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REACTION-DIFFUSION EQUATIONS WITH RANDOMLY
PERTURBED BOUNDARY CONDITIONS

By MaRK I. FREIDLIN! AND ALEXANDER D. WENTZELL?

University of Maryland and Moscow State University

We consider semilinear parabolic PDE’s with fast oscillating boundary
conditions. The central limit theorem and limit theorems for probabilities
of large deviations for the solutions of such problems are proved.

1. Introduction. Let n be a positive integer. Consider a system of reac-
tion—diffusion (RD) equations:

du,(t, x) &Bzuk(t,x)

(1) at = 9 axz +fk(x;u1"-"un), |x| <1,t>0,
du,(t, x)
u,(0,x) = g,(x), _— =0, k=1,...,n.
ax x=+1 .
Here D, are positive constants. We assume that the nonlinear terms
fulx,u,...,u,) are Lipschitz continuous and that initial functions g,(x) are
continuous. The system (1) defines a semiflow u, = (u{(t,-),...,u (¢, *)) in

the space C;_, ;) of continuous functions on [—1, 1] with values in R". This
semiflow can have a rather rich set of w-limit behaviors (limit behaviors for
t — ). In particular, it can have several stationary points or solutions which
are periodic in ¢. In the case of one equation (n = 1) under some minor
additional assumptions the stable and unstable stationary points exhaust all
possible w-limit sets.

If the system (1) is subjected to small (of intensity ¢ < 1) random perturba-
tions, the solution u§ = (ui(z, - ),..., us(s, - ), if such a solution exists, will be
a random process in a proper functional space. As in the finite-dimensional
case, the question of describing the deviations of u from u, arises when ¢ is
small. There are several problems connected with these deviations. First, we
are interested in the convergence u% to the nonperturbed semiflow u, when
€ 0. This is a law of large numbers type result. The second class of problems
concerns normal deviations of u§ from u, in the corresponding functional
space. One can choose the normalizing coefficient A(¢) in such a way that the
normalized deviations
we(t, x) = u®(t,x) —u(t,x)

A(e)
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964 M. I. FREIDLIN AND A. D. WENTZELL

converge to a nondegenerate Gaussian field w(¢, x) when ¢ | 0. This is a result
of the central limit theorem type.

The deviations of u§ from u, of order 1 when ¢ |0 are described by the
limit theorems for large deviations. As in the case of finite-dimensional dynam-
ical systems, such deviations define the behavior of the perturbed system on
very large time intervals. The limit theorems for the probabilities of the
deviations of order 1 define the behavior of the invariant measures of the
perturbed system when ¢ 0, as well as the transitions between different
stable stationary points of the semiflow u, and the main term of the time of
exit from a neighborhood of a stable point.

If we are interested in the exit problem from a neighborhood of order A,(¢),
lim, ,A(e) = 0, of a stable stationary point of the semiflow u, and
A(e)A 7Y (e) » » when ¢ | 0, where A ~(¢) is the normalizing coefficient in the
central limit theorem, we need the limit theorem for large but not very large
deviations [of order A,(¢)]. The probabilities of such deviations also tend to 0
when ¢ | 0, but not so fast as for the deviations of order 1.

Of course, all these limit theorems depend on the kind of perturbations
which are considered. There are many more possibilities for introduction of
the perturbations in the case of PDEs than in the case of finite-dimensional
dynamical systems. There exist several papers where small random perturba-
tions of the equations (1) are considered: In [2], [3], [7] and [8] the large
deviations of order 1 are studied; results of central limit theorem type are
considered in [6].

Here we consider the perturbations of the boundary conditions. We restrict
ourselves, for brevity, to the case of one equation, though most of the results
can be proved for the systems.

Consider the following problem:

du(t,x) D d%u(¢,x)
& 2 ox®
du(t, x)
x

+ f(x,u®), |x| <1,t>0,
(2)

W ifi(é), u®(0,x) = g(x).

x=

We assume that the function f is Lipschitz continuous with continuous
derivative in u, and |f(x,u)| < A + L|u| for some constants A and L. The
process (£, (2), £_(2)) we suppose to be stationary with mean 0 and correlation
matrix

(K++(7) K+—(7))
K (1) K (7))

We assume that this process satisfies some mixing properties, at least that

t+T

1
(3) hm-fft £.(s)ds=0

T > x

for any ¢ > 0, the limit being in probability. This is true if K, ,(¢), K__(t) > 0
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when ¢ — «. Later on we shall introduce stronger assumptions on the mixing
properties. :

If (3) is fulfilled, one can consider problem (2) as a small, in the average
sense, perturbation of the problem

du(t,x) D d%u(t,x)
a2 ox?

+f(x,u), t>0,|x| <1,
(4)
du(t,x)
dx

=0, u(0,x) =g(x).

lx|=1
We assume for simplicity that there exists a constant C < = such that
P(l¢,(®) < C} = 1.

TuEOREM 1. Forany T > 0,48 > 0,

limP{ sup |u®(¢,x) — u(t,x)l > 8} =0.
el0 \o<t<T
lxl<1

Proor. Denote by p(r, x, y) the transition density for the diffusion process
corresponding to the operator (D /2)d?/dx? in the interval [— 1, 1] and having
reflection at the ends of the interval:

o] [ ]
1 Z e—(y—x—4k)2/2D‘r+ Z e—(y+x+4k+2)2/2D1'

5) p(r,x,y) = V2nDr M

Introduce the random field

k= —w

1 | t
(6) w(t,®) = [ p(t,x,0)8(x)dy+ L [p(t=s,2, +1)de4(s),

- =
where (%(t) = [§¢ ,(s/e)ds. The function w*(¢,x) is the solution of the
problem

dw® D d*we®
a2 oax?’

t>0,|x] <1,

Jw*®

ax

- s, (2] wom - e,

x=+1

and then the function u*(¢, x) satisfies the following integral equation:

(7 u®(t,x) = we(t,x) + /Otds/_lldyp(t -5,%,5)f(y,u°(s,y)).
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For any 0 < § < ¢, we have

‘ftp(t —s,x, £ 1)d{5(s)
0

s’/ot_ap(t —-s,x,+1)d{%(s)
(8)

+

[' p(t=s,x,+1)de5(s)|.
t—8

Taking into account that p(r, x,y) < const/ V7 in any bounded interval 0 <
7 < T, as follows from (5), and with our assumptlon that [£2.(#) < C < =, we
conclude that for 8 < ¢ < T the second term in the right- hand side of (8) is
bounded by

(9) .j;t_ap(t —s,x, + 1) dZ5(s)

t

< const - C
I
The first integral in (8) we bound after integrating by parts:

“op(t — s, %, + 1) dL5(s)

<1t5(s)p(t — s, %, £ Vl|g °

-8 ap(t_syx’il)
ds—t (s)

(10)

3p(s, , 1)1

< max [{%(s)l max +p(s,x,+1
OSssTlgi( )lﬁsssT“ p( » )

< Cy(8) max |£5(s)l.

Since we assumed that the correlation function of the stationary process ¢ ,(s)
tends to 0 and that |¢,(s)| < C, the process {%(t) tends to 0 uniformly in
t €[0,T] in probability when £|0 (see Theorem 7.2.1 in [4]). Thus we
conclude from (10) that for any 0 < 6 < T and 6, > 0,

t—5

11 lim P t—s,x,+1)d¢" >6,) =0.
(11) lim { 813?31[0 p(t—s,x, + 1) dL5(s) 1}
From (6), (8), (9) and (11) we derive that for any 6 > 0,

(12) hmP we(t,x) — f_llg(y)p(t,x,y) dy‘ > 6} = 0.

0<t<T
lxl<1

From (7) we obtain the following inequality for the function v°(¢) =
max,_, <4z <14°(s, x) — uls, x)|:

ve(t) <2Kfv (s)ds + max ’ *(t,x) — fl g(y)p(t,x,y) dy‘,
-1

|x|<1
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where K is the Lipschitz constant for the function f. From the last inequality
and (12), using the Gronwall lemma, we derive the statement of Theorem 1. O

ReEMARK. The solution u°(¢,x) of problem (2) can be represented as a
continuous or even smooth, in a proper norm, image of the solution W*(¢, x) of
the corresponding linear problem. The proof of Theorem 1 consists of two
parts: first, the proof of the convergence of W*°(¢, x) to the solution of the
nonperturbed linear problem as ¢ | 0, and second, the use of continuity of the
transformation W¢ — u°. In a sense most of our results are proved in a similar
way. The main part of the proof usually consists of proving the limit theorem
for the linear problems in a norm strong enough to provide the continuity of
the transformation of the solution of the linear problem to the solution of the
nonlinear problem.

2. Normal deviations. Now we want to consider the difference
u®(t, x) — u(t, x). It tends to 0 when ¢ |0 uniformlyin 0 <¢ < T, x| < 1, but
we can expect that after dividing by Ve it will be asymptotically Gaussian. We
have the following initial boundary problem for ve(t,x) = ¢~ V/2(u®(¢, x) —
u(t, x)):

a° D d%*

=5 5 HAm ), >0kl <1,

(13)

‘(0 0 v’ ; 1 1 t)
v(,x)—— ) };;’(,i )"iﬁgi(;

Here @°(t,x) - u(¢,x) when £/0 in the sense of Theorem 1, fy(x,u) =
df/du(x,u). Denote (°.(¢) = [j¢ . (s/e)ds, {°(t) = ({5(8),¢5(8). It is well
known that under some assumptions about mixing properties of the process
£(t) = (£,(8), £_(t)) the process (1/ Ve ) converges weakly in the space of
continuous functions C,; to a Gaussian process, namely, the Brownian motion
(W, (8), W_(¢)) with W_,(0) = C and covariance matrix (a,,), where

a/\y, = fjmK/\/-b(T) d'T, K/\p.('r) = Ef,\(t)fy(t + T), A,/.L e {+’ _.}.

Taking all these things into account, we can expect that v°(¢, x) converges in
one or another sense to the solution v(¢,x) of the following linear initial
boundary problem:

dv D 3%v(t, x)
—(t,x) = — ———— +fo(x,u(t, x))v(t,x), t>0,lxl <1,
(14) ot 2 9«

v .
E(t’i1)= + W (¢), v(0,x) = 0.

We will see that this is actually true, but we need to overcome several
obstacles.
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First, we should introduce a generalized solution of the problem (14). Let
p(t, x, y) be the function introduced by (5). Denote

(15)  2°(ta)= L [p(t—s,%,+1)dW,(s), lxl<1,t>0.
+.-70

A function v(t, x) is called the generalized solution of the problem (14) if it
satisfies the linear equation

(16) o(t,x) =2°(t,%) + ['ds[" dyp(t = 5,2,5) Fi(y, u(s,9)u(s,9)-

One can see from (15) that 2°(¢, x) is continuous in ¢ > 0, |x| < 1, with
probability 1. Consider the function

h(t,x) = ftzo(s, x) ds.
0
We deduce from (15) by integrating by parts that

¢ ¢,
h(t,x)= ¥ fodtlfo pi(t, — s,x, + )W, (s) ds
+, -

t t
Y [W.(s)ds [ pi(t,~s,%, £ 1)d
+,— 0 8

Y ftWi(s) dsp(t—s,x, + 1),
o

where
ap(t,x, + 1)

For any 0 < 6 < ¢t we can write

h(t,x) = X ft_éwi(S)p(t —s,x,+1)ds
(17) +, =70
+T Ja(s)p(t =5, 2, £ 1) ds.

One can see from (5) that p(r,x,y) < const/ V7, 0 <7 < T < . Using the
last inequality, we can bound the second term in (17):

t 5d8
T W.(s)p(t—s,%, £ 1) ds| < Cy ;_ o“;‘?ﬁtlwi(s)'foﬁ

+,— "t
<Cys Y 0maxtIWJ_r(s)l.
4+, — 0ss<

We have from this that for almost any trajectory (W, (s),W_(s)), 0 <s < T,
the second term in (17) can be made less than any A > 0 if § is small enough.
For any fixed 6 > 0 the first term in (17) is continuous in x. This, together
with the fact that lim, | o £(¢, x) = 0 uniformly in |x| < 1, implies the existence
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of lim, ,, h(¢,x) and lim, , _; A(¢, x) uniformly in ¢ € [0, T']. It is not difficult
to check using the explicit formula for p(¢, x, y), that for any y > 0,
lim (1 - x2)72°(t,x) = 0 with probability 1.
x— +

Let a(x) be a continuous function in [—1,1], a(+1) =0, a(x) > 0 for
lx| <1, [Lia M x)dx <o, lim,, ., a(xX1 — x2)” = 0 for some y < 0. The
typical example of such a function is a(x) = (1 — %)% 0 <a < 1.

Denote by C, = C,([0,T] X (-1, 1)) the space of all continuous functions
u(t,x), t€[0,T], Ix| <1, such that lim,_, ,; a(x)u(t,x) = 0 uniformly in
t € [0, T']. The norm in this space is defined as follows:

lulle = sup a(x)lu(t, x)l.

We denote by €, the subspace of C,, consisting of (¢, x) such that
h(t, x) = [¢u(s, x) ds has uniform limit in ¢ € [0,T] when x — 1 and when
x — —1, provided with the norm

t
Nl =llully + sup fu(s,x)ds .
1<t<T 170
lxl<1

As was explained above, the function ZO(t, x) defined by (15) belongs to the
space C, with probability 1.

LEMMA 1. There exists a generalized solution v(t, x) of the problem (14)
belonging to éa. Such a solution is unique.

Taking into account that Z° € C,, one can prove Lemma 1 by successive
approximations, using bounds given in Lemmas 2 and 3 in a little more
general situation. The proof is omitted.

So the field v(¢, x), which as we expect is the limit field for the normalized
difference v°(¢, x), does not belong to the space Cjy ryx(—1,1;- It belongs only to
éa, and we shall prove that v° converges weakly to v in the space éa.

The solution u®(¢,x) of the problem (2) can be obtained from (°(¢) =
(5@, £2@), £5.(8) = [¢€ .(s/€) ds, as the product of two mappings: the linear
mapping { - w defined by the problem

dw(t,x) D Pw(t,x) ow .

o 7 e w(0,x) = g(x), E;(t,il)— +4.(t),

and the mapping w — u given by (7). The mappings can be expressed in the
integral form

1 t

(18) w(t,x) = [ p(t,x.9)8() dy+ L [p(t =5, £ 1)dL,(s),
_ =

where p(¢, x, y) is defined by (5), and

(19)  u(t,x) =w(t,x) + ['ds " dyp(t = s,%,5) (3, 4(5,7)).
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LEMMA 2. The mapping w > u —w: C, > C=C(0,T] x[-1,1D is
Lipschitz continuous and Fréchet differentiable as are the mappings w — u:
C,»C,andw - u:C-C.

ProoF. Let there be given two functions w,(¢, x), wy(t, x), llw;ll, < ». De-
fine u® = w,, u** V¢, x) = w,(t,x) + [{ds (L dypt — s, x,¥) f(y, u{(s, ).
We have

o) 0 [t 1
uP(t,x) —uP(t,x) = fo dsf 1p(t -5,%,9) f(y, wi(s,y)) dy,

u(i"+1)(t, x) - u(in)(t7 x)

= [(as[* dyp(t = 5,2, [ (2, u(5,9)) = F3 w0 ()],

n>0,
sup |u®(t,x) — u®(¢, x)|

0<t<T
lxl<1

¢ 1

< sup f dsf p(t—s,x,y)[A + Llw;(s,y)l] dy
O|S|t<S1T 0 i
x

<AT + LIIwiIIaflla‘l(y) dyfon'rsupp(*r, x,y) =Ap; <.
- .y

We used here that |f(x,u)l <A + Llul, [1;a"(y)dy < », and the bound
sup, , p(r,x,y) ~ 2/ V2wt as 7 0.
In a similar way one can check that

sup lu®P(t, x) — uQ(¢, x) — u$P(¢, x) — uP(¢, x)l
OlsltsT
x[<1

1 T
< Llw, — wzllaf 1a‘l(y) dyf0 drsupp(t,x,y) < Lillw, — wlla,
_ .y

¢
sup [u{" V(¢ %) — ulM(¢, %)l stdSL sup |u{™(y, %) — u* (8, x)l

0<t;<T 0<t;<T
lxl<1 [x|<1
(Lt)"
SAT’iT’
sup [u{*V(t;, %) — ui (¢, x) — uGO(t, x) + u§ (4, x)l
0<t;<T
lxl<1

t
< f dsL sup |u{(t;,x) — u{* (¢, %) — ul(t, x) + u§ P(4, )l
0 0<t,<T
[x[<1

(Lt)"

< L1||w1 - wz”a_n!_‘—
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Now, taking into account that u; = w; + L% _(u(**D — u{), we obtain the
first statement:

lu; —wll < Ap ™", lluy —w; — uy + wyll < Lillw, — w,llaeT.

Here |b(¢, x)Il = max, _, _ 7 |, <116(, x)|. From the last bound and the continu-
ity of the derivative df(x,u)/0u, Fréchet differentiability of the mapping
w = u—w: C;, = C r)x(-1,1) follows. The Fréchet differential of this map-
ping is the linear transformation Sw — Su — dw defined by the integral
equation

ou(t,x) — dw(t,x)

= [lds[ dyp(t —s,%,9) fi(3,u(s,9)) bu(s,y).

The last statement of the lemma is a corollary of the Lipschitz continuity and
the differentiability of the mapping w —» v — w: C, - Cho, 71x(-1,13 O

(20)

Let C = Cy; be the space of all pairs {(¢) = ({,(¢),{_(¢)) of continuous
functions on [0, T'], {.(0) = 0. Denote by C” = CJ, the subspace of C consist-
ing of Hélder continuous functions with the norm

124(2) — £4(2)l
£, = max  sup

T 0<ty<t,<T (¢ - tl)y

, 0<y<l1.

LEmMMA 3. Let a(x) = (1 —x2)* a > 1— 2y, 0 <y < 1/2. Then the map-
ping { — w defined by (18) is continuous as a mapping from C” to C,,.

Proor. We have for {;, ¢, € C7,
wl(t’x) - wz(t7x)

L [P =5 x+ 1)d[L,.(5) = &, u()]

L[ ‘Pt —s,%,+ 1) d[¢y 1 (8) = L, 2(5) — Lo, +(2) + Lo, 2 ()]

> {[a,im 2 (0) = &y 4(0) + Ly, L (O)] Pt %, + 1)

+’_
t !
+j;) [{1, i(s) - fz, i(s) - {1, i(t) + §2, i(t)]pl(t - 8,x, + 1) ds}7
where p'(r,x,y) = @p/dt)r, x,y). We get from this equality that
a(x)lwy(f,x) — wy(2, x)l

o <1 -4 T {ﬂp(t,x, + Da(x)

+f0t(t -8)"pi(t —s,x, + 1a(x) ds}.
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Since a(x)p(t, x, + 1) < ¢,¢* Y2 and a(x)p(t, x, + 1) < ¢t~ 3/2 for |x| <
1, where c; are constants, we conclude from (21) that

t
lw, — wolle < &y — &oll,Cs sup {t”(‘"‘l)/z + '[’1-”(""3)/2 dT}
0<t<T 0

< C4”{1 - {2“7/- ]

LemMMA 4. The mapping { — [{w(s,x)ds is continuous as a mapping
Cor = [0, T1xX[—1,1]

Proor. It is simple:
t t 1
[w(s,x)ds = [‘ds[" dyp(s,x,5)g(y)dy
0 0 -1

(22) -
+ Y /;)du/;)p(u—s,x,il)d{i(s).

The last integral in (22) is equal to

/:d{i(s)f:p(u —s,x,+ 1) du = fotd{i(s)fot_sp(*r,x, + 1) dr

= ftp(t -s,x,+1){,(s)ds.
0

Taking this into account, we have from (22):

sup j:wl(s,x) ds — /:wz(s,x) ds

0<t<T
lxl<1

T
<llg; = &llsup Y, j; p(7,x, £ 1)dr = const * I{; — L,ll,

lxl<1 +, -

where | - || means the uniform norm in Cy,. O

Consider two separable functional Banach spaces B, and B, provided with
Borel o-fields. Let f: B; » B, be a measurable mapping which is Fréchet
differentiable at a point x; € B;. The following statement is a simple corollary
of the definitions of the weak convergence and the Fréchet differentiability.

LEmMMA 5. Let X¢, € > 0, be a random element of the space B, and assume
that X¢ is asymptotically (x,,eK(-, - ))-Gaussian. [This means that (x° —
x,)/ Ve, € 10, converges weakly in B, to the Gaussian distribution with mean
0 and correlation function K(-, - ).] Then f(X*) is asymptotically a (f(x,),
ef1(x;) f(x)K(-, - ))-Gaussian random element of B,, where f/(x,) is the
Fréchet differential (linear operator) of the mapping f at the point x,, and the
subscript i in f!(x,) means that this operator is applied to K(-, - ) as a function
of the i-th argument, i = 1, 2.
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We have the linear continuous mapping {* —» w®: C” - C, and the Fréchet
differentiable mapping w® — u*: C, —» C,. Thus the composition of these two
mappings of {* — u® is a Fréchet differentiable mapping from C” to C,.
According to Lemma 5, to prove weak convergence of (1/ Ve Xu® — u) to a
Gaussian field, we should first of all prove that {* = ({3, {?) is asymptotically
Gaussian. Recall that

“(t) = /o%i(s/e) ds,

where ¢ ,(s) are stationary processes, E£ ,(s) =0, and P{|¢,| < C} =1 for
some nonrandom C < «. Some results are known about asymptotic normality
of such processes ¢°.
Let a*(7) be the strong mixing coefficient for the process (¢,(s), ¢_(s)) =
&(s):
o*(r) = suplEén — E¢En|,

where the supremum is calculated over all random variables £, 7 such that
¢l < 1, In] < 1, and ¢ is measurable with respect to the o-field %, generated
by the process ¢, for s < ¢, and n is measurable with respect to the o-field
F, 1+, generated by £, for s > ¢t + 7.

The weak convergence of (1/ Ve ){{ in the space of continuous functions on
[0, T'] was proved under the condition that the strong mixing coefficient a*(7)
decreases fast enough. But we need a stronger statement: ¢~/ converges
weakly in the space C” with Holder norm. It turns out that this slightly
stronger statement can be proven by a slight modification of the proof of the
standard result.

THEOREM 2. Let [§7* a*(7)dt <  for some k > 1. Then for any y €
(0,(k — 1)/2k), T > 0, the family of processes (1/ Ve ){¢ converges weakly in
the space C{y to the two-dimensional Brownian motion with covariance matrix
(a,,), where

App = fj;K,\#(T) dr, K, (1) =E§(s)é(s + 1), A€ (+,-).

Proor. It is known that under the conditions of Theorem 2, (1/ Ve )f
converges weakly in the space of continuous functions, and the limit process is
the Brownian motion with covariance matrix (a,,) (see [1] and [5]). Thus the
finite-dimensional distributions of (1/ Ve){f converge to the corresponding
distributions of the limit process, and it remains to prove the C{,-tightness of
the family of the processes n¢ = (1/ V& ){¢. The tightness of the family n; in
the space Cyr in [1] and [5] and in other papers relies on the Kolmogorov-type
inequalities:

Eln;, — n;|** < Clty — t,)*

where C < « if [§r*!a*(r)d7 < . But these inequalities automatically im-
ply not only the C,;-tightness but the Cg,-tightness also for y < (k — 1)/2k.
0O

)
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THEOREM 3. Suppose that the process &(¢) = (£.(2), é_(¢)) has a mixing
coefficient a*(7) such that [§7* 'a*(7)dt < » for somek > 1. Let a € (1/k,1)
and a(x) = (1 — x2)* Then v*(t,x) = (1/ Ve Xu®(t, x) — u(t, x)) converges
when ¢ |0 weakly in the space (fa to the Gaussian random field u(t, x),
0 <t<T,lx|l <1, which is the generalized solution of problem (14).

PrOOF. Since a > 1/k we have (1 — a)/2 < (k — 1)/2k. Take y € (1 —
a)/2,(k — 1)/2k). It follows from Theorem 2 that the process n = (1/ Ve ){f
converges weakly in the space CJ; to the Brownian motion with covariance
matrix (a, ).

The mapping ¢ — u° is the composition of two mappings, {* - w*®: CY - éa
and w® - u®: éa - éa. The first mapping is linear and, according to Lemma 3,
is continuous since 1/2 > y > (1 — a)/2. Thus the first mapping is Fréchet
differentiable. The second mapping is Fréchet differentiable according to
Lemma 2. The differential of the second mapping is the linear transformation
dw — du defined by (20). The statement of Theorem 3 follows from Lemma 5
and equalities (16), (18), and (20). O :

ReEMARK. Using Lemma 5, we can describe the limit Gaussian field as a
mean zero Gaussian field with correlation function K,,, which is defined as
follows: Let

Kzozo(tl’ X9, t2’ x2) = Z a).y.fotl/\tzp(tl -8, /\)P(tz -8, X, /'L) dS,
A
where p(¢, —s,x, +) =p(t, — s,x,1) and p(¢; —s,x, =) = p(t; — 5,x, —1);
K ,0,(t;, %1, t5, X5) is the solution of the integral equation [for every (¢,, x,)]

¢ 1
K,o,(t;, X1, ts, X3) = K 0,0(ty, %, 15, %5) + foldsf_ldyp(t1 -5,%.,5)

xfl:(s’ u(s7y))Kz°v(s’y7 tz, x2) .
Then K,, is the solution of the equation [for every (¢, x,)]

¢ 1
K, (t;, %1, t5, x5) = K o0,(t1,%1,t5, %5) + fozdsf_ldyp(tz —5,%5,Y)

szi(s’ u(s7y))va (t17 X1, s,y).

3. Deviations of order &%, 0 <k < 1 /2. We proved in Section 1 that
us(t, x) - u(t, x) when & | 0 uniformly in 0 < ¢ < T, x| < 1. The deviations u*
from u of order /2, ¢ | 0, are described in Section 2. It follows from Theorem
3 that the probabilities of deviations of order &* for k < 1/2 tend to 0. In this
section we consider the asymptotics of the probabilities of the deviations of
order £, 0 < k < 1/2. Our goal is to obtain rough limit theorems for the
probabilities of such deviations. This means that we calculate the logarithmic
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asymptotics of these probabilities. Such asymptotics are interesting, for exam-
ple, when we study the exit problem from a neighborhood of size of order &,
k € (0,1/2), of a stable equilibrium point of (4).

First, we recall some definitions and formulate a simple general lemma.

Let ¢, € > 0, be a family of random elements in a Banach space B; with
norm || -|l; and distance p(f,g) =IIf - gll;, f,& € B,. Denote n° =& *(*
and assume that ||n°|l; > 0 when & | 0 in probability.

A functional S"(¢) defined for all ¢ € B, is called the normalized action
functional [4] for the family n° in B; when ¢ 0, if a positive function A(e),
e > 0, lim, yA(e) = o, exists such that the following conditions are fulfilled.

1. For any 6,y > 0 and ¢ € B, there exists ¢, > 0 such that

P{py(n®, ¢) <8} = exp{ —A(e)(S™(¢) +7v)}, fore <e,.
2. For any s, v, 8 > 0 there exists ¢5 > 0 such that

Plpy(n°, ®,) > 8} < exp{—A(e)(s — v)}, fore <e,

where @, = {¢p € B;: S"(¢) < s}. .
3. The functional S"(¢) is semicontinuous from below: If lim,, _, ., p(¢,, ¢) =
0, then S"(¢) < liminf, ., S"(¢,); the set @, is compact in B,.

The product A(¢)S"(¢) is called the action functional.

Consider a continuous mapping f: B, — B,, where B, is another Banach
space with the norm | - |l and distance p,(f,g) =IIf — gllz for f,g € B,.
Assume that the mapping f is Fréchet differentiable at the point 0, and let the
linear continuous operator f’: B, — B, be the Fréchet differential.

Assume for brevity that for any ¢ € B, there exists at most one element
¢ € B, such that f'o = ¢, ¢ = f'op.

LEMMA 6. Let y* = (1/&) f({?). The action functional for the family y?,
€ > 0, in B, when ¢ |0 is equal to AM(e)S?(¢), where
ST f' "), iff e exists,
S?(¢) = ( ) =1 :
+ o, iff' "o does not exist,

where AM(e)S™ is the action functional for the family n° = £~ *(¢ in the space
B,.

This lemma follows easily from the continuity of the operator f'. It is close
to Theorem 3.3.1 from [4] and the proof is omitted.
As was shown in the previous section, the mapping

fo‘g(s/a) ds = £ - u®(¢, x)

is continuous and even Fréchet differentiable as a mapping from C? to
(fa, where a(x)=(1 —x%)% a>1-2y, 0 <y <1/2. Recall that C” is
the Banach space of functions ¢, = (¢,(s),¢_(8)), =0, 0 <s < T, with
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the Holder norm | - |, We denote p (o5, @5) = llo; — @ally, llello =
max, _maxX, ., <, 7l¢ .(¢;}) — ¢ ,(¢y)l; the norm || - llo, of course, is equiva-
lent to the uniform norm in C,,. The Fréchet differential is defined by (18)
and (20).

_ To calculate the action functional for the family ¢ “(z® — ) in the space
C,, we should, according to Lemma 6, calculate the action for the family
n® =& "% 0 <k < 1/2, in the space C”. There are some results on the large
deviations for the family n°, ¢ | 0, but in the space C,; (see [4] Chapter 7, and
some other references therein).

Introduce the functional

1 ,r
=" Y at*¢,(s)p(s)ds, for ¢.,¢_ absolutely continuous,
Sor(e) = 2'/;’ A p :

+ o, for the rest of C, ;.

Here (a*) = (a,,)7", a,, = [Z.K,(D)d1, K, (1) = E§{®)E(t + 1), A, u €
{+, —}. We assume for brevity that the matrix a,, is not degenerate. Under
some assumptions about the process £(¢), one can show that £2<71S (o) is
the action functional for the family »° = ¢7*{* in the space C,;. Let a > 0 be
such that

al(22 +2%) < ) at¥zz, <a(2i +22).
A

If ¢ is absolutely continuous we have

tay . 12
<4/ltg — ¢ s~ ds
\/' 2 1|’[tl |<P |
<t — t,128or(@)a,  t,t,€[0,T],

lellie < y2aSor(e) , llello < y2aS,r(¢)T .

It is easy to check that for 0 <y < vy,,

lo(2:) — @(&)l =

/ ‘cp ds

(23)

(24) lell, < lells™ ™/ 7llpli7/ 7.
From (23) and (24) we deduce that
(25) ||(p||., < \/2aSOT((p) TA/2=7  for v € (0,1/2).

We say that the family n° is ¢ "“-exponentially bounded in the space C” if
for any C > 0 there exists K such that

c
P{lln°ll, = K} < exp{ - e_"}
for ¢ small enough.

LemMma 7. Let £2<71S,:(¢) be the action functional for the family n° =
£7%¢%,0 <k <1/2, in the space Cyp when ¢ 0. Assume that the family n° is
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e~ L.exponentially bounded in the space C°, 0 < y, < 1/2. Then the restric-

tion of the functional £2<71S,.(¢) on the space C”, 0 <y < y,, will be the
action functional for the family n® in C” when ¢ 0.

Proor. For any 8§, K > 0 and y € (0, y,), denote
5 = §70/ Vo= VK~/(o=7)
We deduce from (24) that
P{lln° - oll, < 8} = P{lin° = ¢llo <&, In° - oll,, < K}
> P{lln° — ¢llo < &) — P{lln® - oll,, = K}.
From (25) and the last inequality we have
P{ln® - oll, < 8} = P{lln* — oll, < &)
= P{lln*lly, = K — y/2aSe7(¢) T4/}
The first term on the right-hand side of (26) can be bounded from below by

exp{—&21(Sor(¢) + A)}.

This is true for any A > 0 if £ > 0 is small enough, since £271S,,(¢) is the
action for the family %° in the norm || - |lo. The second term in (26) can be
bounded from above by exp{—&%! - 10(S,,(¢) + A)} if K is large enough
since the family n° is 2~ '-exponentially bounded in the || - ||,,-norm. From
this bound we conclude that for any A > 0,

Pln® — ¢ll, < 8} > exp{ -2~} (Sor(9) + 1)}

if ¢ is small enough.

To prove the upper bound, included in the definition of the action func-
tional, note that if py(n°,¢,) <& and Inl,, < K — V2as T®/?77, then a
point ¢ € ¢, exists such that

In® —ello <&, ln°—olly, <K, In°—el,<8.

The last inequality results from the first two and from (24).
We have from this:

Ploy(ors ) = 8) < Plon(o,6.) 2.1
+ P{llncll,, = K — V2as TV/?770},

The first term in the right-hand side of (27) can be bounded from above due to
the fact that 2« 1S,r(¢) is the action functional for n° in the || - [lo-norm. The
second term can be made less than exp{—2se2<~1} because of the g2<~1.
exponential boundedness of 7° in the || - ||,,-norm by choosing K large enough.
We have finally that for any 6, A, s > 0 there exists ¢, > 0 such that

Po,(n°, 6,) > 8} < exp{e* (s — 1))

(26)

(27)

if £ € (0, €).
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To finish the proof of this lemma, we should check that &, ={p € C":
S,r(¢) < s} is compact in C” and that the functional S,z (¢) is semicontinu-
ous from below in C”. The last statement follows immediately from the
semicontinuity of S,r(¢) in the | - |lo-norm. Compactness of the set @, in C?
follows from the fact that the set {¢ € C”: ll¢ll,, < c} is compact in C?,
0 <y < y,, for any ¢ < » and from semicontinuity of Sy (¢). O

THEOREM 4. Assume that the functional £ 'S ;(¢) is the action func-
tional for the family n° = e~ *¢¢ = ¢ *[{£(s/e) ds in the space Cyp when &0,
and that the family n° is &2 l-exponentially bounded in C?° for some
Yo € (0,1/2). Then the family of random fields

vi(t,x) = e *(u(t,x) —u(t,x)), €10,

has the action functional €21 - S*(g) in the space C, for a(x) = (1 - x?)*,
1>a>1- 2y, where

og g _dg D%
Sor{ G (5,1 =5 =D 5 = G
S*(g) +fi(x,u(t,x))g(t,x) for 0 <t <T,lx| <1,
g =
d
and ‘—9%(3, + 1) are absolutely continuous,

+oo, for the rest of Oa.

PrOOF. According to Lemma 7, the action functional for the family #° in
the space C7, 0 < y < v,, will be the restriction of &2 'Sy, (¢) to the space
C”. As was shown in Section 2, the mapping {* — u*(¢, x) is continuous and
Fréchet differentiable as a mapping from C”? to C, if a = (1 — 2% a > 1 -
2y. The Fréchet differential is defined by (18) and (20). The statement of
Theorem 4 now follows from Lemma 6. O

LEMMA 8. Assume that there exist Cy,C, such that
C,2%r }

(28) Bewlee/t [, (%) as] <em]
t

for |zl < Cy/ Ve, 7> ¢. Then the family nf = e (3¢, . ds, €10, is &'
exponentially bounded in the norm C” for any y € (0,1/2).

ProoF. We need to prove that for any C > 0 one can find K such that
P{ln°ll, = K} < exp{—Ce>*"1}.

Ek+1 ek
”(2")'"(?)‘

Denote

A = max
0<k/2n<(k+1)/2n<T




LIMIT THEOREMS FOR PERTURBED PDE’S 979

For any ¢,,¢, € [0, T] we have
(29) g —mil <2 X A
n: 27" <[t —tyl
In order that [|n°ll, < K, it is sufficient that A%, < M27" for all n, where
M =K1 - 277)/2. It follows from (29) that

P{lln°ll, > K} < 2 P{A5, > M2™""}
n

< 2( Y Pla,>M2™)

n:2-n1=Y) < Ne¥

(30)

+ Y Pla,> M2"‘7}).
n:27"A7"> Nex

The constant N will be chosen later. Taking into account that |¢ ,(¢)| < C, we

have
. [t+@™™ (S
® -ld
[T as

for n: 2~"A=" < Ne*. Therefore, all terms of the first sum on the right-hand
side of (30) are equal to 0 if M is large enough.

To bound the second sum in (30), we use the exponential Chebyshev
inequality. Denote

N
<(’Y 2 yn
2

A’ < max

<
" 0<t<T

M2~
2= Kz—ne(l/Z)—K °
We have
Ple ™ |LGr1y/2n — Lk jorl > M2~}
M22—2n‘y

= P{ZE_1/2|{(€k+1)/2" - {;/2"| > Kz—ngl—ZK }
(31) M22n(1—2'y)

< EeXp(2€_1|§<€k+1)/2" - Svli/‘fl"I T Kel 2« )

M22n(1—2~/) CIM22n(1—2~/)
K81—2K + 2K2€1—2K )
We used condition (28) of the lemma in the last inequality. We can do this

if z<C,/Ve, 27" > ¢. Both these inequalities are true for n such that
9-m1-v > Ng* if N is large enough and ¢ is small enough,

M2r1-2v) M
< <
Ke4/27% = KNve

If 2-71-Y > Ng¥ then 27" > NV/A=Vge/A=7 5 g N1/A=V)ge/A=7) > ¢ for &
small enough, since «/(1 — y) < 1 for «,y € (0,1/2).

< exp(—

C
z= = forN large enough.
Ve
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From (31) we have for any C,
M22n(1—2y)
K€1—2K

P{8K|§(€k+l)/2" - {;;‘/an > M2"‘7} < exp( - < exp(—Cez"_l)

if K is large enough.
From these bounds and from (30) the statement of the lemma follows. O

We will consider some examples in the last section.

4. Deviations of order 1. In this section we study deviations u®(¢, x)
from u(¢,x) of order 1 when £|0 in the uniform topology. We denote
by C! = CY0,T] the space of all continuously differentiable functions
o) = (0, (), 0_(#),0 <t <T, ¢(0) = 0 with the norm

el = 2max Jnax ¢, (8);

[l -l means uniform norm in the space Cyr or in Ciy rx;—1,1- The other
notations were introduced in Sections 1 and 2.

LEMMA 9. The mapping { — w, defined by formula (6), from {{ € C!:
iZlly < C} to the space Ciy pyx(—1,1 IS continuous with respect to the || - |-norms
in these spaces.

Proor. We have for ¢, {, € C}, Ig;ll, < C,

wy(t,x) — wy(t,x) = ¥ fotp(t —s,%, 2 1) d({,,(8) = La.(5)),

t—8
lw; —w,l < X { p
0

(t—s,x,£1)d({1,(s) — 521(3))‘

+ ft p(t—s,%, = 1)d({1:(s) = {3:(5)) }
(52) t-38

¢
52Cf sds Y p(t—s,x,£1) + & — &l
t— +, —
X Z p(6,x,+ 1) +p(t,x, + 1)
+, -

+ft_3p’1(t -s,x,+ 1)ds|,
0

where p/(r, x,y) = dp(r, x,y)/97. Taking into account that
supp(r,x,y) < const/Vr, suppl(T x,y) < const/7%/2,
%,y %,y

and choosing & = min(¢, /ll{; — &,ll/C), we obtain from (32) that ||w, — w,ll <

const - /Cll{; — £, O



LIMIT THEOREMS FOR PERTURBED PDE’S 981

THEOREM 5. Assume that the family (f = (f(£,(s/e)ds, [(é_(s/e)ds),
€10, in the space Cy; has the action functional ¢ 'S*(¢,,¢_). The action
functional for the field u®(¢, x) in the space Ciy ryx(_1,1; When &0 is equal to
e 'S“(g), g € Co, 71x(-1,1p Where

.8 g
(5D, i3 =5 s +(50)

for 0 <t <T,lx| <1, and the functions

og
% (t, + 1) are absolutely continuous,

og

og
g = -
§ (8x(s’1)’ dx

S“(g) =

oo, for the rest of Ciy 11x(-1,1-

ProOF. Since we assume in this paper that |£,(¢)| < C, it follows from
Lemma 9 that the mapping {°* — w* is continuous in uniform topology in C,
and in Cjg 71,1 Because of the last statement of Lemma 2, the mapping
w® = u® Co rixi-1,1) = Clo,71x(-1,1; is also continuous. Thus the mapping
{* > u® is a continuous mapping from Cyr to Cig ryx(-1,1; Then the state-
ment of Theorem 5 follows from Theorem 3.3.1 of [4]. O

5. Examples.

ExampLE 1. Let & = (£,(2), £_(2)) be the two-dimensional diffusion pro-
cess in a domain D c R?, corresponding to a second-order elliptic operator L
with reflection in the direction of the co-normal on the boundary 4D of D. We
assume that the coefficients of the operator L are smooth enough and that the
domain D is bounded and has smooth boundary. Denote by p(¢, x?, x2),
xt = (x%, x'), the transition density, and by m(x), x € D U dD, the invariant
density of the process ¢,. We take m(x) as the initial density of &,; then the
process ¢, is stationary. Assume that E¢, = [xm(x) dx = 0. The correlation
matrix is given as follows:

K, (1) = E§\(t)¢,.(t + 1)
= foDx}xfp(r,xl,xz)m(xl) dx'dx®, A pef{+,-},720,
K, (r)=K,,(-7), K_[(1)=K__(-7), K, (r)=K_,(-7),

K ,(r)=K, (-7).

It is easy to check that the strong mixing coefficient a*(7) for the process &,
decreases exponentially fast and thus

fm‘rk_la*(f) dr <o
0

for any £ > 1. Then we conclude from Theorem 1 that the solution u°(¢, x) of
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problem (2) with ¢ ,(¢) described above converges in Cjy x(—1,1) in probability
to the solution u(#, x) of problem (4) when ¢ | 0.

The normalized difference ve(¢, x) = ¢~ /2(u®(¢, x) — u(¢, x)), according to
the results of Section 2, converges weakly in the space C, with a(x) = (1 — x2)*
for any @ € (0, 1) to the solution of problem (14), where a,, = [2.K, (7)dT.

To describe the large deviations for the field u°(¢, x), we need first of all to
recall results on large deviations for the family {7 = [5¢, . ds, £ |0 (see [4],
Chapter 7). Consider the eigenvalue problem

dp

Lo(x) + (B,x)e(x) =A¢(x), x€D, —| =0

Here B = (B,, B,) is a parameter, n = n(x) is the co-normal corresponding to
the operator L. Let A = A(B) be the eigenvalue corresponding to the positive
eigenfunction. Such an eigenvalue is simple, real and continuously differen-
tiable in B (we assume that the coefficients of L and the boundary of the
domain D are smooth enough and that D is bounded). One can check that
AM(B) is convex. Denote by L(a) the Legendre transformation of A(B): L(a) =
supg((a, B) — A(B)), a € R. The action functional for the family {7, ¢ € [0, T],
€10, in Cyyp is equal to e~ YJL(¢,(s), ¢_(s)) ds for absolutely continuous ¢,
and equal to + for the rest of C;.

The action functional for the process ¢ *{;, 0 < x < 1/2, in the space C,r
is eS¢ (), where

1or PN
Sir(e) = 5 [ L a*6u(s)éu(s) ds
Ap

for ¢, = (¢, (s), ¢_(s)) absolutely continuous, and Sgp(¢) = + for the rest
of Cop; a™ = (a,,) "} A, u € (+, ).

Now we can describe large deviations of order 1 as ¢ | 0 for the field u°(¢, x).
The action functional for the family u°(¢,x), £ |0, in the space Cy 7x(-1,1p
according to Theorem 5, has the form & ~'S*(g), g € Cyg rx(-1,1) Where

T (08 g g _og®
= (s,1), = —(s, - if — =D— +
fOL(ax(s, ), = o-(s, =D ), if o2 Tf(x.8)
for0 <s < T, lx| <1, and the functions

8“(8) = oy
5;(3, + 1),0 < s < T, are absolutely continuous,

+o00, for the rest of Ciy r1x(-1,1-

Using this result and taking into account that the couple (u°(¢, - ), £,) is a
Markov process in the functional space, we can describe transitions between
different stable stationary solutions of the nonperturbed problem. We can also
consider the exit problems and asymptotic behavior of the invariant measure
of the perturbed problem when ¢ | 0 in a way similar to the finite-dimensional
case (see [4]).

To describe the deviations u*(¢, x) from u(¢, x) of order €, 0 < k < 1/2, we
should check the conditions of Lemma 8. Consider the semigroup Py acting in
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the space Cp, of continuous functions on D U D with values in R*:
T
(Pye)(®) = Buoe) ez ["fe as|. 120,

where f(x), x € D UdD, is a smooth enough function such that
[p f(x)m(x)dx = 0. This semigroup has a positive eigenfunction ¢,(x), and
the corresponding eigenvalue has the form exp{tu(zf)}, where u(zf) = u is the
first eigenvalue of the problem

=0

(33) Ly(x) + 2f (x)¢(x) = ny(x), x €D, .

(see, e.g., [4], Chapter 7). The first eigenvalue u is real and simple and has two
continuous derivatives in z. The eigenfunction ¢,(x) is differentiable in z. It is
easy to check that u(0) = 0 and ¢, (x) = 1. Then, differentiating (33) in z, we
have

ay

an

a ’
(3 L(x) = ~f(x) tHy  xED, 22| =
n |sp
Problem (34) is solvable only if the right-hand side of (34) is orthogonal to the
invariant density m(x). Since we assumed that [, f(x)m(x)dx = 0, we get
o = 0. Now taking into account that u(0) = '(0) = 0, we have

(35) w(ef) < c';'

for some constant C and |z| < 1. Using this bound we conclude that the
conditions of Lemma 8 are fulfilled in this example:

Eexp{zftﬂf—(w ds} = fDm(x)(P;‘//ffl)(x) dx

Ve
T clz|?
(36) < const - exp{;,u.(zw/;)} < const - exp 5 7
for |z| < 1/Ve. As the function f=f(x,,x_), we should take f=x, or
f=x_.

We conclude from Lemma 8 and Theorem 4 that the action functional for
the family of fields (1/&*)u®(¢, x) — u(t, x)) = vi(t,x), 0 <k < 1/2, in the
space C,, a = (1 — 2% 0 < a < 1, has the form 21§ *(g), where

1 .1 g(s,A) dg(s,n)
— Ap
2 ), T e = w2

0 A p

'fag K ! f 0,71, | 1
Su,x(g)= 1 _é?_ P +f(x,u)g ortE[ , ], x| < 1,

and é(t, + 1) are absolutely continuous,

+oo, for the rest of C,.
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ExampLE 2. Let & = (£.(2),£_(¢)) be a Markov process with the finite
state space {(b;,b;), k=1,...,N}; Q@ =(q;;) is the transition intensi-
ties matrix P{£,,, = (b],b7)l¢, = (B, = q,;; - A +0(d), ALO, i+,
q;; = —Lj.j+:q;;- We assume that g;,; >0 for i+#j and denote by
{g;}l¥ the stationary distribution of the process. If we take {q;} as the initial
distribution for ¢, it will be a stationary process. We assume that E¢, =
(X Ng,b;,=Nq;b;7) = 0. The correlation function has the form K, ()=
¥, 1q,p(1,1, ))b}bY, where p(r,i, j) is the transition probabilities matrix,
7 > 0; K, (7) is defined for 7 < 0 as in Example 1. Denote a, , = [Z.K, (7)dT.
From the assumption g,; > 0 one can deduce that |a,,| <= and that the
strong mixing coefficient a*(7) decreases exponentially fast. Then, from the
results of Sections 1 and 2, we conclude that u®(¢, x) — u(¢, x) in probability
in the space Cp rjx(_1,;; When £.0, and that v°(¢,x) =e™"/*(u’(t, %) —
u(t, x)) converges weakly in the space éa, a=(0-x2)* 0<a<1, to the
generalized solution v(¢, x) of problem (14).

To describe the deviations of u®(¢,x) from u(¢, x) of order 1, denote by
A = A(B) the first eigenvalue of the matrix @° = (g;; + (a,B, + b;8,)8}), where
B = (B, B,) € R?, 6} is the Kronecker symbol. The function A(B) is twice
continuously differentiable and convex. Let L(a) be the Legendre transform of
A(B). Then the deviations of order 1 in the space Cyp for {f = [¢¢, . ds are
defined by the action functional & 1S§r(¢), ¢(s) = (¢,(s), ¢_(s)), where
Sér(e) = [FL(¢,(s), $_(s)) ds for absolutely continuous ¢(s), and S§r(¢) =
+ o for the rest of Cyy. The action functional S*(g), g € Cy 7)x(-1,1 for the
family of fields u®(¢, x) is given by Theorem 5 with the functional S*(¢)
defined above.

As was done in the previous example, one can check that the conditions of
Lemma 8 are fulfilled. The corresponding action functional S*(¢) for the
family n° = £7[¢¢, . ds in this case has the form (see [4], Chapter 7):

17 o .
3 L 6(s)6s)ds, if ¢ = (er,0.) € Cor,

Sey={ "
¢, (s) are absolutely continuous,

+ oo, for the rest of Cy.

Thus Theorem 4 gives the action functional for the deviations of u°(¢, x) from
u(t, x) of order %, 0 <k < 1/2.

ExampLE 3. Let n%,7n%,n%, ... and n°,n%, 7%, ... be two sequences of
independent random variables with common distribution functions F(x) such
that F(—a) = 0, F(a) = 1 for some a > 0, En* = 0, Dn* = o2 Denote by 6
the random variable distributed uniformly on the interval [0, 1] and indepen-
dent of {n:}. Put

E.(t)=n"*t, forte[6+Ek0+k+1), k=0,1,...,
£,.(¢)=n%, forte][0,0).
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The process ¢, = (£,.(¢), £_(¢)) is stationary, E¢.(¢) =0, K,(7) =
E& ()¢t +7), A,u € (+, —), is equal to O for A # u, and K, ,(7) = K__(7)
is the continuous piecewise linear function with vertices in the points —1,0, 1
such that K,,(0) =02 K,(7)=0 for |r| > 1. If the perturbations of the
boundary conditions in problem (2) are equal to ¢ ,(¢/¢), then u°(¢, x) — u(t, x)
when ¢ | 0 in the space Cyy 71x(—1,1;- The strong mixing coefficient a*(7) in this
case is equal to O for |r| > 1 and thus [§7* 'a*(7)d7 < » for any & > 1.
According to Theorem 3 the field (1/ Ve Xu®(¢, x) — u(¢, x)) converges weakly
as ¢ | 0 in the space (?a, a=(1-x22%0<a <1, to the Gaussian field v(¢, x),
which is the generalized solution of problem (14), where a,, = 02§}, 8 is the
Kronecker symbol.

It is easy to check that the conditions of Lemma 8 are fulfilled in this
example. We conclude that the action functional for the family of fields
vi(t, x) = e “(u®(t, x) — u(t¢, x)) in the space Ch,a=(1-x0%0<a<l,is
given by Theorem 4, where (see [4], Chapter 7)

1
5oz [ [62(s) + ¢2(s)] ds,

if ¢ (s) are absolutely continuous,
—o,  for therest of Cy;.

Sor(e) =

To describe the deviations of u®(¢, x) from u(¢,x) of order 1 when ¢ |0,
denote

H(B) =n [" e dF(x), L(a)= sup((e,p) - H()), @ BER"

Then, as follows from the results of Chapter 7 in [4], the action func-
tional for u*(¢,x) in Cjg pjx(_1,1) iS given by Theorem 5, where S¢(¢), ¢ =
(¢,,9_) € Coyr, is defined as follows:

S50 fT[L(q'ﬁ(s)) + L(¢%(s))]ds, if ¢ ,(s) are absolutely continuous,
¢) = 0 B

+o, for the rest of Cyp.
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