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BROWNIAN EXCURSIONS, TREES AND MEASURE-VALUED
BRANCHING PROCESSES

By JEAN-FRANGOIS LE GALL

Université Paris VI

We propose a trajectorial construction of a class of measure-valued
Markov processes, called superprocesses or measure-valued branching pro-
cesses, which have been studied extensively in the last few years. These
processes were originally defined as weak limits of systems of branching
particles. The basic idea of our construction is to use the branching
structure of excursions of a linear Brownian motion to model the branch-
ing mechanism of the superprocess. Without any additional effort, our
approach leads to the so-called historical process, which contains more
information than the superprocess in the sense that it keeps track of the
individual paths followed by the particles. We emphasize the relationship
between the properties of the historical process and the corresponding
results of excursion theory. We also give a description of the support of the
superprocess at a fixed time, using a simple tree model. Finally, we use-our
construction to recover certain pathwise properties recently obtained by
Perkins.

1. Introduction. The purpose of this work is to give a simple trajectorial
construction of certain measure-valued Markov processes, called superpro-
cesses by Dynkin, which have been recently studied by several authors; see, for
example, Dawson, Iscoe and Perkins (1989), Dawson and Perkins (1989),
Dynkin (1988, 1989a, b), El Karoui and Roelly-Coppoletta (1988), Fitzsimmons
(1988), Fleischmann (1988), Iscoe (1986, 1988) and Perkins (1988, 1989,
1990). This construction relies on the It6 theory of excursions of linear
Brownian motion and on the properties of the so-called excursion local times.
It is also related to the random tree associated with a Brownian excursion [see
Neveu and Pitman (1989a, b) and Le Gall (1989b)].

Let (x,, t = 0; P, x € R?) be a diffusion process in R? associated with the
stochastic differential equation:

(A) dx, = o(x,) dB, + b(x,) dt,

where B denotes a Brownian motion in R? and the functions o: R? - M, (R)
and b: R? > R? are Lipschitz and uniformly bounded [ M, (R) denotes the set
of d X n matrices with real coefficients]. We denote by (P,) the semigroup of
(x,). We are interested in the construction of the (Dawson-Watanabe) super-
process associated with (x,), which can be defined as follows. Let .Z(R¢) be the
space of all finite measures on R? and let u €.#(R?). The superprocess
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associated with (x,), starting from p, is the .#(R?)-valued Markov process (X,,
¢t > 0) whose law is uniquely determined by the relations

Xo=n
and, for 0 < s < ¢, for any bounded continuous function ¢ from R? into R "
E[exp - <Xt’ §D>|Xs] = exp — <Xs,‘ft—s¢>’

where (¢, z) = V,¢(2) is the unique continuous function from R, X R? into R,
that solves the integral equation

Vio = Pip = 2[ P((Vi-y0)®) ds.

The choice of the multiplicative factor 2 is only for convenience. The case of a
general constant A > 0 can be reduced to this one by a suitable scaling.

These measure-valued processes were introduced by Jirina (1958) and then
studied by Watanabe (1968), Dawson (1977, 1978) and more recently by many
others. At least two distinct methods may be used to construct superprocesses.
The first one actually motivated the study of these processes. It is based on an
approximation by systems of branching diffusions. One considers a finite
number of “particles” in R? which move independently according to the law of
the solutions of equation (A). The particles die independently at an exponential
rate. When a particle dies, it gives rise to either zero or two new particles with
probability 1/2. These new particles move independently starting from the
final position of their ‘“father,” and so on.... One then introduces the
measure-valued process whose value at time ¢ is the sum of the Dirac masses
at the positions of all particles alive at time ¢. If the initial number of particles
tends to «, after a suitable scaling in both time and space, this measure-valued
process converges in distribution toward the superprocess (X,, ¢ > 0) [for this
approach, see, e.g., Ethier and Kurtz (1986), page 400, and Roelly-Coppoletta
(1986)].

Another possible approach is to define (X,) from its semigroup. One shows
that there exists a unique semigroup on the space .#(R?), whose Laplace
functional is given in terms of the nonlinear semigroup (V,) by the previous
formula. The superprocess is then the Markov process associated with this
semigroup [see Dynkin (1989b) and Fitzsimmons (1988)].

We propose here a third approach, which allows us to give a direct trajecto-
rial construction of the superprocess. This approach also leads to a probabilis-
tic interpretation of the nonlinear semigroup (V,). We hope that our method
will have some applications to the sample path properties of (X)), of the type
considered by Perkins (1988, 1989, 1990) and Dawson, Iscoe and Perkins
(1989). One such application is described in Section 9 of the present work.

Let us briefly describe our method in the special case when (x,) is Brownian
motion in R? and u = 8.0y, the Dirac measure at 0. Let us first consider a
continuous function f from R, into R, such that f(0) = 0. The kernel

K(s,t) = inf f(u)
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is easily checked to be nonnegative definite. Therefore, we may consider the
Gaussian process (W,, ¢ > 0) with mean 0 and covariance matrix

Cov(W,,W,) = K(s,t) Id,

where Id denotes the d X d identity matrix. If we further assume that f is
Holder continuous, a simple application of the Kolmogorov lemma yields the
existence of a continuous version of (W,). We denote by Q the law of this
versior;, on the canonical space C(R,, R?) of all continuous functions from R,
into R“.

We then randomize f. We denote by R(df) the law, on the canonical space
C(R,,R,), of reflecting Brownian motion [i.e., the law of (|8,, ¢ > 0), where B
is a standard linear Brownian motion started at 0]. Under the probability
R(df), we may consider the local time process of f, that is, the two-parameter
continuous process (L¢(f), a > 0, ¢ > 0) such that, R(df) a.e.:

(i) for every a > 0, the function ¢ —» L¢(f) is nondecreasing and increases
only when f(¢) = a;
(ii) for every measurable ¢: R, — R, and every s > 0,

fosgo( f(u)) du = [';JD(G)L‘;(f) da.

We set
n=n(f)= inf{t;L?(f) > 1}.

Notice that < », R(df) a.e.
Let P be the probability measure on C(R,,R,) X C(R,, R?) defined by

P(dfdw) = R(df)Qf(dw)
and let (X,, ¢ > 0) be the .Z(R%)-valued process, such that

(X(f,0),0) = fo"‘f’dsL’s(fw(w(s)),

where in the right-hand side the notation d,L:(f) means that the integration
is with respect to the nondecreasing function s — Li( f).

The process (X,, ¢t > 0) is then, under the probability measure P(dfdw), a
superprocess associated with Brownian motion in R?, which starts from 3.0y

This somewhat surprising result can be better understood by investigating
the properties of the laws Qf, which are not apparent here because of the
special features of the Gaussian case. The reason for introducing these mea-
sures can be explained as follows. The probabilistic structure of the superpro-
cess involves two phenomena, the spatial motion of the “particles’’ and the
underlying branching mechanism: If the spatial motion is well understood, the
situation is quite different for the branching mechanism. Indeed this is
the reason why it is often convenient to use discrete approximations, for which
the branching structure can be more easily described [see in particular Perkins
(1988)]. The key idea of our construction is that the underlying branching
mechanism of a superprocess can be described by the tree structure of a
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Brownian excursion, or rather of a Poisson process of Brownian excursions.
The role of f in the pair (f, ) is thus to determine the branching structure of
the superprocess. The choice of w, which is performed under the probability
Q/, then determines the spatial motion of the particles, but only once the
branching structure has been fixed. The reader who is unfamiliar with the
relationship between Brownian excursions and branching processes should
have a look at the figures in Neveu and Pitman (1989b) or in Le Gall (1989b).

The construction and main properties of the measures Q, in the general
case of the superprocess associated with equation (A), are given in Sections 2, 3
and 4. In Section 2 we work in a deterministic setting, with a fixed function f
satisfying certain assumptions. We introduce a tree structure related to the
excursions of the function f above all positive levels. In Section 3 we define a
process indexed by the tree of excursions of f, which roughly speaking moves
along each branch according to the law of solutions of (A). We also state some
basic properties of this process. Finally, in Section 4 we show how to construct
the measures Q from the process indexed by the tree, by using a suitable
density argument, and we prove that these measures satisfy a sort of ““branch-
ing property”’ (Proposition 4.3), which plays a basic role in the next sections.

In Section 5 we introduce the measure-valued process and check that it has
the desired distribution. In contrast to the special case described above, it
turns out that it is more convenient to construct first the ‘“‘canonical measure”
associated with the superprocess [see Kallenberg (1983) for canonical measures
associated with random measures, and Dawson and Perkins (1989) and
El Karoui and Roelly-Coppoletta (1988) for the particular case of superpro-
cesses]. In our setting, this means that instead of taking for f a path of
reflecting Brownian motion, which indeed would not satisfy the desired as-
sumptions, we let f be a Brownian excursion. In other words, we replace the
measure R(df) with the It measure of positive excursions of linear Brownian
motion. This leads us to the canonical measure of the superprocess, from
which it is then easy to construct the superprocess itself, just as linear
Brownian motion can be reconstructed from its excursions from 0. One may
also notice that many sample path properties can be read from the canonical
measure as well as from the superprocess itself.

In Section 6 we show that, without any additional effort, our construction
yields a process taking values in the set of measures on C(R,,R%), which
contains more information than the superprocess in the sense that it keeps
track of the paths followed by the particles. This process is the so-called
historical process of Dawson and Perkins (1989) or the grand superprocess of
Dynkin (1991) [see also Zéhle (1988) for a related work]. Heuristically, if X, is
interpreted as the empirical measure on the set of all particles alive at time ¢
(this interpretation only makes sense in the discrete approximation), the
historical process at time ¢ gives the corresponding measure on the set of the
paths (stopped at time t) of these particles. This heuristic interpretation is
made precise by using the discrete approximation and passing to the limit. A
basic tool in this connection is the Neveu-Pitman theorem on branching
processes in Brownian excursions [see Neveu and Pitman (1989a, b) and
Le Gall (1989b)].
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In Section 7 we apply our construction to simple proofs of two important
properties of the historical process. We emphasize the connection between
well-known properties of Brownian excursions and the corresponding results
for superprocesses. On one hand, the structure of Brownian excursions above
a fixed level leads to the inhomogeneous Markov property of the historical
process. On the other hand, the properties of excursions above the minimum
process of a linear Brownian motion allow us to recover a description of the
Palm measure of the historical process given by Dawson and Perkins (1989).

In Section 8 we use our approach to derive a representation of the law of the
superprocess at a fixed time ¢ > 0. This representation is based on a tree
model inspired by Neveu (1986). It leads to a probabilistic interpretation of
the nonlinear semigroup (V,), which may be compared to the work of Sznitman
(1988). These results are closely related to a theorem of Le Gall (1989b) and to
some limit theorems for branching trees due to Fleischmann and Siegmund-
Schultze (1977, 1978). They should also be compared to the results of
Dawson and Hochberg (1982), Section 7, in the slightly different context of the
Flemlng—Vlot measure-valued process.

Finally, in Section 9 we give an application of our construction to the
discontinuities of the support process. We recover a theorem of Perkins (1990),
which in our approach is seen to be related to the well-known property that
the local maxima of a Brownian path are distinct.

One may wonder whether the use of Brownian excursions is really neces-
sary to our approach. The basic object seems to be the infinite branching tree
“hidden in a Brownian excursion,” which models the branching mechanism of
the superprocess [see Rogers (1984) and Le Gall (1986) for the tree associated
with the excursion of discrete random walk]. Note, however, that the Brown-
ian local times provide natural measures on the level sets of this tree, and that
these measures play an essential role in our construction. It is also very
plausible that our construction can be applied to superprocesses associated
with more general Markov processes; see Le Jan (1991) for a different but
related approach.

Some of the results of the present work have been announced in the note
[Le Gall (1989a)].

2. The tree of excursions of a continuous function. Throughout this
section we consider a continuous function f from R, into R, which satisfies
the following assumption:

(H1) f(0) = 0, and there exists some 7 = 7(f) € (0, ) such that f(z) > 0 if
and only if ¢ € (0, 7).

Let -#; denote the set of times that correspond to a local minimum of the
function f on [0, 7):

2= {u € [0, 7); there exists £ > 0 such that f(u) = 1nf f(s)}

We agree that 0 belongs to ;. We also assume the following:
(H2) If u,v € #; and u # v, then f(u) # f(v).
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In particular, this implies that the function f is nonconstant on any nontrivial
subinterval of (0, 7).

By definition, a raw excursion of f is a pair (x,(a, b)), where x > 0, (a, b)
is a nonempty subinterval of (0, 7) and

@ fla) =f(b) = x,
(i) f(u) > x for any u € (a, b).

The set of raw excursions is clearly uncountable. We will consider its
quotient set for the following equivalence relation. By definition,

(x,(a,b)) ~ («',(d, b))
if and only if either x < x/, (a, b) D (a', b') and

sup f(u) = sup f(u), sup f(u) < sup f(u);
[a,b] [a,¥] [e,a] [a,b]

or the same holds when we interchange (x, (a, b)) with (x', (¢, b')).

The condition sup, »; f(u) < sup, ; f() is needed to ensure that the
relation ~ is transitive. Note, however, that this condition is superfluous if
the local maxima of f are distinct, which is the case when f is a typical
Brownian excursion.

We denote by E, the set of equivalence classes of raw excursions, which are
simply called excursions. The next lemma is elementary.

LeEMMA 2.1. Let e € E,. There exists a unique representative of e, denoted
by (x(e),(ale), b(e))), such that, for any other representative (x,(a,b)), one
has x > x(e) and (a, b) c (a(e), b(e)). Moreover, a(e) or b(e) belongs to 25,
and the map e — x(e) is a bijection from E; onto the set #; of all local
minima of f.

By assumption (H2), f induces a bijection between Z; and #;. For any
§ € 7, we denote by @,(s) the unique excursion such that x(®,(s)) = f(s).

In the next sections, the space variable for the function f will become the
time variable for a certain stochastic process. In this setting the number x(e)
is understood as the birth time of the excursion e. The death time of e is

y(e) = sup f(u),
lae), ble)]

and its height is h(e) = y(e) — x(e). Finally, we set e, = ®(0), the excursion
having (0, (0, 7)) as a representative.

We now introduce an order on E,. By definition, e < ¢’ if and only if
(a(e), b(e)) o (a(e’), b(e)). This implies x(e) < x(e’), y(e) = y(e’) and thus
h(e) > h(e'). We set e < e if e <e', e # ¢ and if whenever e < e” < e’ we
have ¢" =e or e’ =¢'.
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LEMMA 2.2. Let e € E;. There exists an integer n € N and a finite sequence
(ey,...,e,) of elements of E, such that

ep<e ¥ e, | <e, =e.

Moreover, e’ < e if and only ¢’ = e; for some i €{0,1,...,n}. In particular, n
and the sequence (e,,...,e,) are unique.

The proof is easy and left to the reader. The partially ordered set E, may be
interpreted as the tree of excursions of the function f. Each e € E, represents
a branch of this tree, of length h(e). This branch originates from the branch
represented by e’ defined by e’ < e. A subset F of E; is called saturated if the
relations e € F and e’ <e imply ¢’ € F. An element e of F is then called
extreme if, for ¢’ € F, e < ¢’ implies e = ¢'.

3. The process indexed by the tree. We now propose to define a
stochastic process indexed by the tree of excursions of the function f. More
precisely, for every e € E, we will define an R<-valued process (X°(¢), ¢ > 0),
in such a way that X¢ will be a solution, stopped at time y(e), of equation (A)
and that, if e < ¢/, X¢ and X¢ will coincide on the time interval [0, x(e')].

We let o, b be as in the Introduction and we fix z € R?. We also denote by
(B¢, e € E;) a family, indexed by E, of independent Brownian motions in R".
The cardinality of a finite set F' is denoted by Card(F).

PrOPOSITION 3.1. For every e € Ef, let X° be the Re-valued process defined
by the stochastic integral equation

X)) ==+ -Z:i’o (fotl(x(e,»),x(e,«“)](S)o(Xe(S)) dB¢(s)

t
+ fo Lixcepy, xcer, pi( ) B( X?(5)) ds),

where n and the family (e,,...,e,) are as in Lemma 2.2, and by convention
x(en+1) = y(e)
Then X° is a solution started from z, stopped at time y(e), to equation (A).
Moreover, the law of (X°, e € E;) is characterized by the following two
properties:

(i) The process X°° is a solution started from z, stopped at time y(e,), to
equation (A).

(ii) Let F be a finite saturated subset of E; such that Card(F) > 2, let e be
an extreme element of F and let ¢’ € F be determined by ¢’ < e. Then X*(t) =
X¢(t) for anyt < x(e). Moreover, the process (X°(x(e) + t), t > 0) is indepen-
dent of (X8, g € F — {e}) conditionally on X (x(e)); its conditional law is that
of a solution of (A) started from X¢(x(e)), stopped at time h(e).
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The proof of Proposition 3.1 is straightforward and will be left to the reader.
For property (ii) one uses the fact that the process (X¢(x(e) +¢), t > 0)is a
measurable functional of X°(x(e)) = X°(x(e)) and of B¢, and is therefore
independent of (B%, g € F — {e}) conditionally on X¢(x(e)).

The construction of the family (X¢) may clearly be extended to the case of a
general Markov process. In this general situation, one argues by induction
using property (ii).

For every u € _#;, we define a process (I',(¢), ¢t > 0) by setting

I,(t) = X°(t Ax(e)),

where e = ®(»), and the mapping ®;: #; — E, was defined after Lemma 2.1.
We will prove in Section 4 that, under suitable assumptions, the mapping
u — T, can be continuously extended to any u € [0, 7]. We first need to record
some properties of this map.

ProposiTION 3.2. (i) For every u € 7}, the process T, is a solution of
equation (A), started from z and stopped at time f(u).

(i) Let u,u’' € #;, u <u’, and let u” € [u, u'] be the unique elemient of <5,
such that

f(u") = Jnf f(v).

Then T, (t) = T, (¢) = T,,(t) for any ¢t € [0, f(u")). Moreover, the two processes
T @)+ 1), t=0), (T,(f(u")+1), t>0) are independent conditionally
given T,(f(u")).

Proor. Property (i) is immediate, since by construction f(u) = x(@p(u)).
For property (i), let e = ®x(u), ¢’ = ®(u'); we restrict our attention to the
case when e, ¢’ are not comparable (the other case is simpler). Set ¢” = Dp(u")
and let ¢ be such that € < e”. Then é < e, é < e’. Moreover, we have either
e” <e or " <e', but not both. Assume that e” < e, the alternative case being
symmetric. There exist two integers p > 1, ¢ > 1, and p + q distinct elements
of E;, denoted by el,...,eP e ..., 7 such that

é<e =el<el<x - weP=e,

E<el<x - wel=¢.
Moreover, x(e'") > x(e') = f(u"), by the definition of #”. From our construc-
tion, we have for any ¢ < x(e'), X°(t) = X%(t) = X¢(t). On the other hand,
(Xe(f(u") + t), t > 0) is a measurable functional of X°( f(x")) and the Brown-
ian motions B¢, ..., B*", whereas (X°( f(u') +¢), t = 0) is a functional of
X°(f(u")) and the Brownian motions B¢, B¢, ..., B¢". This gives the desired
conditional independence. O

We shall need a characterization of the law of the family (T,, u e_/}),
which is provided by the next proposition. A subset U of Z; is called
saturated if whenever u,u’ € U, u < v/, the time u” € [u, u'] uniquely deter-
mined by f(«") = inf}, ,, f(v) also belongs to U.
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ProposITION 8.3. The law of (T, u € -#}) is characterized by the following
two properties:

() To(¢) =z foranyt > 0.
(ii) Let U be a finite saturated subset of £;, with 0 € U and Card(U) > 2,
and let u € U be defined by

f(u) = sup f(v);
velU
define u',u” € U by
W =sup([0,u) NU), u'=inf((«,T)NU),

where by convention inf@ = 0. Set it = v’ if f(«') > f(u"), & = u" otherwise.
Then T, (t) = Ty(t) for any t < f(@), and the process (I, (f(@) + t), t > 0) is,
conditionally given T,(f(i)), independent of (I, v € U — {u}); its conditional
law is that of a solution of (A) started from T,(f(&)) and stopped at the time
f(u) — f(@).

Proor. Property (i) is obvious, whereas property (ii) can be derived through
the same arguments as in the proof of Proposition 3.2. The point is that the
process ([ (f(&) + ¢), ¢ > 0) is a measurable functional of I';(f(Z)) and of a
finite number of Brownian motions B¢ independent of (T}, v € U — {u}). The
fact that properties (i) and (ii) characterize the law of (I',, u € #}) is then
easily checked using induction on Card(U). O

4. The extended process and its properties. Our first goal in this
section is to extend the mapping u — T, to the whole interval [0, 7]. We shall
need the following additional assumptions on the function f:

(H3) Z; is dense in [0, 7];
(H4) f satisfies a Hélder condition with exponent & > 0.

PrOPOSITION 4.1. Under assumptions (H1), (H2), (H3) and (H4), the pro-
cess (T, u € £;) has a unique continuous extension to the interval [0, 7]. The
extended process, denoted by (T,, u € [0, 7)), still satisfies properties (i) and
(ii) of Proposition 3.2.

PrOOF. Set |lgll = sup; g, |g(?)l, for any bounded function g from R, into
R?. Let u,u’ € Z; such that u < u'. With the notation of Proposition 3.2(ii),
we have, forany p € N, p > 2,

E[IT, - TI”] < C,(E[IT, - T,lI”] + E[IIT, = T,lI”]).
On the other hand,
(T, = To)(8) = (T, — Tp)(£) = 0 if £ < f(u"),

and (T, (£ (u") + ¢), t = 0), resp. (I, (L(u") +¢), t > 0), is distributed as a
solution of (A) stopped at time f(u) — f(u"), resp. f(«') — f(u"). It easily



1408 J.-F. LE GALL
follows that
E[IIT, - TIP] < Cy(( £(x) = F(u")* + f(u) - f(u")’,

E[IT, - T, I7] < Cy((f(w) — F(u)) ™ + f(w) — F(u"))’,

where the constant C, depends only on p and the bounds on o and b. By
assumption (H4),

sup( f(u) — f(u"), f(«') — f(u")) < Csup(lu — P N u"Ia)
<Clu —ul.
Therefore, for any p > 2 there exists a constant C,, such that
E[IT, - T, I”] < Culu — w/|??’?,

when |u — u'| < 1. Standard arguments then imply that the process (T,
u € _#;) is a.s. uniformly continuous (even Hélder continuous). By assumption
(H3), this process has a unique continuous extension to [0, 7]. A straightfor-
ward passage to the limit shows that the extended process still satisfies
properties (i) and (ii) of Proposition 3.2. O

We shall often use the following simple consequence of property (ii) of
Proposition 3.2. If (x, (a, b)) is a raw excursion of f, then, for every u € [a, b],
t € [0, x], [,(#) = T,(#) = T,,(¢). The continuity of T implies that this property
holds simultaneously for all raw excursions of f outside a set of zero probabil-
ity.

Noration. We agree that if u > 7, I,(¢) = z for any ¢ > 0. The process
(T, u > 0) is then continuous. We denote by Q/ its law on the canonical space
CR,,C([R,,RY). Finally, we denote by C* the set of all functions fe
CR,,R,) that satisfy assumptions (H1), (H2), (H3) and (H4). The set C* is a
Borel subset of C(R,,R_).

PROPOSITION 4.2. The mapping (z, f) —» Qf, defined on R% X C* and with
values in the space #(C(R,,C(R.,R?)) of all probability measures on
CR,,C[R,,R?)), is measurable.

Proor. Forany T > 0,3 > 0, C > 0, denote by C7 ; . the closed subset of
C* consisting of all functions f, such that
supp( f) < [0,T],
and, for any s,¢ > 0,

If(s) = f(#)l < Clt - sI°.
It is enough to prove that the mapping (z, f) » Qf is continuous when
restricted to R? x C%,s,c- Let (z,, f,) be a convergent sequence in R? X Ct 5.c
and let (z, f) be its limit. The bounds of the proof of Proposition 4.1 imply that
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the sequence (Q/ ") is tight. It is then enough to check that any convergent
subsequence must converge toward Q/. Consider such a subsequence, still
denoted by (@/»), and let Q be its limit.

To show that Q= Q/, we use the characterization of Q/ given by properties
(i) and (ii) of Proposition 3.3. We let U = {u,...,u,} be a saturated (with
respect to the function f) subset of .#;, such that p = Card(U) > 2. Without
loss of generality, we may assume

f(uy) <f(up) < -+ <f(up).

We may choose ¢ > 0 so that the intervals [u; — ¢, u; + £] are disjoint and
the restriction of f to [u; —¢,u; + ¢] has a unique global minimum at ;.
Then, for n large enough, for any i €(1,..., p}, the restriction of f, to
[u; — &, u; + €] must have a unique global minimum, attained at v} € (u; —
&, u; + ¢). Furthermore,

lim v} = u;

124
n-—>ow

so that, for n large, we have
fn(vil) <fn(vg) < - <fn(v;;)

Finally, a simple argument shows that, if n is large enough, the set U, =
{v1,..., vy} is saturated with respect to f By writing property (ii) of Prop081-
tion 3 3 for f. and U,, under the law Q/», we get in the limit that the same
propertfy holds for f and U under Q. Slnce property (i) is immediate, this gives
Q=0]

The next result will play an important role in Section 5. We fix f € C*,
z € R?, and we consider the associated process (I',, u > 0). Let a > 0 be fixed.
Denote by (a, (a;, B;)), i € I, the raw excursions of f above level a. Here the
set of indices I is at most countable (I is empty if a is large). For any i € I
and u > 0, set

fi(u) =f((a; + u) AB;) — a.
Observe that f; € C* for any i € I. We also set
S
o(a)(u) = inf{s, j;) 1[0,a]( f(U)) dv > u}
and

f(a)(u) = f(o'(a)(u))
Again, f,, € C*. Finally, for any i € I, for any u > 0, ¢ > 0, we set

Li(¢) = Laitmynp(@ + 1), Ii(t) = Fa'(a)(u)(t)‘

PROPOSITION 4.3. The process (I''®, u > 0) is continuous, and its law is
Qf@. Moreover, conditionally given (T, (@), i €1), the processes (I;, u > 0),
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i € I, are independent and zndependent of (I®), u > 0). The conditional law
of T/ given that T, (@ =z,ielis @f,

Proor. The continuity of I'® derives from the fact that I, = I, for any
i €1, as. The identification of the law of I'® follows then eas11y from
Proposition 3.3. Indeed, every finite saturated subset of ,/} corresponds to a
finite saturated subset of ;. By writing property (ii) of Propos1t10n 3.3 for the
latter, and using the definition of '), we get that the same property (ii) holds
for F(“) with respect to the function f,,,. Since property (i) is immediate, this
suffices to show that the law of I'® is Qfw@,

The other assertions follow from our construction of I'. For any i €I
denote by e;, the excursion represented by (a, (;, B;)). Set

E; = {e € E;; (a(e), b(e)) € (,B,), x(e) > a),
Eq ={e€E;5(e) <a).

The process I'® is measurable with respect to the o-algebra generated by the
Brownian motions B®, e € E,,, and by processes (B*(t A a), t > 0), i € I.
Indeed, it is enough to check that, for any u € Z; such that f(u) < a, the
variable I, is measurable with respect to this o-a.lgebra If e = ®,(u), we have

ey Ke X - <e,=e,

where eg, ey, ..., e, € E,, U {e;), i €I}. The definition of I, (Proposition 3.1)
then leads to the des1red result.

For any i € I, the process I’ is measurable with respect to the o-algebra
generated by T, (a) [= I;(@)], by the Brownian motion (B®i(a + ¢) — B¢®(a),

¢t > 0) and by processes (Be e € E;). Indeed let u € 7, such that u € (a;, 8;).
The associated excursion e satlsﬁes

e Ke X e, mep < o <e,=e

for some e, ,,...,e, € E; by Proposition 3.1, if ¢ > a,

X4() = X°(@) + L ([ top st m()7(X4(5)) dB(s)
Jj=p\@

¢
+fal(x(e,«),x(em)](s)b(Xe(s)) ds)-
We also have
. X*(a) =T,(a) =T,(a).

The desired measurability property for I'! follows from these observations.

The fact that I'® and the processes I, i € I, are conditionally independent
given I, i € I, is now a consequence of the independence of the Brownian
motlons ‘B° , e € Ep, together with the independence property of the incre-
ments of the processes B, i € I.
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We finally determine the conditional law of I'“. One may either proceed as
for I'® or argue as follows. The mapping u — a; + u is a bijection from
Z;, — {0} onto (a;, B;) N Z;. This mapping 1nduces a one-to-one correspon-
dence A; between E; and the set E; U {e(l)} Notice that this correspondence
preserves the order structure on excursions. For every e € E; and for any
t>0,let

B'*(t) = B*9(a + t) — B*®)(a).

The processes B'®, e € E., are 1ndependent Brownian motions, and are inde-
pendent of the varlable I,(a) [which is measurable with respect to the
o-algebra generated by the processes B¢, e € E) and (B°o(t A a), t > 0),
i € I. It should now be clear that the process (F‘, u € £} is constructed for
the function f;, from T,(a) and the Brownian motions B, e € Ef, by the
same device that was used for the function f to construct (T, u € -Z;) from 2z
and the Brownian motions B¢, e € E. This completes the proof of Proposition
43. O

5. The construction of the measure-valued process. We now pro-
pose to apply the results of the previous sections to the construction of the
superprocess associated with solutions of equation (A). As a matter of fact, we
will first introduce the corresponding canonical measure, from which it is then
easy to exhibit a construction of the superprocess itself. The function f, which
was deterministic in the previous sections, will now be random, and more
precisely it will be distributed according to the Itd measure of excursions of
linear Brownian motion.

We shall work on the space

® == C* x C(R,,C(R,,R?)).

An element 0 of © is denoted 8 = (f, »). For any z € R?, we consider the
o-finite measure M, on O defined by

M. (dfdw) = n(df)Ql(dw),

where n(df) denotes the Itd measure of positive excursions of linear Brownian
motion, normalized so that

n(supf(s) > e) = (26) 7"
s=0

for any ¢ > 0. Notice that the definition of M, makes sense. On one hand, the
well-known properties of Brownian motion show that n(df) a.e., f€ C*, so
that » may be viewed as a measure on C*. On the other hand, the mapping
f — Q is measurable by Proposition 4.2.

We will now introduce a measure-valued process defined on ©. We need the
notion of excursion local time. There exists a measurable mapping, (a, t, f) =
12(f), defined on R, X R, X C* and taking values in R,, such that the



1412 dJ.-F. LE GALL

following three properties hold:

() for any f € C¥*, the map (a,?) — [2(f) is continuous and increasing in
the variable ¢;
(i) for any fe C*, a,t € R,, I7(f) =17, . f);
(iii) n(df) a.e., for any nonnegative measurable function ¢ and ¢ > 0,

[ e f()) ds = [o(@)iz(f) da.

The existence of this mapping is easily derived from the well-known properties
of Brownian local times [see, e.g., the last chapter of Rogers and Williams
(1987)]. The uniqueness (up to a set of zero n-measure) follows from proper-
ties (i), (i) and (iii). Interesting applications of the notion of excursion local
time, somehow related to the present work, are developed in Pitman and Yor
(1982).

The measure associated with the increasing function ¢ — [2(f) is denoted
by d,l2(f). This measure is supported on the set {s; f(s) = a} It is well
known that n(df) a.e.,

sup f(s) = inf{a > 0;12(f) = 0}.

s=>0

Finally, for any & > 0, the law of Ii(f) under n(df), conditionally on
{sup f(s) > €}, is exponential with mean 2¢.
For any (f,w) € ® and a > 0, we define Y,(f, w) € .#(R?) by setting

(Y(f,0),0) = f:dsl‘s‘(f)rp(w(S)(a))

for any measurable function ¢: R? — R, . Notice that for a > 0,

M((Y(f,0),9)) = [n(d) [ 15(HB(p(a(5)(@))) = Pap(2),

where (P,) denotes the semigroup of solutions of equation (A). Indeed, we
know by Proposition 4.1 that o(s) is under Q/ distributed as a solution of (A)
started from z and stopped at time f(s). Moreover, it is plain that n(I2) = 1
for any a > 0.

The continuity of (a,¢) - I?(f) implies that the mapping a — d,l2(f) is
continuous [for the weak topology on .#(R_ )], and then that for every (f, w) €
0 the mapping a — Y (f, w) is continuous.

THEOREM 5.1. If 0<a <b,
M, (exp - (Y, 9)I(Y,,0 < u < a)) = exp — (¥,, V;_,0),
where, for any u > 0, y € R?,
Ve(y) = M(1 - exp - <Y, 0)).
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REMARK. The measure M, attributes a finite mass to the set
(Y, (f, w) # 0} = {I2(f) > 0}, which makes it easy to define the conditional
expectation involved in the statement of the theorem.

Proor. We start with some notation. We will first introduce a filtration on
O naturally associated with the process (Y,). As in Section 4, we set, for
feC* and a > 0,

al(t) = inf{u; [0 1o, oy £(v)) dv > t}.

We let &, resp. &0, be the o-field on © generated by the mapping (f, ) —
(fool, weof), resp. the mapping (f, w) - f >0/, and augmented by the
sets that are M,-negligible for every z € R?. Observe that (£°, a > 0) is the
so-called excursion filtration, which in the case of Brownian motion has been
used by various authors [see, e.g., Jeulin (1985) and McGill (1986)].

For every a > 0, Y, is &, -measurable. Indeed, for f € C* and a > 0, let
X%(ds) be the measure on R, defined by ’

AF([0,8]) = 154( ).

The mapping (f, ) — A% is then & -measurable:

1o
A5(10,2]) = lim — [ 1ig_, o) f o 0dy(3)) ds

>0

for every t > 0, n(df) a.e. Furthermore,

o f,0),0) = ["d12(Fe(w(s)(@)) = [K5(ds)o(w = al(s)(a)),

M, (dfdw) a.e., and the described result follows. The same argument shows
that 12(f) = A%(R,) is &’-measurable.
In view of the previous remarks, it is enough to show that

Mz(exp - <Yb’ (P>|(’0a) = €Xp — <Ya’Vb—a¢>'

The proof proceeds in two steps. First, we will condition with respect to the
o-field &, v &2, and second, with respect to &,. The key ingredient of the first
step is Proposition 4.3. For the second one, we shall need the next lemma.

LemMA 5.2. Leta > 0. For any f € C*, let (a,(a;, B;)), i € I, be the raw
excursions of f above level a, and let f;, i € I, be defined as in Section 4. Let
N'(dgdl) be the atomic measure on C* X R, defined by

Nf(dgdl) = Z 5(f,~,l,~)(dgdl),

i€l

where 1; = 12(f).
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The measure N’ is, under M,, independent of &, conditionally, given
12(f). Its conditional law is that of a Poisson measure with intensity

Yy <izcry n(dg) dl.

Proor. If &, is replaced by £, Lemma 5.2 becomes a standard result of
excursion theory of linear Brownian motion, whose proof uses the indepen-
dence of the excursions above and below a fixed level. In order to justify this
replacement, it is enough to show that N/ and &, are conditionally indepen-
dent given £°. However, the first assertion of Proposition 4.3 shows that the
conditional distribution under M, of weg/, given &°, is Qf "%, hence
depends only on f o 0(5). It follows that £° and &, are conditionally indepen-
dent given &°, which yields the desired result. O

We now complete the proof of Theorem 5.1.

First step: For every fe& C* there is only a finite number n = n(f) of
excursions of f above level a which hit 5. We denote by (a;, B;), j € {1,...,n},
the corresponding intervals and we set

fi(t) = f((aj +t) A Bj) -a, w;i(t)(u) = w((aj +t) A Bj)(a +u).
Then
M, (exp — (Y,, 9)|& V &)

= Q/(exp — (Y4, )l o)

e "(5))

= sz(exp - il fﬁjdslf( e(w(s)(d))
Jj=1"%

woa({:)).

- af (exp - ﬁl [ dutz e (f)e(w;()(b ~ @)
Pa

The first equality is checked by multiplying by test functions of the form
F(f)G(w ° g l,). The other two are straightforward consequences of the defini-
tions.

We then use Proposition 4.3 which implies that, under Q/, conditionally
given (w(a;Xa); j=1,...,n), the processes w; are independent, and are

independent of  °gf,. Furthermore, the conditional law of w; is Q,':J('aj)(a).

Since the variables w(a;Xa) are measurable functionals of w ° o/, (when f is
fixed), we obtain

M.(exp — (Y, |0 v &) = Jnl H(f;, o(a,)(a)),
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where
H(f,y) = @;(exp - [ (Fela(s)(5 ~ a))

= Qf(exp - <Yb—a( f’ ')’ ¢>)

Second step: We will now condition with respect to &,. We need the
following notation:

7f(u) = inf{t; 17(f) > u},

where by convention inf@ = 7(f). The (right-continuous) process wo 7/ is
&, -measurable. Indeed,

(0°Taf=a)°0'(£)°‘)’(,;),

where y/(u) = inf{t; A£([0, t]) > u} is & -measurable. Furthermore, for every
jefl,...,n},

o(a;) =we° Taf(lj),

where [; = lzj(f) = lgj(f).
Then

:

=Mz(exp [N"(dgdl)log(H(g, w>7{(1)))

M.(exp - T 18,) = | TTH( o) (@)

.
= exp — /:odlfn(dg)(l - H(g""°7af(l)))
= exp — [:dsl;‘(f)fn(dg)(l - H(g, 0(5)))

- e — (¥,(£,0), [n(dg)(1 - H(&. )

The only nontrivial equality is the third one. It follows from Lemma 5.2, the
exponential formulas for Poisson measures, and the fact that o 7/ is &,-mea-
surable.

The proof of Theorem 5.1 is now easily completed. Indeed, from the
definition of H, for any y € R¢,

[n(dg)(1 - H(g,y)) = [n(dg)QE(1 — exp — (¥, (g, ), )
=M,(1-exp —<Y,_,,9)). |

We denote by C,(R?,R.) the set of all bounded continuous functions from
R¢ into R,, equipped with the topology of uniform convergence.
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PrOPOSITION 5.3. Set Voo = ¢. Then (V,),. , is a semigroup of contractions
of Co(R%,R.). For any ¢ € C,(R% R.), the mapping (t,y) — V,¢(y) solves the
integral equation

Vip = Pp - 2fOtPt_s((Vs¢)2) ds.

Proor. It is easily seen from the definition that V,¢ € C,(R% R,) when-
ever ¢ € C,(R%,R,). Also

Vie(y) = M,(1 - exp — (Y, ¢)) < M,({Y,, ¢)) = P,o(¥),

which shows that V,¢ is a contraction of C,(R% R.). To get the semigroup
property, we fix u,v > 0, and, for any a > 0, we evaluate

E[exp - <Ya+u+v’ ‘P>|§a]
in two different ways, using Theorem 5.1. It follows that
<Ya’ Vv(Vu‘P)> =<(Y,,V,,, 0,
M, ae. for any y € R<. Integrating with respect to M, and letting a — 0, we
get

V.(V,e)(y) = Vuiruo(y)-

In order to get the integral equation satisfied by V,¢, we first assume that ¢
is uniformly Lipschitz, with Lipschitz constant C,. Let y,z € R? and T > 0.
Fix f e C*. We may perform the construction of Sections 3 and 4 simultane-
ously with the two starting points y, z, using the same Brownian motions B®
in Proposition 3.1. We get two processes (I'?) and (I'?) defined under a certain
probability measure P/, such that (I'?), respectively (I'?), is distributed accord-
ing to Q/, resp. @/, and, for every s > 0,

E/[suplly (2) - T2(o)l| < Kqly - 2]
t<T
where the constant K, does not depend on f nor on s, y, z. The point is that
for s € 7}, I'7,T7 are both solutions of (A) driven by the same Brownian
motion, with respective starting points y, z, and we use our assumptions on
the coefficients o, b. Then, for ¢t < T,

V() - Vip(2)
Jnanefess — { [* a1 etz 0)
—e — { [ Da(rz )|

< [n(df) [ a1 NE Ie(12(1) = o(TZ())]
< C‘PKTIy - z|.

Next we study the behavior of V,¢ as ¢t — 0. By Taylor’s expansion,
Vvt@(y) = My(l — €xp — <}7t’ ¢>) = My(<}7t, ¢>) - %My(<}7t, ¢>2) + R%D’
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where
0 < RYp < M,(<Y,, 9)%).
We have first
M, (Y, ¢)) = Po(y)-
Then

M,(<Y,, 0)*) = M,({Y,, 0())°) + My({Y 0 — ()Y (Vs 0(3)) + (Y, 0))).
Clearly,

M,((Y,, 0(3))") = 0(3)*M,((¥,, 1%) = 4t0(y)",
whereas, by the Cauchy-Schwarz inequality, \

My(<Yt’¢ - ‘P(y)>(<Yt’ ¢(y)> + <Y¢, ¢’>))

< (16tllg12) (M, (<Y, 0 — 0(0))) "

Then, if K is a Lipschitz constant for ¢,
M,((Y,, 0 = ¢(3))°)
< K2 [n(df) [ d,1i(F) [ doti QL (la(s)(8) =y lo(s) (1) =3
< CK?t?
for some constant C. Therefore,
M, (Y, 0)) = 4te(y)* + O(t*),

where the estimate for O(¢3/2) holds uniformly in y € R¢ and depends only on
a Lipschitz constant for ¢. Similarly,

Rie < M,(Y,,0)) < lol2M,((Y;, 1)) = 24lgllzt>.
Finally, we get

Vie(y) = Po(y) — 2te(y)® + O(t%?),

where the estimate O(¢3/2) holds uniformly in y € R¢ and depends only on
llllo and on a Lipschitz constant for ¢.

Next, since the functions V,¢, 0 < ¢ < T, are uniformly bounded and satisfy
a uniform Lipschitz condition, we have, for a fixed ¢ € (0, T'], for every n > 1,

‘/t(P(y) = Vt/n( . (‘/t/n(P))(y)

t
= Po(Vin-1/n®)(9) = 2~ (Ven-1e/n0) (9) + O((T/1)*")

t & 2 _
= t¢(y) - 2; Z P(n—i)/n("(i-—l)/n¢) (y) + O(n 1/2)
i=1
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by induction on n. The function (s, u) — P,(V,¢)%(y) is clearly bounded and
continuous [the continuity of u — V,¢(y) derives from that of the map
u - Y,(f,0) when u > 0, and at u = 0 it follows from the previous asymp-
totics]. Therefore, passing to the limit as n — « leads to

Vi = Pp — 2f0tPt_s((Vs<P)2) ds

The general case when ¢ is only bounded and continuous can be easily treated
using an approximation by suitable Lipschitz functions. We shall leave this
extension to the reader. O

Theorem 5.1 and Proposition 5.3 imply that, for every y € R?, the law of
(Y,, a = 0) under M, is the canonical measure of the superprocess associated
to the solution of equation (A) starting from y. We will make this more precise
by the following theorem, which shows how to construct the superprocess
from its canonical measure.

THEOREM 5.4. Let B be a finite measure on R? and let #(dzdfdw) be a
Poisson measure on R% X ® with intensity

n(dz) M, (dfdw).

Let Z = (Z,, t > 0) be the measure-valued process defined by Z, = . and, for
every t > 0, let

(20,9} = [H(dzdfdw)(Y( [, ), ).

Then Z is a superprocess associated with the solutions of equation (A).

Proor. Let 0<a;< - <a,=a<b, and ¢,,...,0,, ¥ € C,(R%R,).
We compute

[ { Z:: ap @i <Zb,¢>}]
- exp — [u(dz) [ Mz(dfdw)(l ~em{ - £ (0.0
e f,w),df>})
= exp — fp,(dz)sz(dfdw)(l - exP{— igll<Yai( frw), 0
~ f,w>,vb_.,¢>})

[ { Z <Za ’(Pl <Za’Vb—a¢>}],
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using Theorem 5.1. It follows that
Elexp — (Z,,y)|(Z,,0 <u <a)] =exp — (Z,,V,_¥>.
On the other hand,
Elexp — {Z,, ¢)]

- Elop - [ (dedfda)(Vi(f,0),0)

= exp — [u(dz) M (dfdw)(1 — e~ Tolhrne))

=exp — {u,V,p).

This suffices to show that the finite-dimensional marginals of Z coincide with
those of the superprocess started from w.

Let us prove that Z is continuous. For ¢ > 0, this is a consequence of the
continuity of ¢ — Y,(f, w). Then a simple martingale argument (details are left
to the reader) shows that lim, , , Z, exists almost surely, and hence is equal
tou. O

REMARK. Let us come back to the simple case described in the Introduc-
tion. In this case, the underlying diffusion process is d-dimensional Brownian
motion, and Q/(d w) may be described as the law of the Gaussian process with
covariance:

cov(w,, w,) = inf f(u).
[s, 2]

This description is special to the Gaussian case and does not extend to a more
general situation. On the other hand, in the case when the superprocess starts
from a Dirac measure, we may work with the law of reflected Brownian
motion, instead of the It6 measure of excursions: This gives us directly the
Poisson measure of excursions introduced in Theorem 5.4. These remarks
explain the differences between the results of this section and the presentation
given in the Introduction.

Let us briefly outline some consequences of our representation for the
superprocess. The arguments of the proof of Proposition 4.1 imply that,
M, (dfdw) a.e., the function (w(?), t > 0) satisfies a Holder condition of order
1/4 — ¢ for any £ > 0. It is also known that n(df) a.e. all the level sets of f
have dimension at most 1/2. It follows that, M (dfdw) a.e., for every ¢ > 0,
the set

{w(s); f(s) =t}
has Hausdorff dimension less than or equal to 2. But the latter set clearly
contains the topological support of Y,(f, ) (see Section 9 for more informa-
tion on this). We have thus proved that M (dfdw) a.e. the Hausdorff dimen-

sion of the support of Y,(f,w) is less than or equal to 2 for every ¢ > 0.
Obviously, the same property holds for the superprocess (Z,) of Theorem 5.4
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[see Perkins (1988, 1989a) for much more precise results in the case of
Brownian motion].

Let us now consider the range of (w(¢), ¢ > 0), whose dimension is, by the
previous remarks, less than or equal to 4. It is not hard to show that this range
coincides M, (dfdw) a.e. with the range of Y, defined as the closure of the
union of the topological supports of Y,(f, ) for ¢ € (0, ). It follows that the
range of Y has dimension less than or equal to 4. The same clearly holds for
the range of Z, defined as in Dawson, Iscoe and Perkins (1989) (again, much
more precise results may be found in the latter paper, at least in the case of
Brownian motion).

Finally, the previous identification implies trivially that the range of Y is
connected.

6. The historical process. We retain the notation and assumptions of
Theorem 5.4: u is a finite measure on R¢, and .#(dz df d w) denotes a Poisson
measure on R? X @ with intensity u(dz)M_ (dfdw). The .#(R%)-valued pro-
cess (Z,, t > 0) is defined by

(Z,,¢) = [H(dzdfdw) Y/ f,w), ¢)

= [H(dzdfd) [ d,1(Fe(w(s)()-

We now introduce a process (Z,, ¢ > 0) with values in .Z(C(R,, R?)) by setting
P = u (we identify a point z in R? with the constant function equal to z),
and, for ¢ > 0, for any bounded measurable functional F on .Z(C(R,,R?)),

(P F) = [H(dzdfdw) [ d,1i( ) F(a(s)).

The obvious relation

JZ(dx)e(x) = [(dv)e(¥(1))

shows that, for every ¢ > 0, Z, is the image measure of @, through the map
y — y(¢). The same arguments as for Z imply that the process 2, is continu-
ous. It is also clear by construction that the measure 2, is supported on the
set of functions constant after time ¢. Heuristically, if we interpret Z, as the
empirical measure associated with a system of “particles,” 2, is the corre-
sponding measure on the set of paths (stopped at time ¢) of these particles. To
make this more precise, we will use the classical approximation of (Z,) by
systems of branching diffusions, for which the associated measure on the path
space can be defined in a straightforward way.

We consider the standard binary branching diffusion process, which can be
informally described as follows. One studies the evolution, in space and time,
of a population of individuals (or particles). The individuals are located at time
0 according to a certain distribution. Then they move independently according
to the law of the solutions of equation (A). Each individual dies at an
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exponential time of fixed parameter (the lifetimes of the different individuals
are independent) and then gives rise to either zero or two new individuals,
with the same probability 1/2. The new individuals start from the final
position of their ‘“father,” and then move independently, and so on... .

We give a precise mathematical description of this model using the notion of
a marked tree as formalized in Neveu (1986). This formalism will also be
useful in Section 8. We set

K=\ {1,2}",
n=0

where by convention {1,2}° = {3}. An element k of K will be written & =
k, - k,, where k, -~ k, €{1,2}. We set |k| = n (by convention [3| = 0)
and, if |[k| > 1, weset k=Fk, -k, (k=01if [kl =1). For k=Fk; - k,
and h=h, - h,€K, we set hkk="h, --- h,k; --- k, (by convention
hd = oh = h). Finally, we write h < k' if there exists some k& € K such that
K = hk.

A (finite binary) tree is a finite subset x of K that satisfies the following
conditions: ;

(G) 9 € «;

(ii) % € k whenever k € k and |k| > 1;

(i) if £ =k, --- k, € k then either &, --- k 1€« k; --- k,2€ k or
ky -k, 1&EK ky - R, 2&K.

We denote by A the set of all (finite binary) trees. If k € A and %k € «, we
set v (k) = 1picg = lpzen:

We now introduce the notion of a marked tree. By definition, a marked tree
is a pair (k, 9), where « is a tree and 9 is a map from « into a given space E
(the space of marks). Here we take E = R, X C(R,,R?). The set of all marked
trees is denoted by (2, and an element of () will be written

w = (K’ (Tk’ l//k)kex)’
where « € A and, for every k € k, 7, € R, and ¢, € CR,,R?).
Finally, we need the translation operators T),. For any h € K, the mapping
T, is defined on the subset {h € «} of O by

Th((K,(Tk,‘//k)keK)) = (Kh’(Thk"/’hk)kEKh)’
where k;, = {k € K; hk € k} € A.
We fix a parameter « > 0.

PROPOSITION 6.1. There exists a unique measurable collection (A%, z € R?)
of probability measures on Q, such that the following two properties hold:

(i) For every z € R?, the random variables v,, 7, are independent under A%,
and A%[v, = 1] = A%[v, = 0] = 1/2 and T, is exponentially distributed with
mean a. The conditional law of ¥,, given (v, 7,), is that of a solution of (A),
started from z and stopped at time 7,.

(i) The conditional distribution under A%(dw) of the pair (T w, T,w), given
that v, = 1 and given (1, §,), is A . ® A .
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Proposition 6.1 can be proved using the general arguments outlined in
Neveu (1986), Section 5. See also Chauvin (1988) or Sznitman (1988) for
similar statements in slightly different situations.

We now use the measures A% to construct the binary branching diffusion
process that was informally described above, first in the situation when the
initial population consists of only one individual located at z. We need some
additional notation. For w = (k, (7, ¥;), < ,), for any h € k, we set

x(w) =Y 1, yu(w) =ax,(w) + 1,
k<h
k+h

and we define a function ¢,: R, - R? by setting
U (t — xp(w)), ifx,(w)<t<y,(w)and k<h,
ACE if ¢ > y,(w).

One easily checks that this definition is unambiguous, and that A% a.s., for
every h € k, the map &, belongs to C(R,,R?). For any ¢ > 0, the variables
£,(t), for all h € k such that x, <¢ <y,, represent the positions of the
particles alive at time ¢, whereas the functions (£,(s), 0 < s < t) represent the
paths followed by these particles (and before them by their ancestors) up to
time ¢.

The associated “empirical measures” are defined by

Z(w)= Y 8- Aty U(w) = hz Oty
€k

hex
X, <t<yp xp<t<yp

so that U, takes values in .#(R?) and, A% a.s., Z,(w) € .#(C(R,, R?)) for every
t>0.

Let us now turn to the case when the initial distribution is random. Let 7
be a finite measure on R? and let N;(dzdw) be a Poisson measure on R? X Q
with intensity

&n(t) =

n(dz) A%(dw).
We then set

gre = [Na(dzdw)2(w),  Zp< = [Ne(dzdw)Uw).

(P and Z»* both depend on the choice of N but their law is uniquely
determined.) )

THEOREM 6.2. As a — 0, the laws of (2a2}/%*2/% t > 0) converge, in the
sense of weak convergence of the finite-dimensional marginals, toward the law

of (2, ¢t=0).

REMARK. Theorem 6.2 implies that the laws of (2aZ#/2*%/2 ¢ > 0) con-
verge toward that of (Z,, ¢ > 0). But the latter convergence is nothing but (a
special case of) the classical approximation result for superprocesses. We will
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prove Theorem 6.2 independently of the results of Section 5. This provides an
alternative proof of Theorem 5.4, together with a rigorous justification of the
informal considerations of the beginning of this section.

Proor. We will show that, on the same probability space where 2 is
defined, there exists a collection of processes 2®, such that for every a > 0,
)
(28, t 2 0) = (228722, t 2 0)
and such that for every ¢ > 0,
hm Q(“) =2, as.

Until the last few lines of the proof we work with a fixed & > 0. We will
construct the process 2 and check that it has the desired distribution. For
any f € C*, set

Ef = {e €E;; h(e) > a}.
Obviously, Ef is a finite set. For (f,w) € ©® and ¢ > 0, define
%(a)(f w) = Z l[x(e) y(e)— a)(t)5w(a(t e, )’

eef

where a(¢, e, f) € [0, 7(f)) is the initial time of the raw excursion above level ¢
that represents e in E,. If we fix f € C*, the distribution of (Z{(f, w),
¢t > 0) under Q/(dw) commdes with that of

r Lixey, yeor- a)(t)axeu), t> 0)
eckE f

where the processes X¢ are as in Proposition 3.1.
Set n (df) = n(dflsup f(s) > a) (n, is a probability measure) and

M:(dfdw) = n (df)Q[(dw).

Our first goal is to check that the distribution of the process (Z{*( f, w)) under
M:(dfdw) coincides with that of (%, (w)) under A%/?(dw). To this end, we
shall need the so-called decomposition of the Brownian excursion at its deepest
a-minimum [Neveu and Pitman (1989b)].

We first introduce some notation. For f € C* such that sup f(s) > a, we let

V(F) = {1, if Card(Eg) > 1,

0, otherwise.
If v(f) = 1, we may define £(f) € (0, x) by imposing
Card(Ef N {e; x(e) <£(f)}) =
Card(Ef N {e; x(e) <£(f)}) =
Clearly, £(f) is a local minimum of f. We denote by A(f) the corresponding
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time. Finally, if »(f) = 0, we set £(f) = sup f(s) — a, and we let A(f) be the
time of the maximum of f.

THEOREM 6.3 [Neveu and Pitman (1989b)]l. The random variables
v(f), é(f) are independent under n (df ). Furthermore,

@ n,(f)=D=n,(f)=0=1/2
(i) £€(f) is exponentially distributed with mean «/2;
(iii) let

T,(f) = sup{t <A(f); f(¢) = £(f)},
L,(f) = inf{t > A(f); f(2) = £&()};
then, conditionally given that v(f) = 1, the functions
fi(t) = F((Te( F) + t) AX(F)) — £(F),
fa(t) = F((A(F) + ) AL(f)) = (),

are independent and independent of £(f); their conditional distribution is n,.

We now define a mapping &#: ® — Q. For every (f,w) € 0, #(f,w) =w
satisfies the following properties. First,

T(w) = &(f),
Po(w) = o(A(f)),
vy(w) =v(f).

Then, on {v(f) = 1} = {y,(w) = 1}, the translated trees T ,w, Tow are such that
T(H(f,w)) = Z(f1,®1),
To(H(f,0)) = #(f2 w2),
where f,, f, are as in Lemma 6.3, and
w(t)(u) = w((Tf( f)+et)a A(f))(g( f)+u),

wa(8)(#) = o((A(f) + 1) AL ())(E(f) +u)

with the notation of Lemma 6.3. Arguing by induction on Card(E?), one easily
checks that the mapping &% is well defined, measurable and uniquely charac-
terized by the previous properties.

LEMMA 6.4. For every z € R%, #(M2) = A%/2.

Proor. Except for the spatial motion along the branches of the tree, this is
the Neveu-Pitman theorem on the branching tree in a Brownian excursion
[see Neveu and Pitman (1989a, b)]. We check that -# (M) satisfies properties
(i) and (ii) of Proposition 6.1. Property (i) follows from Lemma 6.3 and the fact
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that, conditionally given f, ¢,(F#(f, w)) = w(A(f)) is distributed as a solution
of (A), stopped at time £(f) = 7,(H#(f, »)). To prove property (ii), we observe
that, on {v(HF(f, w)) = 1},

T(H(f,0)) = Z(fi @),

by construction, and we use property (iii) of Lemma 6.3 together with Proposi-
tion 4.3. We get that, conditionally on v(f) = 1, conditionally given £(f) =
1(H(f, w)) and w(A(f)) = V,(H(f, »)), the pairs (f}, w;),(f5, ®,) are inde-
pendent and distributed according to Mg, fye ) The desired result follows.

O

We complete the proof of Theorem 6.2. We first observe that, for every
(f, w) € O, such that sup f(s) > a, for every ¢ > 0,

(*) U, 0) = (H(f,0)).
Indeed, we first notice that
2 f,w) = Soincrix-ney I E<E(S),

which leads to the desired equality if Card{E¢) = 1. In the general case, we
argue by induction on Card(E¢), observing that if v(f)=1,

U+ [o0) = ZO(f1,01) + % fr 02),
%ﬁ(f)ﬂ(%( fiw)) = %t(%ﬂ( fh“’l)) + %t(%ﬂ( f2’w2))'
We then set

P = [H(dedfdw) Z(f,0) = [H(dzdfde) ([, w),

where .#, denotes the restriction of .#" to {sup f(s) > a}. Note that .#, is a
Poisson measure with intensity (2a)~ 'u(dz) M2(df d »). It follows from Lemma
6.4 and the identity () that 2 and 2a2*/%**/2 are identically distributed.

It remains to prove that, for every ¢ > 0, 2{ converges almost surely to 2,
as @ — 0. Let F' be a bounded continuous functional on C(R,,CR,, R%)).
Then

(980, F) = 2a [ H(dzdfdw)(Z(f,w), F)

= 2a [ A (dzdfdw) T e ye-ult) F(o(a(t,e, £))).

ee,

However, from the well-known approximation of Brownian local time by
upcrossing numbers, we know that for any ¢ > 0,

hm 2a E l[x(e) y(e)— a)(t)aa(t e, f)(ds) dsli( f)’

a—0
ecEf
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n(df) a.e., in the sense of weak convergence of measures. It follows that for
t>0,as.,

lim (94, F) = f,/V(dzdfdw)]:dslg(f)F(w(s)) — (9, F).
The case ¢ = 0 is simpler and will be left to the reader. O

ReEMARK. Using a suitable tightness criterion for measure-valued processes
[see Roelly-Coppoletta (1986)], it is not hard to check that the convergence of
Theorem 6.2 holds in the sense of weak convergence of probability measures
on D([0, ), #(C(R,, R%)).

7. Some properties of the historical process. Our goal in this section
is to establish two important properties of the historical process and to stress
the connection between these properties and analogous results of excursion
theory. We will often use the ‘“‘canonical process” associated with 2,, which is
the .#(C(R,, R?))-valued process (%}, ¢ > 0) defined on © by

(Z(f,0), F) = [dIL(FIF(a(s)).

We recall that for a > 0, z € R?, MX(dfdw) = n(df)Q/(dw), where
n(df) = n(dflsup f(s) > a).

Our first result gives the (inhomogeneous) Markov property of the historical
process, together with an explicit description of its transition kernel. We first
need some notation. Let y € C(R,,R?), u > 0 and {(dy') a measure belonging
to #(C(R,,R%)) supported on {y'; y'(0) = y(u)}. We denote by vy ¢ { the image
measure of {(dy’) by the mapping y' — vy ¢ y', where

, {'y(t), ift<u,
Y.V = , .
u Y(t—-u), ift>u.

THEOREM 7.1. Let 0 <a <b. Then

Na,b
Py = E Yig@(i),
i=1
where:

(D) conditionally with respect to 0(2,, 0 < s < a), the measure

Na,b
¥,
i=1
is a Poisson measure on C(R,,R?), with intensity (1/2(b — a)Z,;

(i) conditionally given N,, and (y,...,vn, ), the random measures
Zay -5 YUn,,y € #(CR,, R?)) are independent and independent of
0(Z,, 0 < s < a); the conditional distribution of %(;, is the law of %,_,
under Mf(‘cg
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Proor. If a = 0, the result of Theorem 7.1 follows from our construction
of 2. Suppose a > 0; it is enough to prove the result of the theorem with
Sur Py replaced by 2, %, the o-field 0(2,, 0 < s < a) replaced by &, the
underlying probability measure being M? (for some z € R%). But then the
desired result follows from the arguments developed in Section 5. For (f, w) €
0, N, , = N, ,(f) is simply the number of excursions of f above level a that
reach level b. If (a;, B;) are the corresponding time intervals, we may take
v; = w(a;) = w(B;). Furthermore, in the notation of Lemma 5.2, we have

Yy = %ol i, 0;),
where
w(t)(u) = o((a; +t) AB;)(a+u).
Details are left to the reader. O

REMARK. The intuitive meaning of Theorem 7.1 is as follows. There is only
a finite number N, , of individuals alive at time a which have descendants
alive at time b. The paths of these individuals up to time a are the y,’s. The
measure ¥, is obtained by sticking together each path y, and the paths
between a and b of the corresponding descendants (these paths are repre-
sented by 2(;,) and then summing over i.

Theorem 7.1 is related to the structure of excursions above a fixed level a.
The proof of the next result involves considering the excursions of a Brownian
motion above its minimum process. This theorem identifies the Palm measure
associated with the historical process taken at a fixed time a > 0. This is a
special case of a result proved in Dawson and Perkins (1989).

THEOREM 7.2. Let F be a nonnegative measurable functional on
CR,,RY) X #(CR,,R?). Then, for everya > 0, z € R?,

M [N F(r %)) = [ 7o BBy, [H(dsdrdwrys 2, (1,0)]]

where:

() #,°(dy) denotes the law on C(R,,R?) of a solution of (A), started from
z and stopped at time a;

(ii) for every y € CR,,R?), #,(dsdfdw) is a Poisson measure on [0,a) X
©, with intensity 4 ds n(df)Qf ,(dw).

Proor. Notice that Z,__(f, w) = 0if sup f(u) < a — s. Therefore, we may
as well require that the intensity of .#/(ds dfdw) be

4- 1(sup f(w)=a-s) dsn(df)Q;(s)(dw).

We will use the following simple fact about the measure n(df). For every
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fe CR,,R,)and s > 0, define f,, /. € CR,,R,) by

fw) =f(s +u),  fu(u) =f((s —u).).

Then for any nonnegative measurable functional G on C(R,,R,)?

[r(df) [d12(FG(F £) = o © 71a(G),

where 7, denotes the law of linear Brownian motion started at ¢ and stopped
at its first hitting time of 0. The easy proof is left to the reader.
By construction,

M( [2(dn)F(v. %)) = [n(df) [Qf(dw) [ 4,131 F(a(s), (. 0))
To begin with, we fix f€ C* such that sup f(s) > a, and s > 0 such that
f(s) = a. We consider all intervals (a, 8), such that:

(i) (a, B) is an excursion interval of f contained in (0, s) or in (s, +®);
(i) sup, g, f(u) = a;
(i) if a > s, inf, ,, f(w) = f(a), if a <s, infz ) f(u) = f(a).

It is clear that there are at most countably many such intervals and that they
are disjoint. We denote them by (a;, B;); ;- Furthermore, n(df) a.s. the
measure d () coincides with

P l(a,-,;si)(s) dls(f).
Finally, for every i € I we set
fi(u) = f((e; +u) AB;) — f(e;).

Proposition 4.3 and an induction argument imply that under Q/(dw), the
processes

(o((a; +u) AB)(fa;) + ), u = 0)

are conditionally independent given w(s). Furthermore, their conditional law
is QfF o

It follows that under Q/(dw), conditionally given w(s), the law of Z/(f, »)
coincides with that of

§) o Z_ o w;
Z“’( )f(ai) o f(a,)(f w;)

i
under

[TQLx rapp(d ).
1
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Then, using the fact that the law of w(s) under Q/(dw) is #,%(dy),

M [ 20 F(, %)
= [n(df) [al(de) [ d.ii(f) [ TTQLuxsap(de)
xFlo(s), a(s) o %o fir o)
= [#eo(dy) [n(dh) [ duti(F) [ T10fap(der)

XF(%ZY °
i fla)

@,

Za—rea( fi> “’i))‘

At this point we use the simple fact recalled at the beginning of the proof. We
get .

M [ 2dn P, 2,))
= f%a(dY)fﬁa(dg)ﬁa(dh) lj[@ﬁ"g(a;»(d“"i) I;I@;th(a;»(dw}")

XF(%Z’Y °
i &)

aj

@a—g(a'i)(gi’ w’z) + Z 'Yh("”)%—h(ag)(hj’ w.’} )
J A

In the previous formula,
gi(u) =g((a; +u) AB),  hi(u) =h((B]—u) V),
the intervals (a/, B;) are all excursion intervals of g such that
sup g(u) 2a,  inf g(u) =g(a))
(o, B) [0, &}]

(in other words, these are the excursion intervals of g, above its minimum
function, corresponding to excursions reaching a) and the intervals («, B7)
are defined similarly by replacing g with A.

To complete the proof, it suffices to note that, by the famous Lévy theorem
on the supremum of linear Brownian motion and standard facts of excursion
theory, the law under 7 ,(dg) of the measure

Z S(g(ai), )
l

is that of a Poisson measure with intensity
2-1 dsn(dg). a

(sup g(u)>a—s)

REMARK. Let us briefly explain Theorem 7.2. The path y of a given
“typical particle” alive at time a is distributed according to #,°. Each term
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y 2%, _,(f, w) represents the contribution of those particles that have the same
ancestors as the given one, up to time s (the ‘“‘cousins’ at level s). See Dawson
and Perkins (1989) for applications of this result.

8. A description of the measure at a fixed time. Our goal in this
section is to give a description of the distribution of %;, hence in particular of
that of Y,, for a fixed time a > 0. We will use a tree model similar to the one
introduced in Section 6, except that we now restrict our attention to the
infinite binary tree, represented by

K= 90{1,2}”.

As previously we will mark elements of K with elements of R, X C(R,, R?).
Our canonical space is therefore

o = (R, xC(R,,R%))"
and an element of ' is denoted by

w = (74 V) pek-

The translation operators T, & € K, are then defined in an obvious way, as in
Section 6. The next result is similar to Proposition 6.1.

ProposITION 8.1. There exists a unique measurable collection (A%, a > 0,
z € R?) of probability measures on ' such that the following properties hold:

(1) Under A%, 1, is uniformly distributed over [0,al, and, conditionally
given 1, i, is distributed as a solution of (A) starting from z, stopped at
time ,.

(ii) Under A%, conditionally given (r,, ,), the translated trees T,w, T,w are

a

independent and follow the law A% 7.

The meaning of the probability measure A% is as follows. Under A%, the
length 7, of the first branch (the ancestor) is uniformly distributed over [0, a].
The lengths 7,,7, of its immediate descendants are, conditionally given ,,
independent and uniformly distributed over [0, a — 7,], and so on. The marks
¢, are obtained by running solutions of (A) along the branches of the tree,
starting from z for the ancestor.

We now set

K. ={1,2)",
where N* = N — {0}. For &, = k,k, - €K, and n € N, we set
[koo]n =kiky - k.

For k € K, we write k < k,, if & =[k,], for some n € N. Finally, for w €
and k € K, we define x,(w), y,(w) and £,(w) as in Section 6.
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THEOREM 8.2. (i) With A% probability 1, the limit
lm £, = &,

exists for every k. € K_, and the convergence is uniform.
(ii) With A% probability 1, there exists a unique measure ¥ on K., such
that for every h € K,

A((kos b <ko}) = lim2e ¥ 1y camecyy:
Yok

(iii) The distribution under A, of the random measure

[ do(k.)s,,
coincides with that of 2, under M.

Let us briefly discuss some consequences of Theorem 8.2. Starting from a
marked tree which follows the law A%, the compact set {¢,(a); k., € K} is the
limit set of {,(0); |k| > n} as n — . This set is distributed as the support of
Y, under MZ. If we now want to get a set distributed as the support of the
superprocess at time a, it suffices to take the union of a Poisson number of
independent copies of this set. In order to recover the measure itself (not only
its support), one constructs a measure on K. This measure is not the natural
product measure. It is constructed as the limit of the (suitably normalized)
counting measures on the branches of the tree at level a — &.

COROLLARY 8.3. With the notation of Theorem 8.2, for any ¢ € C,(R%,R,),
1 a
Vib(2) = 5051 - e - [ a9 (k)(6(a)))-

The corollary follows at once from the previous theorem, since we know
that

1
V,b(z) = M,(1 — exp — (Y,,¢)) = %M:(l —exp — f%(de(v(a)))-

The proof of Theorem 8.2 requires some notation and preliminary lemmas.
To begin with, we fix fe C* such that sup f(s) > a. It is convenient to
assume that f has no point of increase or point of decrease on (0, 7(f)) and
that a is not a local maximum of f. Notice that these assumptions are
satisfied n,(df) a.s. We introduce a collection ((af(f), Bs(f)), k € K) of
subintervals of (0, 7( f)), such that

(ai(£), Bi(f)) < (ai(f), BR(f)) ifh <k.
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We start with af = 0, B¢ = 7(f). Then we set
T,(f) = inf{u = 0; f(u) = a},
L(f) =sup{u 2 0; f(u) = a},

m = inf u).
o( 1) [Ta(f),La(f)]f( )

Notice that m,(f) < a [otherwise T,(f) would be a point of increase of f]. We
define

af(f) = sup{u < T(f); f(u) = m,(f)},
Bs(f) = influ > L,(f); f(u) = mo(f)},

and we let a3(f)=pB{(f) be the unique ¢ < (T, (f),L,(f)) such that
f@) = m(f). Observe that (m,(f),(af(f),Bs(f)) and (m(f),(as(f),
3(f)) are two raw excursions of f which hit level a.
We continue by induction as follows. We let

fi(w) = f((ef(f) +u) ABI(f)) = mu(f),

fo(u) = f((az(f) +u) ABS(f)) = mu(f).

Note that f,, f, satisfy the same assumptions as f, with a replaced by
a — mf). In particular, sup fi(s) >a — m(f) because a is not a local
maximum of f. The collection ((af(f), B#(f)), k € K) can then be uniquely
defined by induction, for all @ > 0 and all suitable functions f, in such a way
that, for every h € K, for i = 1, 2,

afu(f) = af(f) +ai "™ D(f),
Bi(f) =ai(f) + By ™“P(f,).
Moreover, for every ¢ € (0, a], the number

Y Lipacrncane < fat(F)
heK

is exactly the number of excursions of f above level a — ¢ that hit a (or
equivalently the number of upcrossings of f from a — ¢ to a).
LemMA 8.4. Under the probability measure n (df ),

() m(f) is uniformly distributed over [0, al;
(ii) conditionally given m (f) = m, f,, f, are independent and follow the
lawn,_,.

Proor. This is essentially a consequence of the Williams decomposition
theorems for Brownian paths; see Le Gall (1989b) for a detailed proof. O

For every k € K, we now set

2 (f) = F(ai(f)) = f(ak(f))
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and, for w € C[R,, C(R,, R?)), we define ¢2(f, ») € C(R,,R?) by
Ye(fr0) () = w(af(£))(F(az(f)) +u).
LemMA 8.5. Under the probability measure M2(df d w), the collection
(TR (£), ¥R (f, ©))rex

is distributed according to A%.

Proor. We check properties (i) and (ii) of Proposition 8.1. Property (i) is
clear using Lemma 8.4 and the fact that, conditionally given 7#(f) = m (f),
w(af(f)) is distributed as a solution of (A) stopped at time f(a$(f)) = r2(f).

Next we investigate the joint distribution under M2(dfdw) of

(T?k(f)ﬂ/’fk( f’w))keK’ (7gk( f)"l’gk( f1w))keK'

The key observation is that, for i = 1, 2,
m5W(F) =7 D(f),  5(fre) = g D(f;, @;),
where w,, w, are defined by
w;()(u) = o((af(f) + ) ABI(f))(mu(f) +u).
It follows from Proposition 4.3 and Lemma 8.4 that, conditionally given
(m3(f), 45 (f, w), the pairs (f}, wy),(f,, w,) are independent and identically
distributed according to the law
S PR £
This gives property (ii) of Theorem 8.1. O

Proor or THEOREM 8.2. By Lemma 8.5, it is enough to prove the state-
ments of Theorem 8.2 for the marked tree

w=w(f,w) = (Tg(f)1¢lg(f’w))keK’

under the probability law M2(dfd ). For simplicity, we now drop the super-
script @ in the notation. Notice that for every k € K, :

xp(w) =f(01k( f))’ (w) = f(akl( f)): &(w) = “’(O‘k1( f))~
Then for any h € K,

Z l(xksa—e <)
h<k

is exactly the number of upcrossings of f from a — ¢ to a, during the time
interval [a,(f), B,(f)l. It follows that, n (df) a.s.,

lim 2*3th l(xksa—e <¥r) = lgh( f) - lzh( f)
<

-0
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We can define a measure ¢ on K, by setting

This proves property (ii).
Next for every k, € K, the sequence (o; k.3, is increasing. We denote by a;,_
its limit. Note that f(a, ) = a, and that by the continuity of o,

lim §[keo]n lim o (a[kw]n ) w ( akw) .
1
n-—o n-—o

The latter convergence holds simultaneously for all &, € K, thus proving (i)
(the uniformity follows from the uniform continuity of ).

To complete the proof, we need to show that for all nonnegative measurable
functions ® on CR,, C(R,, R?)),

Jdd2(£)®(a(s)) = [ d(k)D(a(ay)).
For every s € f " a), let k.(s) € K,, be defined by the conditions ‘

Uhgo)l, = 8 < Birsy,

for every n € N. By construction, & coincides with the measure

[de(£)s.(s)

(both measures take the same value on cylinders). It follows that

Jdo(k)®(w(er)) = [ d12(F)D(0(ah))-

However, it is easy to check that w(a,,) = w(s) for every s such that
f(s) = a. Indeed, a,_,, = s except if s is the right end of an excursion interval
above a, in which case «,_(,, is the corresponding left end, and we still have
the desired equality. This completes the proof. O

REMARKS. Theorem 8.2 (iii) and Theorem 7.2 imply that for any nonnega-
tive measurable functional F on C(R,,R?) X .Z(C(R,, R?)),

s jeos(o forcion, )

= [%a(dy)E[F(y,[./tg(dsdfdw)vg%_s(f, w))],

where we have used the notation of Theorem 7.2. In particular, for any
y € CR,,R?), #,(dsdfdw) is a Poisson measure with intensity

4dsn(df)Q/,(dw).

()

Now let 6 be any deterministic probability measure on K,. It is not hard to
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check that
A‘;(fdo(kw)F(gkm, [di‘}(km)Sgkw))

= [%a(dy)E[F(y,[th’(dsdfdw)vg%_s( f,w))],

where .#]'(ds df dw) is now a Poisson measure with intensity
2dsn(df)Qf,(dw).

v(s)

The point is that if x; >x,> - >x, > --+ is a Poisson distribution of
points on (0,1), with intensity ds/s, then x; is uniformly distributed over
(0,1), x, is uniformly distributed over (0, x;) and so on. Notice the difference
between the factors 4 and 2; such phenomena are common in the study of
Palm measures.

9. An application. Let Z = (Z,, t > 0) be as in Theorem 5.4, Even if u is
not compactly supported, it readily follows from our construction that, a.s. for
every t > 0, the (topological) support of Z, is compact. We denote by ./, this
support. The goal of this section is to investigate the continuity properties of
the mapping ¢ — ./}, which takes values in the set of compact subsets of R?,
equipped with the Hausdorff metric.

Some of our results require the following assumptions.

(Al) Let P(¢,y,dz) be the transition kernel of solutions of equation (A). For
every t > 0, y € R?, the kernel P(t,y, dz) is absolutely continuous with
respect to Lebesgue measure.

(A2) For every z € R?, t > 0, the Lebesgue measure of the support of Y,(f, »)
is 0, M, (dfdw) as.

As we have already observed in Section 5, assumption (A2) holds automatically
if d > 3. It also holds for two-dimensional Brownian motion [see Perkins
(1989)]. The following theorem is essentially due to Perkins (1990).

THEOREM 9.1. (i) The mapping t — #, is a.s. right continuous with left
limits on (0,). Let D denote the (countable) set of its discontinuities. Then,
a.s. for everyt € D,

SH= */; > {zt}

for some z, € R°.
(ii) Under assumptions (A1) and (A2) the set {(t, z,), t € D} is dense in

U0 x -

£>0
Here A denotes the closure of the set A.

REMARKS. (i) Discontinuities of the support process correspond to local
extinctions of the “clusters” of the population. The first part of the theorem
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shows that, at every discontinuity point, exactly one cluster disappears. In our
approach, this result will be seen to be equivalent to the fact that the local
maxima of a linear Brownian motion are distinct.

(i) When u is compactly supported, it is not hard to check that the map
t — ./, is also right continuous at ¢ = 0.

ProoF. With the notation of Theorem 5.4, we may write
M(dzdfdw) = Y 8, ;. o (dzdf d),
iel

where I is a countable set of indices. With probability 1, the local maxima of
the functions f; are distinct. For every ¢t > 0, i € I, set

Li={s20; fi(s) = ¢},

Li={s = 0; f,(s) =t,and s is not a time of local maximum of £;},

Li={s = 0; f,(s) =t, and s is not a time of local minimum of f;}.

LEMMA 9.2. A.s. for everyt > 0,

= U {os)(t);s € Li} = U wi(Li)(2).

iel iel

Proor. We first notice that for every ¢ > 0 there is only a finite number of
indices i such that L} # <. It follows that the sets

UeLi)(®), U aei(Li)2)
iel iel
are closed. By construction, Z, is supported on
U w:(Li)(2).
iel
However, since each of the measures d li(f;) attributes no mass to a single
point, it is clear that Z, is also supported on
U @i(Li)(2).
iel
Next, if z belongs to the latter set, we may find i €I and s, such that
f(s) =t, w(sXt) = z and s is not a time of local maximum of f;. Assume first

that s is not a time of local minimum of f;. Then from well-known properties
of Brownian local times, we have, for every ¢ > 0,

Leve( ;) —1oo(fi) > 0.
By the continuity of w;, this implies that z € .. If s is a local minimum of f;,
we simply replace s by s’ = sup{u < s; f:(u) = f,(s)}, observing that w,(s) =
w,(s").
A careful examination of the previous arguments shows that they hold for
every ¢ > 0 simultaneously. The point is that n(df) a.e. for every s € (0, 7(f)),
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either s is a time of local extremum of f or s is a time of increase of I /®(f).
This completes the proof of the lemma. O

We now complete the proof of part (i) of Theorem 9.1. Elementary argu-
ments show that the map ¢ — L‘ is right continuous with left limits, and that
the left limit at ¢ is lf‘ By the continuity of the w,’s, it follows that the map
t - ./, shares the same properties, and that its left limit at ¢ is

S-=Uoe (L‘)(t)—U w0, (Li)(2),

iel

where for the second equality we use the same argument as in the proof of the
previous lemma. '
For every i € I, let D' be the set of all local maxima of f;. Set

D,= | D
iel
Clearly, ./} = ‘/}_ if ¢ & D,. Next, if ¢ € D, we may find i € I, and s, > 0
such that ¢ is a local maximum of f; attained at s, Notice that with
probability 1, i and s, are unique for every ¢ € D,. It then follows from the
previous equalities that

S= A U {oi(s) ()}

This completes the proof of property @).
We turn to property (ii). We first observe that

U (8} x = U {(£i(s), 0,(s)(fi(5))); s > O}

t>0 iel

We will prove that, under assumptions (A1) and (A2), D = D,, a.s. Since a.s.
for every i € I, the set {(s,, t); t € D'} is dense in the graph of f;, this suffices
to get the desired result.

We argue as follows. Let ¢ € D’ and s, as above. First, using assumptions
(A1) and (A2) and the explicit knowledge of the conditional law of w,(s,) given
f i» We get

wi(s)(t) & U o,(Li)(1).
J#i
The point is that, conditionally given (f;, i € I), the ,’s are independent and
the sets w,(L/Xt) have Lebesgue measure 0 [by (A2)] whereas the law of
w;(s,)(2) is absolutely continuous with respect to Lebesgue measure [by (A1)].

Now choose 6 > 0 and let (ai, 8.) be the excursion intervals of f; above
level t — 8. Let %, be such that s, € (a}, B;,)- We argue as in the proof of
Theorem 5.1, taking a =t — 8 and b =t¢. If we condition with respect to
& sV &% (with an obvious notation) and use again assumptions (A1) and
(A2), we obtain

wi(s)(8) & U {0i(s)(t); s € F7(2) 0 (ak, BL)}-

k+kg



1438 J.-F. LE GALL

If 6 is sufficiently small, this shows that
w;(5,)(2) & o;( Li)(2).

Therefore, we conclude that ¢ is a discontinuity point of 7. O
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