kr=1/a a.s.

A direct duality argument, however, is not applicable if essinf X, = 0 or if
P(X, < 0)> 0. In the latter case, the following result has been obtained in
Steinebach (1979).

THEOREM B. Assume, in addition to (i) and (i), that
Gv) ¢'(s*) = 0 for some s* € (s, 0).

Put p* = inf, ¢(s) = ¢(s*), and let {K;, T > 0} denote a function satisfying
Kr 1o, Kp/log T L0 as T — 0 and with T; = sup{T: K <j}, assume:

() lim;_, log T}, /log T; = 1.
Then
(1.4) Tl‘im D(T,K;)/log T = 1/log(1/p*) a.s.

A comparison of Theorems A and B also shows that the proper normaliza-
tion of D(T, K) obviously depends upon properties of the underlying distri-
bution F.

In Section 2 we will discuss the limiting behavior of D(T, K;) when

= essinf X; = 0. The two cases P(X; =0)=p >0 or =0 are treated
separately. This is in correspondence with Mason’s (1989) results for partial
sums where the asymptotics have to be distinguished according to whether
w =esssup X; < oor = o,
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2. Statement of the results. Similar to the partial sum situation stud-
ied by Mason (1989), the following functions play an essential role in describ-
ing the limiting behavior of D(T, K) as given in (1.1). Set for 0 <x < u and
1/u < u < =, respectively,

A(x) = —log p(x) = sup{sx — log ¢(s)},

s<0

k(u) = ur(l/u) = sup{s — ulog ¢(s)}.

s<0

It is well known or easily checked via the derivatives [see, e.g., Deheuvels,
Devroye and Lynch (1986), Section 2] that

A(x) is strictly convex and decreasing on (0, u] with
Mp) =0, A(O+)=log(l/p), p=P(X;=0), 1/0=c;
«(u) is strictly convex and increasing on [1/u, ®) with
K(L/w) =0, k(@) =w.
For any 0 <y < log(1/p) and 0 < v < = set
¥(3) = (iIvA)(2),  B(v) = (invK)(v),

where inv denotes the inverse function. From the properties of A and «, it is
readily seen that

y is strictly convex and decreasing on [0, log(1/p)) with
y(0) =,  y(log(1l/p)) = 0;
B is strictly concave and increasing on [0, ©) with
B(0) =1/pn, B(x) =
Our first result provides an analog of Theorem B for the ordinary renewal
process:
THEOREM 1. Let X;, X,,... be an i.i.d. sequence with distribution function
F satisfying (i) and
(iii') @ = essinf X; =0, P(X; =0)=p > 0.
Then for all functions {Kp, T = 0} such that K1, but K;/logT 10 as

T > o,

(2.1) 71'1_1)1}m D(T,K;)/log T = 1/log(1/p) a.s.

REMARK 1. Since p = P(X = 0) = inf, ¢(s) = p*, Theorem B thus immedi-
ately extends to the ordinary renewal process. A close look at the proof of
Theorem B shows that the regularity assumption (v) on {K;, T = 0} there
could also be removed.
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On observing that as T — o,

K B(K7' log T') ~ (log T') /log(1/p),
assertion (2.1) can be reformulated as

(2.1) lim D(T,Ky)/KpB(K7' logT) =1 as.

Under additional assumptions, the latter assertion also extends to the case of
P(X,=0)=0.

THEOREM 2. Let X, X,,... be an i.i.d. sequence with distribution function
F satisfying (i) and

(iii") @ = essinf X; = 0, P(X; = 0) = 0.
Then for all functions {Kp, T > 0} such that K, 1o, but K;/logT |0 as

T - o,

(2.2) lim sup D(T, K;)/K7B8(Kr' logT) =1 a.s.
T—>w

Moreover, the lim sup in (2.2) can be replaced by lim for all such functions if

(2.3) lim w_F_gx_)) =1
) xl0 X B

3. Proofs of Theorems 1 and 2. The proofs make use of the duality
arguments applied in Deheuvels and Steinebach (1989) in combination with
similar ideas as developed by Mason (1989) for partial sums. Although there is
an obvious correspondence between Theorems 1 and 2 of this article and
Mason’s (1989) results, an immediate inversion technique does not seem to
work here. ' .

Before presenting the proofs, let us introduce some additional notation.
Consider D = D(T, K;) and M, = M(n, b,) as defined in (1.1) and (1.2), and
set, for 0 <e <1,

Ar(te) = {DT > (1 +¢&)KpB(K7" log T)}
Then, (2.1) or (2.1') is equivalent to showing that for any ¢ > 0,
(3.1) P(Ap(g)io.)=0 and P(A%(-¢)i.0.) =0,

where {A(¢) i.0.} denotes the event that, for any T, > 0, there exists T, > T
such that Az (e) holds.

Likewise, (2.2) holds iff, for any € > 0,
(3.2) P(Ap(g)in)=0 and P(Ap(-¢)io.)=1.

Moreover, lim sup in (2.2) can be replaced by lim if (3.1) can be verified under
the assumption (2.3).
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Now, in order to apply the desired duality argument, observe that for
0<h<uandbeN,

(3.3) {D(u,h) >b} = {M(N(u),b) <h}.
[Note that supo <t<u-H{ N + k) — N(¢)} attains an integer maximum at some
=0,85,,.. ) For similar arguments see, for example, Deheuvels and

Stelnebach (1989 Lemma 7.]

LeEMMA 1. Under the assumptions of Theorems 1 or 2, we have
(3.4) limsup D(T, K;)/K;B(K7'logT) <1 a.s.

T—o

Proor. Define for T = Rn, R suitably chosen below and ¢ > 0,
b, =b,(s, R) = [(1 + 2¢) K B(K7' log T)],

where [ - -] denotes ‘““integer part of.” Note that K, ~K R(n+1) DY the
monotonicity of K, and K;/log T. We first prove

(3.5) P(M(n,b,) <Kpip i0.) = 0.
With b =b,, K=Kp,.;, and B = B(Kg} log Rn), we have for large n, by
making use of Markov’s inequality,
P(S, <K) < exp{blog p(K/b)} = exp{ —bA(K/b)}
< exp{—(1 + &) Kz,BA(1/(1 + ) B)}.

Convexity of «(u) = uAa(1/u) on [1/p, ) with k(1/u) = 0 implies
k(1 + €)B) = (1 + &)x(B). Hence it follows that

(3.6) P(M(n,b) <K) <nexp{—(1+ s)log(Rn)}

Let n; = max{n: b, =j}. Note that b,,, — b, = 0(1), so that n; is well
defined for all j sufﬁmently large. The latter relatlon can be verified as follows,
setting v, = K31 log Rn:

0 < KR(n+1)B(Un+1) - KRnB(vn)
= (lOg R(n + 1))B(vn+1)/vn+1 - (log RI‘L)B(Un)/Un
< (log R(n + 1) - log Rn)B(v,) /v, = o(1),

since B(v)/v is decreasing by the concavity of 8 and B(0) > 0. Moreover, for
some positive constant 2,

J=b,, < (1+2¢)(log Rn;)B(v, ) /v,, <8 'logn,,

that is, n; > exp(8;).
Now, for n;_; <n < n; and j sufficiently large,

bn = bnj =J»
M(n,b,) > M(nj,j),

Kpm+ny < KR(nJ+1)’
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By (3.6) and n; > exp(8) for large j, the probabilities P(M(n ;, j) < K R(n; +1))

are summable (in ;). Hence the Borel-Cantelli lemma yields (Jé.5).

Choose 0 < R < u. By the strong law of large numbers, for Rn < T <
R(n + 1) and n sufficiently large,

(3.7) N(T)<n and KpB(K7'logT)=>Kpg,B(Kg}log Rn).
In view of (3.3) and (3.7), assertion (3.5) thus implies

P(D(T,Ky) > (1 + 2¢)K;B(K7" log T)i.0.) = 0
for any ¢ > 0, which proves (3.4). O

REMARK 2. It is obvious from the proof of Lemma 1 that the monotonicity
assumption Kr/logT | could be replaced by Ky, ., ~ Kp, as n — « for
some R < u.

Lemma 1 gives the upper halves of assertions (2.1) [or (2.1")] and (2.2),
respectively. The proof of Theorem 1 can now be completed as follows.

LEMMA 2. Under the assumptions of Theorem 1, we have
(3.8) lijl‘ninfD(T,KT)/logTz 1/log(1/p) a.s.

Proor. For R(n —1)<T <Rn,R>pand0<¢ < 3, set
by, = b,(e, R) = [(1 — 2¢)(log Rn)/log(1/p)] + 1.
Then, by the duality (3.3),
(D(T, Ky) < (1 - 26)(log T) /log(1/p)) € (M(N(T),,) = Kpeus).
With b = b, and K = K, _;,, we have for large n
P(M(n,b) 2 K) < {1 - P(S, < K))"*"®
< exp{—[n/b]p®} < exp{—cn®}

for some positive constant ¢, p = P(X = 0). Hence, applying the Borel-Cantelli
lemma results in

P(M(n,b,) =2 Kp,_qi.0.) = 0.
Observing that N(T) = n, for R(n — 1) < T < Rn and n sufficiently large,
completes the proof. O

ProoF oF THEOREM 1. Combine Lemmas 1 and 2. O

The proof of the lower half of Theorem 2 (with lim sup or lim, resp.) makes
use of arguments similar to those in Mason [(1989), Lemma 2.5]. The following
facts about A are helpful.
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LemMmA 3. Let H={h: h is convex and nonincreasing on [0,®) with
E exp(h(X,)) < »} and set for 0 <x < p
N (x) = :ug{h(x) — log E exp(h( X,))}.
Then
A*(x) = A(x) on (0, u].

Lemma 3 is used in the proof of the next lemma.

LEmMMA 4. Whenever essinf X, = 0 and P(X; = 0) =0
(3.9) limlionf(—log F(x))/AMx) = 1.
X

The proofs of Lemmas 3 and 4 are similar to those of Lemmas 2.1 and 2.2 in
Mason (1989) and can be omitted here.
We are now prepared to prove Theorem 2.

LEmMMA 5. Under the assumptions of Theorem 2, we have
(3.10) limsup D(T, Ky)/KrB(Kz' logT)>1 a.s.

T->x

Proor. For0<e <1land T =Rn, R > u, set
b, = bi(e, R) = [(1 — €)°Kp,B(K5} log Rn)| + 1.
By the duality in (3.3),
(3.11) {D(T,Kp) 2 (1 - ¢)°K B(K7' log T)}
> {M(N(T),¥b,) < Kg,}.
We show that
(3.12) P(M(n;,b,) < KR,, io)=1

for a sultable subsequence {n,, i = ..}. With 4 =¥}, K=K, and
B = B(K%. log Rn), we have for large n, by estimating (1 —¢)K/b from
below and b from above,

P(M(n,b) > (1-¢)K)
<{1-P(S, < (1-¢e)K)}""
< exp(—[n/b){P(X, < (1 - £)K/b)})
< exp(—[n/blexp{(1 - &) KB log F(1/(1 - €))})
= Pp-

By Lemma 4 we can find a strictly decreasing sequence {x;} such that x; < 1/i
for all integers i and

(3.13)

log F(x;) = —A(x;)/(1 —¢).
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Let
n; = max{n: B(KzL log Rn) < 1/(1 - &)x;}.
Note that necessarily
B(Krin,+1) log R(n; + 1) > 1/(1 - &)x;.

Since B is concave, that is, B(v) /v is bounded, K, log Rn = o(n) and Ky, ~
Kp(n+1) @8 1 — o, the latter inequality implies that n; > i for large i.
By continuity of B there exists

v; = (1 +¢;)Kg,, logn,
with 0 < ¢, » 0 as i — o and
B(v;) =1/(1 - ¢&)x,.
Since B(v) is increasing and log F < 0,
B = B(Kzn, log Rn;) < B(v;),
Blog F(1/(1 - €)B) = B(v;)log F(1/(1 — ) B(v,))-
Hence for n = n; and i sufficiently large, the estimate in (3.13) continues as
Pn, < exp(—[n,/b}, Jexp{—(1 — &) KB(v;)A(1/(1 - £)B(v;))})-
By convexity of x(u) = uA(1/u), k(1 — e)u) < (1 — e)x(u), which implies
(1 = e)B(L)A(1/(1 - &)B(v;)) < (1 —&)v;.
Thus we have, for i sufficiently large,
Pn, < exp(— [ni/b’,’,i]ni‘(l‘sxlﬂ"i)),
which is summable in i, since n; > i, &; = o(1) and b, = o(log n,). Hence the

Borel-Cantelli lemma gives (3.12). Via the duality of (3.11), this suffices to
prove (3.10), since N(Rn;) > n; for i sufficiently large. O

It only remains to prove that the lim sup in (2.2) can be replaced by lim, if
condition (2.3) holds.

LEMMA 6. Under the assumptions of Theorem 2 including (2.3), we have
(3.14) liTIpinfD(T, K;)/KrB(K7z'logT) =1 a.s.

ProorF. With the same estimates as in the proof of Lemma 5, we have for
0<e<land R(n — 1) <T<Rn,R>uyu,
(3.15) {D(T,Kp) <(1 - ¢)*KpB(Kr'logT)} < {M(N(T),b.) = Kpn_1)}
and with b =", K = Kj,, B = B(K5. log Rn) and n large,
(8.16) p,=P(M(n,b) > (1-¢)Kp,_1) < P(M(n,b) > (1 -¢)*?K)

< exp(—[n/blexp{(1 — ) KBlog F(1/(1 - £)B)}).
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By (2.3), for all sufficiently large n,
y(~log F(1/(1 - £)B)) = (1 - &) /(1 - &),
that is,
log F(1/(1 - ¢)B) = —A(1/B),

since vy is decreasing. Thus we have

P, < exp(—[n/b](Rn) "),

which is summable in n. The rest of the proof now proceeds as that of Lem-
ma 5. O

Proor oF THEOREM 2. Assertion (2.2) follows from a combination of Lem-
mas 1 and 5. The replacement of lim sup in (2.2) by lim under (2.3) is justified
by Lemma 6. O
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