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THE SURVIVAL OF ONE-DIMENSIONAL CONTACT
PROCESSES IN RANDOM ENVIRONMENTS!

By THOMAS M. LIGGETT

University of California, Los Angeles

Consider the inhomogeneous contact process on Z! with recovery rate
o(k) at site & and infection rates A(k) and p(k) at site & due to the
presence of infected neighbors at £ — 1 and % + 1 respectively. A special
case of the main result in this paper is the following: Suppose that the
environment is chosen in such a way that the §(k)’s, A(k)’s and p(k)’s are
all mutually independent, with the §(%)’s having a common distribution,
and the A(k)’s and p(k)’s having a common distribution. Then the process

survives if
d(A+p+6
g2 retd)
Ap

’

while the right edge r, of the process with initial configuration
-+ 111000 - - - satisfies

limsupr, = +o
t—o0
if
S(A+p+6
Elogot 1P +8)
Ap

If the environment is deterministic and periodic with period p, we prove

survival if
P S(R)[ACK) + p(k — 1) + 5(k)]
Il A(E)o(k — 1) <1
and
P 5(k — D)[ACk) + p(k — 1) + 8(k — 1)]
I A(B)p(k = 1) <t

1. Introduction. A recent new direction in the development of the theory
of interacting particle systems is the study of these systems in random
environments. By now, a number of papers have been written analyzing the
effect of the random environment on various types of systems. Several of these
are listed in the references [Bramson, Durrett and Schonmann (1991), Chen
and Liggett (1992), Ferreira (1990), Greven (1985), Greven (1990), Liggett
(1990) and Liu (1991)].

In this paper we will consider the one-dimensional contact process in a
random environment. By this we mean the Markov process with state space
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{0, 1}4, where Z is the set of integers, which has the following transitions:

1 - 0 atsite & at rate 5(%)

and
0 —» 1 atsite k& atrate p(k)n(k + 1) + A(k)n(k — 1),

where 1 € {0, 1}% is the configuration of the process, and {(§(k), p(k), A(k)),
k € Z} is the environment. We assume that the environment is a stationary
ergodic process with strictly positive entries. The (infinite) process is said to
die out if for almost every choice of environment, the only invariant measure is
the pointmass on the configuration n = 0. Otherwise, it is said to survive. The
first major issue concerning the contact process in a random environment
which should be settled is that of determining conditions on the distribution of
the environment which imply survival or extinction of the process.
In Liggett (1990), we observed that the process dies out if
p(k) AE)

(1.1) E logm <0 and Elog

5(k) < 0.

We also gave a complicated and unintuitive sufficient condition for its survival,
which we unfortunately were only able to verify in a very special case:
(k) =1, p(2k)=AM2k + 1) =1, p(2k + 1) = A2Fk) = Ay, AA, > 4. (Note
that a periodic environment can be thought of as a stationary ergodic environ-
ment, by choosing each of the translates of the environment with equal
probability.) Based on these two results, one might be tempted to guess that a
sufficient condition for survival is

ZE}}:; >c¢ and ElogA(k)

(1.2) E log >c

o(k)

for some appropriately chosen constant c. This is in fact not the case, at least
not for a general stationary ergodic environment. An easy modification of the
proof of Theorem 2 in Liggett (1990) can be used to show that if the
environment is periodic of period 2 and p(k) = A(k) for every k, then
the process dies out whenever

(1.3) 8(1)8(2)[A(1) +A(2) +8(1) +8(2)] > 2M(1)A(2)[8(1) + 8(2)].

If a stationary ergodic environment is chosen by taking this periodic environ-
ment with probability 1/2 and its translate with probability 1/2, then (1.2)
becomes

ADA@R)

—_ =e".

8(1)8(2)
Taking 6(1) = 8(2) = 1, A(1) = ¢ and A(2) = ¢~ 2 for sufficiently small ¢, we see

that there is no choice of ¢ so that (1.2) implies survival. Note that the
essential difference between the two periodic cases discussed above is that in
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the first case, infection rates were assigned to bonds, while in the second they
were assigned to sites.

One survival result has been obtained recently by Bramson, Durrett and
Schonmann (1991). They showed that if the environment satisfies A(k) =
p(k) =1 and {6(%k), k € Z} are independent and identically distributed with
distribution P[8(k) = 8] = p and P[6(k) = A] = 1 — p, then for every choice
of p<€(0,1) and A > 0, there exists a 6§, > 0 so that the process survives
whenever § < §,. Estimates on the size of 6, and of its dependence on p and A
are not readily available in that paper.

In this paper, we are interested in obtaining sufficient conditions for sur-
vival which apply to larger classes of random environments, and which are
easily verifiable. In order to state the main result of this paper, let A, be
the dual contact process, which has rates &'(k) = 6(k), p'(k) = A(k + 1) and
N(k) = p(k — 1). Let r, be the position of the rightmost infected site for the
process with initial configuration --- 111000 - - -, and let I, be the position of
the leftmost infected site for the process with initial configuration

- 000111 - - - . The behavior of these edges is related to the surv1va.l of the
process in the followmg way: If
thm r,= 4+« and tlimlt = —oo,
then the original system survives. [See Theorem 2.2 of Chapter 6 of Liggett
(1985).]

THEOREM 1.4. (i) Suppose that the following two series converge:

- 1 4 8(k)[AR) +p(k—1) +8(k)]

§0A0+1)§ AE)p(k — 1) |
- j _1)[,\(k)+p(k—1)+5(k—1)]
LE (1)U A(k)p(k - 1)

Then the contact process in a random environment survives.
(ii) Suppose that

ElogA(k) > —» and Elogp(k) > —,
3(k)[A(k) +p(k — 1) + 3(k)]

Flog A(R)p(k — 1)
and
Eloga(k — 1)[A(R) +p(kE—1) +8(k—1)] <o
A(k)p(k — 1)
Then
limsupr,= +® or liminfl, = —oo.

t—o0 t—o
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REMARKS. 1. We suspect that it is possible to build on the techniques of
this paper to improve both parts of Theorem 1.4. Perhaps the right result is
that the assumption of part (i) implies survival, while the assumption of part
(i) implies linear growth of the edges:

L . ¢

lim — — lim — > 0.

t— t t—>o
This would represent a substantial improvement. For example, as it stands,
Theorem 1.4 does not imply the Bramson, Durrett and Schonmann result
which is stated above. On the other hand, the proposed improvement of part
(i) would give it as a special case, and in fact would provide a value for 5, as
the solution of

[8.(2 +8,)]"[A2 + A)]' P =1.

As another example, suppose 8(k) =1 and A(k) = p(k — 1) are iid. and
uniformly distributed on [0, M]. Then the assumption of part (i) is never
satisfied, but the assumption of part (ii) is satisfied for M > 7.1. The extinction
criterion (1.1) is satisfied if M < e. Another reason for wanting to obtain the
improvement is that the general sufficient condition for extinction (1.1) in-
volves a logarithmic moment, so it would be more natural to prove survival
under a logarithmic moment assumption.

2. If the distribution of the environment is spatially symmetric, then of
course the “or” in the conclusion of part (ii) can be replaced by an ‘“and.”

3. If the environment is periodic of period p, the assumptions of parts (i)
and (ii) both reduce to

2 8(R)[A(R) +p(k — 1) + (k)]
k-1 ACk)p(k — 1)

8(k — 1)[A(k) + p(k — 1) + 8(k — 1)] <

A(k)p(k = 1) b

p
Il
k=1

Theorem 1.4 is proved in Section 4. Sections 2 and 3 develop some prelimi-
nary results. To give an idea of the approach used in these proofs, consider for
a moment the homogeneous contact process, in which 8(k) = 8, A(k) = A and
p(k) = p. In this case, it was proved in Holley and Liggett (1978) that the
process survives if A + p > 46. An overly simplified version of that proof goes
as follows: Suppose the process survives, and let v be its upper invariant
measure. Define

a=v{n:n(k) =1} and @é(n)=v{n:n(k) =n(k+n) =1,
n(j) =0fork <j <k +n}.

If we pretend as a first approximation that v is a stationary renewal measure
(which is of course not the case), then the invariance of v implies that these
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quantities satisfy the convolution equations

(A +p+28)p(1) = (A +p)[d(2) + a]
and

§n-1
(A+p+28)¢(n) =(A+p)d(n+1) + ;kZ é(k)p(n — k)
=1

for n > 2. It is not hard to solve these equations explicitly. In the spatially
inhomogeneous case, on the other hand, it is not in general possible to solve
the analogous system of equations. [See (2.4).] Since our objective in both cases
is to keep a away from 0, we would like to say something about a without
having to solve for the ¢(n)’s. To do so, multiply the second equation by
n(n — 1)/2 and sum for n > 2, using the fact that
a=Y ¢(n) and 1= ¥ ng(n)

n=1 n=1

and assuming that

Y n¥(n) <o

n=1
to obtain the following quadratic equation for a:
(1.5) (A +p)a = (A +pla+8=0.

Note that this has a real solution if and only if A + p > 45, which is the
Holley-Liggett condition.

In Section 2 we prove an analog of (1.5) for periodic systems, which is given
in Theorem 2.27. In this case, a(k) becomes a (periodic) function of one
variable, and ¢(%, [) becomes a function of two variables. The analog of (1.5) is
one identity involving the a’s, but not the ¢’s. Guided by this result, we study
in Section 3 the invariant measure for the inhomogeneous contact process (i.e.,
with a deterministic environment) on a finite interval with boundary condi-
tions. This can be regarded as a periodic system in which 8(0) = 0. The main
result in that section, which is the key tool in the proof of Theorem 1.4, is the
following.

THEOREM 1.6. Let v be the invariant measure for the inhomogeneous
contact process with fixed ones at 0 and p > 1. Then there exists a positive
function a on {0,1,..., p} which satisfies a(0) = a(p) = 1,

(1.7 AME)a(k — 1) < [A(k) + 8(k)]a(k),
(18) p(R)a(k + 1) < [p(k) + 8(k)]a(k)
and

(19) v{n:n(k) = 1) > a(k)
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for 1 < k < p, and the following identity:

p1p-1 1 J a(k—1) a(k)] 2 8(1)
L LG Do) k=,~+1[p(k— D AR |1 )
a(k—-1) a(k)]| 2L 8(1)
+120‘1¥+1kl—t—!|-1 p(k_ ) ’\(k)]l=i+1;m
[a(k -1) a(k)] J M
)‘(J +1) piz1[p(kE—1)  AME) 1571 a(l)
1 J [a(k -1)  a(k) J-1 8(1)
(=1 S lp(k=1) 7 AR) | 1=i a(l)

(1.10)

‘LY

+Y jé

i=1j

In order to see why (1.10) is likely to be useful, recall that one way to prove
survival of systems such as the contact process is to show that the invariant
measures for the systems on finite sets with boundary condition = 1 do not
converge to the pointmass on the zero configuration as the finite set increases
to the whole set of sites. The difficulty has always been that it is practically
impossible in nonreversible situations to say anything very precise about these
invariant measures. Thus one wants to find lower bounds of the type given in
(1.9). If the a(k)’s could be computed explicitly, one would get very good
results. While we cannot compute them, equality (1.10) is nearly as useful. To
see this, note by counting the number of a(%)’s which occur in each of the four
expressions in (1.10) that, roughly speaking, one can write that identity in the
form

O(a™1) + O(a) = O(1).

If an « satisfies such an identity, it cannot be too small. Inequalities (1.7) and
(1.8) are needed to show that expressions of the form

a(k—1) a(k)]5(k)
p(k—1)  A(k) [a(k)

are bounded above and below by known quantities (i.e., quantities which do
not depend on the a’s).

2. The periodic system. Throughout this section, we assume that the
transition rates are periodic of period p: A(k + p) = A(R), p(k + p) = p(k) and
8(k + p) = 8(k) for all k. Our starting point is the following two results which
were proved in Liggett (1990) and Liggett (1991) respectively. The a’s and ¢’s
which appear in the statements of these results have the following interpreta-
tion: The contact process is to be run with an initial distribution which is the
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inhomogeneous renewal measure p on {0, 1}? determined by
a(k) = p{n:n(k) =1) and $(k,1) = u{n:n(k) = n(}) = 1,
n(j) =0fork <j <lI}.

THEOREM 2.1. Suppose that there exist a(k + p) = a(k) > 0 for all k and
&k +p, 1 +p)=¢(k,1) >0 for all k <1, which satisfy

(2.2) Y #(k, 1) =1
k<ix<l
and
(2.3) a(i) = T (i, k) = L (k)

for all i, and

ky )b (i1
0=A(k)p(k — 1,1) +p(D)d(k, 1+ 1) + L 5(j) 2 )00

k<j<l a(j)

(2.4)
+[A(k + D)a(k) +p(R)a(k + D)]1j_siy
—[8(k) +8(1) + A(k + 1) + p(1 — 1)]d(k,1)
and
(2.5) d(k,)p(k— 1,1+ 1) >2¢(k—1,1)¢(k, 1+ 1)

for all k < 1. Then the contact process survives, and the upper invariant
measure v satisfies

(2.6) v{n:n(k) =1} = a(k)
for all k.
ReMARK. The periodicity assumptions are not required in Liggett (1990).

The inequality (2.6) was not explicitly stated in Theorem 3.15 of that paper,
but it is a special case of the final sentence in its proof.

THEOREM 2.7. Suppose a and ¢ satisfy (2.2)~(2.4) and
P ®
(28) Y L (-k)Y(k, 1) <.
k=11=k+1
For 1 <k,l <p, define

F(k,))= ¥ (ki)=Y o@D,

i>k,i=l i<l,i=k

where = denotes equality modulo p. For 1 < k < p, let M(k), N(k), G(k) and
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H(E) be the (unique) solutions of the following systems of equations:
[A(E + 1) + 8(k)|M(k) = M(k — 1)A(k)

(2:9) 3 20 Rk, Y MG)-1,
o1 e(i) i=1
[o(k = 1) + (k) N(k) = N(k + 1)p(k)
(2.10)

vy 2O NG R, T NG =1,
i=1

i=1 a(i)

G(k — 1)A(k) + ﬁl%G(i)F(k,i) — G(R)[A(E + 1) + 8(k)]

(2.11) = A(k)a(k — 1) — A(k + )a(k) — p(k)a(k + 1)
F Y pi- DE(Ri), % G(i)=0,
i=1 i=1

P §5(1
H(k + 1)p(k) + 2;1;%%%1f(i)F(i,k)-ff(k)[p(k - 1) +8(k)]

(2.12) =p(k)a(k +1) —p(k — 1)a(k) — A(k)a(k — 1)

+ Xpl M@+ 1)F(i, k), zp: H(i)=0.
i=1

i=1
Then
0=p2% E%M(k)N(k) + Y a(k)[ACk + 1) + p(k - 1)]
k=1 k=1
P (&5(k
ip ¥ {;%[M(k)ﬂ(k) + N(RYG(R)]
k=1
(2.13)

Ak + 1)M(E) — p(k — 1)N(k)}

P (8(k)
+ Y {—=<G(k)H(k) — Mk + 1)G(k) —p(k — 1)H(k);.
k=1{a(k) }

ReEmaRks. 1. This result can be found as (2.12) in Liggett (1991), noting
that as a consequence of (2.2), the S which occurs there equals p.

2. The uniqueness of the solutions to (2.9)-(2.12) is most easily seen by
considering the irreducible continuous-time Markov chains X, and Y, on
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{1,..., p} with the following transition rates:

X, goes from k to [ at rate 8(k)F(l, k)/a(k), and from k
to £ + 1 at (an additional) rate A(k + 1);

Y, goes from k to [ at rate 8(k)F(k,1)/a(k), and from &
to & — 1 at (an additional) rate p(k — 1).

Then (2.9) and (2.10), for example are simply the statements that M and N
are the stationary distributions for X, and Y, respectively. These chains will
appear again later.

3. The remainder of this section is devoted to simplifying (2.13), and
reexpressing it so that it does not depend on the ¢’s. Identity (2.13) appears
later in various forms in (2.18), (2.20), the conclusion of Theorem 2.27 and
(2.34). A limiting form of it, as the recovery rate 8(p) at p tends to 0, can be
found in the statement of Theorem 2.35, which is just identity (1.10).

As it stands, (2.13) does not appear to be very useful, since M(k), N(k),
G(k) and H(k) are very complicated functions of F(%, [), which are not known
explicitly. However, as is observed in Liggett (1991), F(k, [) satisfy the follow-
ing identities as a consequence of (2.3) and (2.4):

(2.14) a(k) = f F(k,i) = f F(i, k),
i=1 i=1

0=A(k)F(k—1,1) +p(1)F(k,1+1) + f 5(i)ﬂk_’izii)(i’l_)
i-1 a(i)

(2.15)  +{8(k)a(k) — A(R)a(k — 1) — p(k)a(k + 1)} 1,y
+[A(k + D)a(k) + p(k)a(k + 1)]1(lsk+1)
_[8(k) + 8(1) + A(k + 1) + p(I — )] F(k,1).

In (2.15), we use the periodicity conventions F(0, ) = F(p, 1) and F(k,p + 1)
= F(k, 1).

We will now see that as a consequence of (2.14), (2.15) and a lot of
cancellation, the combinations of the M(k)’s, N(k)'s, G(k)'s and H(k)’s
which occur in (2.13) can be rewritten in such a way that they depend
explicitly on the a(k)’s, but are independent of the ¢(k, 1)’s and F(k,1)s. This
leads to a useful identity among the a(%)’s (which appears as the conclusion in
Theorem 2.27, and in a limiting form in Theorem 2.35). In order to simplify
(2.9)-(2.13), let

p(k — Da(k)

g(k) = G(k) +pM(k) - =5
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and
Ak + 1Da(k)
h(k) = H(k) + pN(k) —~ k)
Also, set
u(k) =Ak)a(k -1) +p(k — 1)a(k)
and
_ Mk +1)p(k—1)a(k)
o(k) = 0 :
since these combinations will occur often. By (2.9)-(2.12), these satisfy
( )

g(k — 1)A(k) + Z g(l)F(k i) —g(R)[A(k + 1) + 8(k)]

(2.16) = u(k) —u(k+ 1) —v(k—l) +o(k),

P2 (i Da(i)
Le®=r- X =0

h(k+ 1)p(k) + Z E ;

(2.17) =u(k+1) —u(k) —-v(k + 1) +v(k),
P A+ 1)a(i)

p
LAO=r- X =0

h(i)F(i, k) — h(k)[p(k — 1) + 5(k)]

Identity (2.13) becomes

roe(i) oo P . .
(2.18) Y —=g(i)h(i) + ¥ {u(i) - (i)} = 0.
i—1 (%) i=1

REMARK. From the definitions of M(k), N(k), G(k) and H(k) in Liggett
(1991), one can see that g(k) and h(k) are given by

> . p(k—1)a(k)
g(k) = i=§+1(l —k)p(k,i) - T ak)

AME + 1a(k)

(k)
The first part of (2.16) comes from multiplying (2.4) by [ — k and then
summing on all / > & for fixed k. The second part of (2.16) is a consequence of

(2.2). Similarly, the first part of (2.17) comes from multiplying (2.4) by [ — &
and then summing on all 2 <! for fixed I, while the second part is a

k—1
h(k) = ¥ (k—i)o(i, k) -

i=—o
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consequence of (2.2). Equation (2.18) is obtained by multiplying (2.4) by
(I — kXl -k - 1)/2 and summing on all 2 and [ satisfying 1 <k <p and
! > k. Thus the reader can check the basic equations (2.16)-(2.18) without
referring to Liggett (1991).

The next step is to write (2.16) and (2.17) using matrix notation. In order to
do so, let D be the diagonal p X p matrix whose ith entry is 8(i)/a(i), and
A =(a; ;) and B = (b, ;) be the p X p matrices with entries

. ;%—;F(z J) Ay — [AG+ 1) +8()] 1, fl<i<p,

1, ifi=1,

b, .= ai ;F(l J) +p(J)1(j =i—-1) [p(l - 1) + 8(i)]1(j=i)’ if1 Sj <pa

1, if j =p.
Then (2.16) and (2.17) become
(2.19) Ag=x and hB=y,
where x and y are the vectors with entries
u(k) —u(k+ 1) —v(k—-1) +v(k), ifl<k<p,
Z p(i — Da(i)

x(k) =
i=1 8(7) ’

ifk=1,
and
u(k+1)—u(k) —v(k+1)+v(k), ifl<k<p,
y(&) ={ & AG+ Da(i)
PTG

Next, let W = (w; ;) be the matrix AD~'B, and compute its entries using
(2.14) and (2.15) as follows

ifk =p.

Yrp T kZ=:1 8(k)’
Na(j + 1 i — Da(j
w, ;- p({szj(: :) ) eU 5(j)) (J)’ for1<j<p,
Mia(i=1) AG+Da() .

YT TG -1 8G)
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andforl<i<pandl<j<p,

2 a(k) [ (k)
“a = B 5 { a(k)

= 8(k) F(i,k) + A(i)1po;oyy = [AGE+ 1) + 5(i)]1(k=i)}

b 8(k)
E(k)

—[8(8) +8(j) + (i + 1) +p(j - D]F(i, j)

F(i,k)F(k,j) +p())F(i,j +1) + A F(i - 1, )

+o(i = D154y + [’\(‘ +1) +8(i)][p(i - 1) + 8(’)]1@—;)

3( )
_[U(i) +u(J) + u(i)]l(i=j+1)
v(i — 1), ifj=i-2,
—[u@) +v(i) +v(i-1)], ifj=i-1,
=\u(i) +u(i+1)+v(i), if j=1i,
-u(i+ 1), ifj=i+1,
0, _ otherwise.

Note that the matrices A and B are invertible, since for example, u B = 0 is
just the statement that u is an invariant (signed) measure for the irreducible
Markov chain Y, which has total mass 0, and hence u = 0. By (2.19), g = A~ x
and A = yB 1 It follows from the definition of W that W is invertible as well
and W' = B"'DA~!. Therefore, yW~'x = hDg, which is the first sum in
(2.18). Thus we conclude that

P
(2.20) yW ™l = gl{v(i) - u(i)}.

Note that as promised, none of the terms appearing in (2.20) depend explicitly
on the F(i,j)s. It remains to express the left side of (2.20) in a more
convenient form.

In order to do so, we define p X p matrices @ = (g;,;), R=(r;;) and
S = (s, ;) as follows:

c(j), ifi=1,
~1, ifi=j+1,
v(i), ifi=j,
ri=4{-u(j), ifj=i+1,

-u(l), fi=p,j=1,
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and

e(i), ifj=p,
s, ;= 1, ifi=j<p,
-1, ifi=j+1.

In the above, ¢ = (c(1),...,c(p)) and e = (e(1),...,e(p)) are vectors to be
determined later. [In formulas appearing below, these vectors are defined for
other integer arguments by periodicity: c(i) = c¢(i + p) and e(i) = e(i + p).]
Easy verifications show that these matrices have determinants

p

det @ = ), c(k),
k=1

P
(2.21) det S = ) e(k),
k=1
P P
det R= JJuv(k) - T1u(k),
E=1 k=1
and adjoints with entries
1, ifj=1,
P
~ Y e(k), ifi<i,
(AdjQ);,; = k=j
Jj-1
Y c(k), ifl<j<i,
k=1
Jj i+p—1
IT w(k) IT v(k), ifi<y,
. k=i=1 E=j+1
(222) (Ad] R)i,j = j+p i1
IT u(k) I1 v(k), ifi>j,
E=i+1 E=j+1
1, if i =p,
~ ¥ e(k), ifi<i,
(Ad‘]S)lJ= k=1
P
Y e(k), ifj<i<p.
E=i+1

The connection between these matrices and W is given in the following
lemma.
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LEMMA 2.28. Assume that a and ¢ satisfy (2.2)-(2.4) and (2.8). Suppose
that the vectors c and e satisfy

(2.24) c(k)v(k) —c(k — Du(k) + %k(?_l—; = o for some constant o,
(2.25) e(k)v(k) —e(k+ lu(k+1)+ (k(—)l) = 7 for some constant T
and
A i)
(2.26) Y {u(k)e(k)e(k — 1) —v(k)e(k)c(k) +
k=1 (k)
Then W = QRS.
Proor. The (1, p) entry in QRS is
f c(k)v(k)e(k) — i c(k)u(k + 1l)e(k +1).-
k=1 k=1

So by (2.26), it agrees with the (1, p) entry in W. For 1 <j < p, the (1, j) entry
in QRS is

c(f)v(j) —c(j + Du(j +1) —c(j — Du(j) +e(j)u(j + 1),
which agrees with the (1, j) entry in W by (2.24). The same argument applies

to the equality of the (i, p) entries for 1 <i < p, using (2.25). For 1 <i<p
and 1 <j < p, the (i, j) entry in QRS is

Z q;, kv(k)sk j Z q;, ku(k + 1)sk+1 i’
k=1

which agrees with the corresponding entry inW. O

Next, we come to the main result in this section, which gives a useful
identity which is satisfied by the vector a.

THEOREM 2.27. Assume that a and ¢ satisfy (2.2)-(2.4) and (2.8). If
p p
(2.28) [To(k) # [Tu(k),
k=1 k=1

then there exist constants o and 7, and vectors ¢ and e which satisfy
(2.24)-(2.26). Furthermore,

SR U R
tgl J'Z___,; A(i+1) ! P(j—].) kgklu(k)lg_,,lv(l)

v(k)
_ [k]'[v(k) - Hu(k) Z Ak Dp(k— 1)
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Proor. Define vectors z;, z, and z3 by
v(k) _ p(k - 1)a(k)

2B =G D T k)
v(k) Ak + Da(k)
TS VAT
and
o(h) v(k) _ a(k)

AME+1p(k—1) 8(k)°
Also, let 1 be the vector all of whose entries are 1. (We do not distinguish
between row and column vectors—the choice is dictated by which side of a
matrix they appear on.) By (2.21) and (2.28), R is invertible. Note that (2.24)
can be written as cR = o1 — z;, and (2.25) can be written as Re = 71 — 2,.
Therefore, for given o and r, these equations can be solved for ¢ and e
respectively, giving
(2.29) c=0lR'-2R' and e=7R™'1 - R z,.
Equation (2.26) can be written as cRe = 1z, so using (2.29), it becomes
(2.30) 7(e1R™' = 2,R™")1 = 0(1R7'2,) — 2R 72, + 1z,.
Choose o and 7 so that (2.30) is satisfied. The conditions of Lemma 2.23 are
now satisfied, and hence W = QRS. Since W is invertible, @ and S are as well.
By (2.21) and (2.29),
det @ =cl =o(1R7'1) — (2,R711)
and
det S = le = 7(1R™'1) — (1R 'z,).
In order to evaluate the left side of (2.20), we need to compute yS~! and
@ x, which we now proceed to do using (2.21) and (2.22):

OS50 = 355 tS Z y(i)(Adj 8):
et S 1s£i<j[u(l + 1) = u(@) —v(@ + 1) +v(i)]e(k)
(2.31) *5w5 5, LG+ D = u() — o+ D+ el
p— 1z,
* det S
1 1,
~dtS, 2 [w(k) = u()) = v(k) +v()]e(k) + 22
p(1 - 7) + [v(j) —u(j)]le o p(1-7)

det S =v()) —u(i) + =g
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since le = det S as observed above, and
p

kZ [u(k) — v(k)]e(k) = 1z, — p
=1
by (2.25). Similarly,
(2.32) Q x(i) =v(i) — u(i + 1) + %
Therefore, (2.20) becomes
P . . p(l-17)
iz::I[v(z) —u(i) t e
1 —

(2.33) X (Adj R): ;|v(j) — u(j+ 1) + %QL)

=det R {: [v(k) — u(k)].
E=1

From the definition of R,
(1R)(i) =v(i) —u(i) and (R1)(j) =v(j) —u(j+1).
Therefore, the left side of (2.33) can be written as

p*(1-1) . p*(1-o0) N p’(1-7)(1 —0o)(1R™')
det S det @ (det S)(det Q)

det R{1R1 +

The right side of (2.33) is just (det RX1R1). After some cancellation, (2.33)
then becomes

(2.34) (1-1)det@ + (1 —o)det S+ (1 — 7)(1 — o)(1R"'1) = 0.
Using (2.30) and the expressions for det @ and det S which occur just after it,
(2.34) becomes
(z:R7'1) + (1R7'25) + (125) = (1R'1) + (2,R™'2,).
But this is the identity in the statement of the theorem. O

The final result in this section is intended to motivate the approach taken in
Section 3 to the proof of Theorem 1.6.

THEOREM 2.35. Fix values of M(k), 1 <k <p, p(R), 1 <k <p, and 8(k),
1<k <p— 1. Suppose there exists an ¢ > 0 so that if 0 < 8(p) <e, then
there are solutions a and ¢ of (2.2)-(2.4) which satisfy (2.8). Suppose also
that a(k) has a nonzero limit as 8(p) — 0 for each 1 < k < p. Then this limit
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satisfies the following identity:
p—1p-1

,21 ,Z A(J+ Dp(i— 1) e= L+1[p(k—1) A(k) Ua(l)
p_ 1 P a(k -1 a(k)] /=L 81
Ay Y [ ( ) (k) (1)

+ m——
ic0 joir1k=i+1| P(k = 1)  A(R) |i=iv1 a(l)

-1p-1 3 J [a(k—l) a(k)] 7 8(1)

- zzo JZL AM(J+ 1) piiv1|p(k—1) ¥ A(R) l=i+1m

1 J [a(k -1) .\ a(k) ]f—l 5(1)
p(i = 1) e=is1|p(k = 1)  A(R) |i=i a(l)’

a(k — 1) a(k)] i 8(1)

-

Proor. We will pass to the limit in the identity given in Theorem 2.27 as
8(p) — 0. All of the quantities in the identity except v(p) have nonzero finite
limits; v(p), on the other hand, tends to x. Therefore, (2.28) is eventually
satisfied. The dominant term on each side of the identity is

v(p) P
N Dp(p — 1) AL

which is quadratic in v(p). After subtracting this term from each side of the
identity, the dominant terms are those which contain the first power of v(p).
Dividing by v(p) and passing to the limit in the identity yields the following:

B 1 1 P —1p—1 v(z) v(J)
[A(l) p(p—l)]n"(k’* R A R YEES) [1 2G-1)
i—1 r-1
kalllt(k)nv(l) n v(l)
v(J) J
(2.36) —El A(l)[ "G - H u(k) _JI]Hv(l)
p-1 1 v(i) p i-1
_i=1p(p—1)l v I NI O
p-1 p-1 v(k) 1 P
LB L a0 =D~ aetr =1 AL *)

The first expression on the left above comes from the term i =j = p in the
identity in Theorem 2.27, the second from the terms with i # p and j # p, the
third from those with i = p and j # p, and the fourth from those with i # p
and j = p.
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Dividing (2.36) by
p—1

[Tv(k)

k=1
and combining terms with the same A and/or p factor leads to
p-lp-1 71 J o u(k)
i U(Z) r=iv1 v(k)

i=1 j=
2-1 »p v(Jj) I u(k)
(2.37) + S0 i 5 AG + Dp(J — 1) wmisa v(k)
PR 1 Lou(R) AR w() L (k)

-X X

i=0 j=i A(Z + 1) p=it1 v(k) i=1j=i p(J — Dv(i) z=it1 v(k)
Using the definitions of u(%) and v(%) in (2.37) gives the required identity. O

3. The system on {1,...,p — 1}. The difficulty with the results in
Section 2 is of course that they all assume that the system (2.2)-(2.4) has a
solution. This begs the original question, since if we knew that, Theorem 2.1
could be applied directly to conclude that the contact process survives, at least
in the case of a periodic environment. We will rectify this situation in this
section by studying the system on {1,..., p — 1} with fixed boundary ones at 0
and at p. This will be regarded as a periodic system in which 8(p) = 0. We
cannot simply set 8(p) = 0 in the results of the previous section, since 8(p)
appears in the denominator of various expressions. More serious is the obser-
vation that in Theorem 2.35 we saw that there is no information in the leading
terms in the identity from Theorem 2.27—the useful information is in the
second-order terms. Therefore, for most of the quantities appearing in Section
2, we will need to keep track of what would correspond to both the first-order
and second-order terms in 8(p). We will not be using any of the results proved
in Section 2 here—they will merely be a guide in developing identities involv-
ing these quantities. We will use the suggestive notation g’, 4/, and so forth, to
denote the versions of these quantities corresponding to the second-order
terms. In this section, we will take periodic rates A(k + p) = A(k), p(k + p) =
p(k) and 8(k + p) = 8(k) for all k. These are all strictly positive, except that
8(k) = 0 for k = p (recall that = means equality modulo p). The purpose of
this section is to prove Theorem 1.6. We begin with the following easy result.

THEOREM 3.1. There exist a(k) > 0 for all k and ¢(k,1) >0 forall k <1
with the following properties:

) a(k + p) = ak) for all k, and ¢(k + p,l + p) = ¢(k,1) forall k < 1.
(i) a(p) = 1, and ¢(k,1) = 0 if k <m < for some m = p.
(iii) a(k) and ¢(k,1) satisfy (2.2)-(2.5).
(v) MR)a(k — 1) < [A(R) + 8(k)a(k) and
p(R)a(k + 1) < [p(k) + 8(k)]a(k) for all k.
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Proor. We may assume without loss of generality that the rates A(k), p(k)
and 8(k) are all less than 1/4. Let ® be the set of all @ > 0 and ¢ > 0 which
satisfy (i), (ii), (2.2) and (2.3). As a consequence of part (ii), the sums occurring
in (2.2) and (2.3) contain at most p? nonzero terms. Therefore, ® is compact.
It is also convex. Define a mapping I' on ® by (B, ) = I'(a, ¢), where

Y(k,1) = ¢(k, 1) + M(k)d(k — 1,1) +p(l)p(k, 1+ 1)
k,j)o(j,1
i Y 6(j)¢( J)?(J )
r<j<i (J)
+[A(k + Da(k) +p(k)a(k + 1)]1;_p.q
—[8(k) + 8(1) + A(k + 1) + p(I — 1)] (&, 1)

[if a(j) = 0 for some j, the corresponding term in the sum above is taken to
be 0] and

(3.2) B(i) = X v(i, k) = X2 w(k,i).

E>i k<i .
It is easy to check that I' maps ® into itself, and that the second equality in
(3.2) holds, so that this equation can be used to define B(i). The assumption
that the rates are less than 1/4 guarantees that ¢(k,!) > 0. Now sum the
identity above which defines (%, 1) on I > k for fixed k. Noting that

- k. » - ’ .
Z E 5(j)w= Z 5(J ¢( ‘]) Z ¢(
I=k=1k<j<I a(J) j=k+1 J) I=j+1
=T )k, )
j=k+1

since (a, ¢) satisfies (2.3), the result is
B(k) = [1—8(k)]a(k) + A(k)[a(k — 1) — ¢(k - 1, k)]
+p(k)[a(k + 1) — (&, k + 1)].

Note that T' is continuous, since ¢(k, I) < min{a(k), ()} on ®. Therefore, I"
has a fixed point, which we call (a, ¢). This solves (2.2)-(2.4). By (3.3),

8(k)a(k) = A(k)[a(k = 1) — $(k = 1, k)]
+p(k)[a(k + 1) — ¢(k, k + 1)].

Using ¢(k - 1, k) < min{a(k — 1), a(k)} and o¢(k, & + 1) < min{a(k),
a(k + 1)}, we see that

ME)a(k — 1) < [A(E) + 8(k)]a(k)

(3.3)

(3.4)

and
p(k)a(k + 1) < [p(k) + 8(k)]a(k).
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Since a(p) = 1, it follows that a(k) > 0 for all k. The fact that ¢ satisfies
(2.5) is a consequence of Proposition 3.17 of Liggett (1990). The hypotheses of
that proposition are very easy to verify, since 6(p) = 0 and ¢ satisfies part (ii).
Thus (a, ¢) has all the required properties. O

From now on, we will fix a choice of (@, ) with the properties given in
Theorem 3.1. Guided by the corresponding definitions in the previous section,
let g, g, h, I, x, x', ¥y and ¥’ be the p-dimensional vectors with entries

~p(p-1), ifk=p,
g(k)={0, if1<k<p,
: . (k- 1)a(k)
§(R) = T (i =Be(ki) - T30 Taane
L _[~MD, ifk=p,
h(k’_{o, ifl <k <p,
Ak + 1a(k
K (k) = 2k(k —1)é(i, k) - -—(—_6(“76)7—(_11(15k<p):

_P(p - 1)7 ifk = 1,
x(k) =40, ifl<k<p,
A(l)p(p - 1)’ if & =D,

Pt p(i - Da(i)

P L S ifh=1,
' _ i=1
FO) = uh) —w(h+ 1) —o(k = 1) + u(k), 1<E<p,
u(p) —u(l) —v(p -1, if k=p,
0, ifl<k<p-1,
y(k)={-ADp(p-1), ifk=p-1,
~A(1), itk =p,
and
w(k+1) —u(k) —v(k+1) +o(k), fl<k<p-1,
) u(p) —u(p—-1) +uv(p-1), ifk=p-1,
Y(B) =1 221G + 1a(i) ,
p— if R =p.

i )
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Also, let A, A", B and B’ be the p-dimensional matrices with entries

8(J)

a;,; =4 a(j)
1, ifi=1,

—=F(i,j) + A0) 1oy — [AG + 1) + 8(i)]1 -y, if1<i<p,

@;,; = F(6,p)lucicp, j-p ~ Lizj=pp

o(1
b — E ;F(l J) + () jmiy = [p(i = 1) +8(i)]1;.y, f1<j<p,

1, if j =p,
and
b, =F(0,))Yacj<p,i=p

Here F(i, j) is defined as in the previous section. The analogs of (2.18) and
(2.19) are given next.

PRrOPOSITION 3.5. The vectors and matrices defined above satisfy the follow-
ing identities:

(3.6) Ag=x and hB=y,

(3.7) Ag'+ Ag=2x'" and KB+ hB =y,
PRYO(E) Lo po Rl

(3.8) L o OrF@ + X u@) - X o)

=AM1)g'(p) +p(p — K (p).

Proor. We prove the first parts of (3.6) and (3.7) only, since the second
parts are similar. For the first part of (3.6), write

P
(Ag)(l) = .Zlai’jg(j) = —p(p - 1)al P
Jj=

=p(p — l)A(l)l(i=p) —p(p - l)l(iél) =x(1).

To prove the equality of the first coordinates of the two sides of the first part
of (8.7), write

2 p-1 - 1a
(A8)(1) + (48)(1) = £ 0y 8'() =p - £ DL
J=t -1 90

where the middle equality follows from (2.2). For the other coordinates of the
first part of (3.7), take 1 < k < p, multiply (24) by I — k and sumon [ > & as

x'(1),
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follows:

0= [(1-k+1) - 1][A(k)¢(k — 1,1) + p(1)$(k, 1 + 1)]

ik
+A(k + 1)a(k) + p(k)a(k + 1)

k,j , 1
VT L) + (- ke 2 Ee0D

J>kI>j a(J)

=Y (I-k)[6(k) +8(1) +A(k+1)+p(l - 1)]é(k, 1)
I>k

(3.9)

, p(k — 2)a(k - 1)
=/\(k){g(k—1)+ 5= D) }

-[ME+1) + 5(k)]{g’(k) + Ml{k#p}}‘

o(k)
+u(k+1) - AR)a(k-1)— Y  p(D)d(k,1+1)
l>k,l=p—1
d(k,j)
+j2>:k5( J) «(J) &),

where a substantial amount of cancellation has occurred in order to obtain the
final expression. On the other hand, for 1 < % < p,

(Ag' + Ag — x")(k)

P p
= Z ak,jg’(j) + Z a'k,jg(j) —x'(k)
j=1 j=1

(3.10) Z -ﬂkngU)+MMgM—1)

—[A(k + 1) +8(k)]g'(R) = p(p = D[F(k, p) = 1y-p)]
—u(k) tu(k+1)+v(k—1) —v(k)l,,,.
Using the definitions of u(k), v(k) and F(k, j), it is easy to check that the

right sides of (3.9) and (3.10) agree, and hence the first part of (3.7) is proved
for 1 < k < p. To prove (3.8), multiply (2.4) by (I — kXl — k — 1)/2 and sum
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on all k and [ satisfying 1 < k < p and [ > k to obtain
(I-k+1)(l-k)
0- £ |

k=11>k 2
X[A(k)d(k - 1,1) + p(1)$(k, 1 + 1)]

(l-k+1)+1}

P L—j)l-j—1 kY- k-1
+ZZZ{( J)(ZJ )+(J )(J2 )
k=1j>k I>j
k, j)o(j.1
(311) #(1-0) - 0 o) B
zp: Y (l_k)(l_k—1)[6(k)+5(l)+A(k+1)

k=11>k 2
+o(1 = D]k, 1)

p k—2)a(k~-1
=—Zaw%gw—1»+“ a;?n )%Hn‘ﬂk_n}

k=1
p AMI+2ea(l+1
- Z P(l){h'(l +1) + ( -;(l)+(1)+ )l(lsﬁp—l) —a(l+ 1)}

Jj  — Da(j AJ+ Da(j
N E &( ){ G + p(J ') (J)}{h,(j)+ (J .) (J)}.
j=1a(J) 8(J) 8(J)

The key fact which leads to the last equality is the cancellation of the terms
which involve (I -k + 1IXl — k), U —jXl—-j—-1), (j —kXj—k —1) and
(Il — kX1 — k — 1). Further cancellation of terms on the right side of (3.11)
leads to (3.8). O

Now fix £ > 0 and define the diagonal p X p matrix D by setting d; ; =
8(i)/a(i) for 1 <i<p and d, , =¢. D is invertible, so we can define the
matrix W by

W= (A+eA)D Y(B+eB).
Compute the entries of this matrix using (2.14) and (2.15) as follows:
p-1 a(k
= Z a;, kﬁgk; '+e—1[ai,p lp][bp1+£bl J],

so that
-1 ok
Wy p,= kgl :zk; +e71,
W= %100-» + &7 0(J) Ljmpoyy — ESL;(;)T“U_),
. _ for1<j<p,
Wi,p = i%)—‘(‘:(:l‘-l——)}—)‘ - A1), — A_(f_;_(liz)f_(_l_).l(i”), for1<i<p,
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andfor1<i<pandlsj<p,

La(k
g ( ) { Ek; F(l k) + /\(l)l(k ey~ [/\(1, + 1) + s(i)]l(k=i)}
(k) . .
x{ (k)F(k ) (D pmjey — [p(J — 1) + 3(1)]1(k=j>}

5_1[—)1(1)1(i=p) +e{F(i,p) - 1(i=p)}]
X[p(P = D)1jop-yy + €F(0, )]
=7 MDp(P = Doy, jop-yy + eF(0, /) [ F(i, p) = L;_p)]

v(i — 1), if j=i-2,
—[u(d) +v(D)py +o(i - D], fj=i-1,
u(i) +u(i + 1) +v(i), if j =1,

—u(i+ 1), ifj=i+1.

We are now in a position to carry out the remainder of the proof of Theo-
rem 1.6.

Proor oF THEOREM 1.6. Define v(p) = ¢!, and let g*, h*, x*, y*, A*, B*,
W*, @*, R* and S* be defined as the corresponding ‘“unstarred” vectors and
matrices in Section 2, with 8(p) replaced by . Take ¢ sufficiently small that
(2.28) holds, and let o, 7, ¢, and e be defined as in the statement and proof of
Theorem 2.27. Note that

g*=g +¢g, h*=H +e7'h, x*=x'+elx y*=y +ely,
A*=A + A, B*=B +¢B and W*=W+ W,
where W' is the matrix with entries

w;,j = F(O,j)[F(i, p) — 1{i=P)]1(i¢1,jaep)'

The conclusions of Proposition 3.5 can then be restated as

(3.12) A*g* =x* + O(e), h*B* = y* + O(¢)
and

p
(3.13) h*Dg* = kz_:l[v(k) —u(k)] + 0(e),

where O(e) refers to the behavior as ¢ | 0. By examining the expressions in
(2.21) and (2.22), we see that det R* = O(¢~1), (R*)~! = O(1), and the entries
in (R*)™! in the pth row and column are O(e). Since det W* = O(¢~!) and

* = @*R*S* by Lemma 2.23, it follows that det @* det S* = O(1). Combin-
ing these observations with (2.29) and (2.30), we see that the choice of o and 7
can be made so that they, as well as @*, S* and their adjoints are O(1) as
€ | 0. Therefore, (W*)~1 = O(1) as well. As observed in Section 2, A* and B*
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are invertible, so that we can rewrite (3.12) as
g* = (A*)_l[x* + 0(e)] and A* = [y* + 0(5)](B*)_1.
Using this in (3.13) and recalling that W = A*D~1B* it follows that

p
(3.14) [y* + O()][W* — eW 1 x* + 0(e)] = Y [v(k) — u(k)] + O(e).
k=1

Since (W*)~! = O(1), we can combine the O(¢) terms to conclude that (2.20)
holds for the starred quantities, provided that we add a O(e) term to the
right-hand side. It now remains to repeat the proofs of Theorems 2.27 and
2.35, keeping track of the order of the additional error terms which are carried
along. Equation (2.33) is modified by the addition of an O(1) term since
det R* = O(¢~1). Equation (2.34) is modified by adding an O(e) term since
det @* det S* = O(1). The identity in the statement of Theorem 2.27 is modi-
fied by adding an O(1) term. Identity (1.10) follows from this as in the proof of
Theorem 2.35. Inequalities (1.7) and (1.8) were already stated as part (iv) of
Theorem 3.1. Inequality (1.9) follows from Theorems 2.1 and 3.1. O

4. The general system. In this section, we will prove Theorem 1.4. For
m < n, let v,, , be the invariant measure for the contact process with fixed
ones at m and n. For m <k < n, put

O, n(R) = v, An:m(k) = 1}.

By attractiveness, this quantity decreases as n 1 and as m | for fixed k.

Apply identity (1.10) with 0 and p replaced by m and n respectively.
Discard all terms in the second expression on the left side of that identity, and
discard all but the terms with i = j in the first expression on the left side. Use
(1.9) to eliminate the a from the remaining expression on the left side. Next,
eliminate the a’s from both expressions on the right of the identity, using (1.7)
and (1.8) in the form

p(k — 1) a(k—1)  A(k) +8(k)
p(k-D +o(k-1) = a(k) ~ Ak

The result is

n=1 3(i) !
(4.1) i=§+1 Ai+ Dp(i—1) O, (1)

< LW,
where
7 8(R)[M(K) +p(k - 1) +8(k)]
A(J +1) plit1 p(k — 1)A(k)
i 1 i 8(k—1)[A(k) +p(k— 1) +8(k—1)]
e p(J = 1) k=jrr p(k — 1)A(k) '

W-x

+
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Proor oF THEOREM 1.4(i). Using the monotonicity of o, (i) in m and n,
we can take expected values in (4.1), divide by n — m and pass to the limit as
n toand as m | — o (since the sequences of random variables which occur are
stationary), to obtain

8(i) 1 .
AG+ Dp(i = 1) v{nin(i) =1) =

where v is the upper invariant measure of the contact process. The assump-
tion of part (i) of Theorem 1.4 is just the statement that EW, < «. Therefore,

v{n:n(i) =1} >0

for almost every environment, and hence the process survives. O

EW;

Proor oF THEOREM 1.4(ii). Let A, be the dual contact process, which has
rates &'(k) = 8(k), p'(k) =A(k + 1) and X(k) = p(k — 1). Then the duality
relation [see Theorem 1.10 of Chapter 6 of Liggett (1985), for example] gives

Op.n(k) =P®[m € A, or n € A, for some ¢]
for m < k < n. By attractiveness, we have

O n(k) < PEEYL [ m € A, for some t]

(4.2)
+ Ptk -LE[p e A, for some ¢].
Let
U, = P**+L . )[k — 1 € A, for some ¢]
and

V, =Pl k-LB[E + 1 € A, for some ¢].
Using attractiveness again and (4.2), it follows that
o-m,n(k) < Um+1Um+2 e Uk + Vka+1 T Vn—l'

Using this in (4.1) gives

4y ¥ 2 : Y W
. . . . —~ < .
ieme1 M3+ Dp(i — 1) T Uy + 2V, i=m

By the assumption of part (ii) of Theorem 1.4,
8(k)[A(k) +p(k — 1) + 8(k)] } <1
A(R)p(k — 1) ‘

By the ergodic theorem, if y, <y < y, < 1, there exists a random integer N
so that for j > N,

y= exp{Elog

R OINOLY DR
T p(k — DA(R) e
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0 3(k)[A(k) +p(k — 1) +8(k)]

s 11 p(k — D)ACK) =

Since
Elog A(k) > —,

if o < 1, this N can be taken so large that A(j) = 0/ and A(—j) > ¢’ for
J = N as well. Using these estimates, one sees that

)»

j=i )\(J + 1) k=i+1 p(k - 1)’\(k)

( yla)'i' = 1 I s(R)[AR) +p(k — 1) +8(R)]

sup
i Y2

The expression in parentheses can be made arbitrarily close to 1. Applying the
same argument with 8(k) replaced by (k£ — 1) and A(%) replaced by p(k) and
then using the definition of W, yields the conclusion that the right side of (4.3)
grows more slowly than exponentially in n — m. Applying the ergodic theorem
to the nonpositive stationary ergodic sequences {log U,} and {logV,}, we see
from (4.3) that either U, =1 or V, = 1. A similar argument shows that for
each positive integer m, either

P#k+L )k — m € A, for some ¢]

Il
p—

or
Pl k-LB[E 4 m e A, for some ¢t] = 1.

This gives the needed conclusion. O
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