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The paper gives bounds for the accuracy of Poisson approximation to
the distribution of the number of points in a point process. There are two
principal bounds, one in terms of reduced Palm probabilities for general
point processes, and one involving compensators for point processes on the
line. The latter bound is frequently sharper than the previously used
compensator bounds when the expected number of points is large, and
examples show that little improvement is possible without changing the
form of the bound.

1. Introduction. There are two methods commonly used for obtaining
bounds on the total variation accuracy of approximation of the distribution of
a sum N, of dependent indicators I,,..., I, by a Poisson distribution. The
first, initiated by Freedman (1974) and Serfling (1975), is to suppose that there
is an associated filtration (%),_;., and that the conditional probabilities
p; = PlI, = 1|.%,_,] are known for each i. This structure leads naturally to
bounds expressed in terms of martingale characteristics and, especially, of the
compensator A of the associated point process: A(i) = Z‘ —1P;.

A typical result is that of Brown (1983) [but see also Brown (1982) Valkeila
(1982, 1984), Kabanov and Liptser (1983) and Kabanov, Liptser and Shiryayev
1986)]:

(1.1) dry(-ZN,, Poisson,) < E|A(n) — ul + E{ Y pjz},

Jj<n

where diy denotes total variation distance, and the result carries over to
counts of numbers of points in a point process on the line. In particular, the
compensator bounds may be considered as perturbations of the celebrated
result of Watanabe, that a point process is a Poisson process if it has a
deterministic continuous compensator.

The second method, the Stein—-Chen method, was developed by Chen (1975).
Here, the dependence structures most easily exploited are those in which any
given indicator is only strongly dependent on a few others or in which the
dependence between indicators is essentially symmetrical. With dependence of
either form, it may be possible to construct an associated filtration, but it is
rarely natural to do so, and the bound thus derived using (1.1) may suffer in
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consequence. A good example is given by sums of dissociated indicators, where
the estimate of Barbour and Eagleson (1983) using the Stein-Chen method
improves significantly upon the bound obtained using compensator methods in
Brown and Silverman (1979). However, even for independent indicators, tak-
ing u = L%_,p; in (1.1) only gives a bound of £?_, p?, whereas the Stein—~Chen
method gives (1 A p~ L%, p? [Barbour and Hall (1984)], which is essentially
sharp. The crucial point is that for large means the bound remains small if the
maximum probability is small.

The aim of the paper is to combine the two methods in such a way that the
extra precision of the Stein-Chen approach can be achieved for point pro-
cesses, especially taking account of the fact that point processes are often
defined by their compensators. There are two main results. The first, Theorem
3.1, is in essence a generalisation of Theorem 2.1 of Barbour and Holst (1989)
to a point process N over a general carrier space; it expresses the total
variation distance between .Z/N(B) and Poisson, p, as an average, weighted
according to the mean measure v over B, of the Wasserstein distance between
ZN(B) and the reduced Palm distribution of N(B) given a point at x € B.
Note that, when N is not simple, the result goes beyond that of Barbour and
Holst and is better than just admitting failure for all realisations of N which
contain multiple points in B. The theorem requires no filtration, but computa-
tion of the Wasserstein distance may prove difficult, if no inspired coupling can
be found.

The second result, Theorem 3.7, presupposes a point process N on the line,
and the bound consists of three terms. Two of these are those of (1.1),
multiplied by factors which become small if u, which is usually close to EN,, is
large. The cost of this improvement lies in the third term, which again
requires the computation of an average of Wasserstein distances, but now only
involving the future development of the process beyond time s. As a result,
the third term is more easily estimated than the bound in Theorem 3.1.

The remainder of the paper consists of examples illustrating the significance
of the various terms in the bounds, as well as techniques useful for estimating
the Wasserstein distances. The bounds are computed for point processes with
conditionally independent increments, and in particular for Cox processes, for
the Markov point process and for a self-compensating Bernoulli process. The
examples illustrate that the improvement in the first two terms of Theorem
3.7 as compared with (1.1) is the best possible, in the sense that the new
factors introduced have the right order of magnitude for large u and that the
third term also cannot be improved by the introduction of a better u-depen-
dent factor.

2. Notation and definitions. The most general result (Theorem 3.1)
concerns a locally finite point process N whose carrier space X is assumed to
be locally compact, second countable and Hausdorff. Informally this process is
just a random countable collection of points on X and, for a Borel set B of X,
N(B) counts the number of points in B. For general definitions and results
about such processes, see Kallenberg (1976). The point process is simple, if,
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for w outside a P-null set E, for all x, we have N({x}, w) = 0 or 1. We always
assume that the first moment measure v of N is also locally finite, that is,
finite on bounded Borel sets. Of particular importance here is the Palm point
process N* whose distribution, when N is simple, is that of N conditional on
there being a point at x € X. Formally, let 3(X) denote the space of point
process measures, let f: X X R(X) — [0, ©) be measurable and let B be a Borel
set of X. Then, by Lemma 10.1 of Kallenberg (1976),

(2.1) B{ [ f(z. N)N(d)| = [ B(f(z, N)}w(d)

(a special case of this identity actually defines the distribution of N* as a
Radon-Nikodym derivative). We depart from the notation of Kallenberg in
using N¥*, rather than N,, for the Palm process because for a point process on
the half-line N, is commonly used to mean N(0,x], a convention that we
follow. It is sometimes convenient to remove an atom at x (€ X) from the
realisation of N* by considering the process N* — §,, called the reduced Palm
process, where 8, is the measure which attributes 1 to the singleton {x} and 0
to all sets not containing x. Lemma 10.2 of Kallenberg (1976) then gives

(2.2) E{[Bf(x, N - 5x)N(dx)} = fBE{f(x, N* - 5,)v(dx)).

Equation (2.2) is particularly useful when N is simple, for the reduced Palm
process then describes the behaviour of the rest of the process conditional on
there being a point at x.

The second main result concerns simple point processes whose carrier space
is (0, ). For such processes, there is a natural ordering of the points and this
ordering is often important in specifying the probability law. Hence, we
frequently use results from the French structural theory of stochastic pro-
cesses indexed by (0, »), referring to the two volumes by Dellacherie and Meyer
(1978) and (1982). In particular, we always have a history, that is, a right-con-
tinuous, increasing set of o-fields {%,},. o, in the background. For the same
reasons as in Jacod (1975), it is neither convenient nor necessary to assume
that the history is complete with null sets. A stochastic process {X,} is
normally assumed to be adapted (X, is #-measurable) unless it is stated that
it is raw. We adopt the usual convention that random variables which are a.s.
equal are declared equal and also that processes are equal if the projection onto
Q) of the set on which they are unequal is contained in a set of probability zero,
that is, that the set of inequality of the processes is evanescent. Of consider-
able importance to us are the optional and previsible projections of a raw
process X, whose definitions are given in Dellacherie and Meyer [(1982), page
103]. The optional projection is denoted °X and the previsible projection is
denoted *X.

A point process whose carrier space is (0, ©) can be considered as a stochas-
tic process {N,},. , by setting N, = 0 and N, = N(0, t]. An equivalent way to
define such a process N is to suppose that 0 < T, < T, < --- is an un-
bounded sequence of stopping times. If the stochastic process N is defined for
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t > 0by

Nt= Z I[Tnst]’
n=0

then N is a simple point process. If Z,,Z,,... is a sequence of random
variables such that Z, € %(T,) for all n and

N,= Y ZI[T, <t],
n=0

then we say that N is a jump process, and if the Z’s take nonnegative integer
values, then N is a general point process. In this case, assuming as above that
v, = v(0, t] is finite, the compensator of N is its dual previsible projection, the
unique process A with increasing right-continuous paths and A, = 0 such
that N — A is a martingale. We frequently use the operator A on processes:
AA,=A, - A, _.

The bounds involve metrics on the set F(Z*) of probability measures on
Z*=1{0,1,2,...}. The total variation metric dy is defined for & and 2 in
P(Z™) by
(2.3) dw(Z, 2) = sup|Ph — 2h|,

where the supremum is taken over h: Z*— [0, 1] and a probability applied to
such a function is just the expectation of the function as a random variable on
the nonnegative integers. We also have

(2.4) dwy(#,2)=infP(X+Y),
where the infimum is taken over all possible joint distributions for random

variables (X, Y) such that X has distribution & and Y has distribution 2,
and

(2.5) dey(2,2) = 1 T 12(n) - 2(n)
n=0

[see Barbour, Holst and Janson (1992), Appendix]. For h: Z*— R define dh to
be the function defined on {1,2,...} with dh(n) = h(n) — h(n — 1). The
Wasserstein metric dy, is defined by

(2.6) d (P, 2) = sup|Ph — 2hl,

where the supremum is over bounded functions h: Z*— R such that dh has
codomain [—1, 1]. Just as for the total variation metric, there are two equiva-
lent ways of writing the Wasserstein metric,

(2.7 dw(#,2) =infEIX - Y,
where the infimum is as in (2.4), and

(2.8) dw(£,2) = f |Z[n,o) — 2[n, )

n=0

[see Barbour, Holst and Janson (1992), Appendix]. Equations (2.4) and (2.7)
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permit the estimation of distances by the construction of pairs of random
variables and this technique is often referred to as coupling.

The Stein—Chen method for computing the total variation distance between
the distribution of a random variable X with values in Z* and a Poisson
distribution with parameter u was introduced in Chen (1975). The main plank
[see, e.g., Barbour and Eagleson (1983)] is that for any h: Z*— [0, 1] there
exists a function

(2.9) g: 2%~ [—Ky(n), Ky(n)]
such that
(2.10) E(h(X)) — Poisson,(h) = E{ug(X + 1) — Xg(X)},
where K,(u) =1 A 1.4u~ /2 It can also be shown that for each h and u
(2.11) sup |dg(n)l < Ky(n),
n=1,2,...

where K,(u) = (1 — exp(—u))/u. Thus, to bound the total variation distance
we need to estimate the absolute value of the right-hand side of (2.10) for g as
in (2.9) and (2.11). It is worth noting that K; and K, are both bounded by 1,
both tend to 0 at » and K; > K,. Often, terms in the bounds given will consist
of K,(n) multiplied by an integral with respect to a measure whose total mass
is u. Apart from the factor (1 — exp(—pu)), such terms are just averages of the
integrand.

For a random element X of some space, -ZX denotes the distribution or
probability law of X, that is, if F' is a measurable set of the space, .ZX(F) =
P(XePF).

3. Main results. The first result concerns the distribution of the number
of points in a set for general carrier spaces. It provides an explicit bound for
the departure of the distribution from Poisson in terms of the average
Wasserstein distance between the distribution and the reduced Palm distribu-
tion for the number of points in the set. The theorem is natural in that the
reduced Palm distribution and the ordinary distribution for the number of
points in a set coincide in the case of a Poisson process, as may easily be
checked from (2.2) with f(x, ¢) of the form I[£(A) = m] for bounded A and
m=0,1,.... In the case when X is a finite set, it coincides with that of
Barbour and Holst [(1989), Theorem 2.1], but it does not seem that the
connection with reduced Palm probabilities for the general case has been noted
before.

THEOREM 3.1. Suppose that N is a point process on X and that N has a
locally finite mean measure v. Then, for any bounded Borel set B of X and
u =0,

dv(-ZN(B), Poisson ,)
(3.2) < K,(u)lv(B) - ul
+ Ky(w) [ dw(LN(B), Z(N* = 5,)(B))»(dw),
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where K () =1 A (1.4pn"Y%) and Ky(n) = (1 — exp(—p))/u. Usually, p is
taken equal to v(B), in which case (3.2) reduces to

dv(-ZN(B), Poisson,g,)

< Ky(v(B)) [ dw(-/N(B), Z{N* = 3,}(B))v(dx).

ProoF. Let g be any function satisfying (2.9) and (2.11). The first term
arises as an estimate of |[E(u — v(B)}g{N(B) + 1})|. We have

E(N(B)g(N(B))) - B( [ gl N(B)}N(ax)

- B( [ 6V - 5.)(B) + )N(am),

because the integral is a sum over the values at the atoms of N times the
number of points at each atom. Applying (2.2), the left-hand side equals

[ Ele((N* = 5,)(B) + 1)}v(dx)
and thus the absolute difference of E{N(B)g{N(B)}} from
E{v(B)g(N(B) + 1}} = [ E{g[N(B) + 1}}v(dx)
is bounded by
[ Blel(N* - 5,)(B) + 1}} - E{g(N(B) + 1}}|v(dx).
This gives the theorem, upon applying (2.6), (2.9), (2.10) and (2.11). O

We now turn to the problem of finding bounds suited to the special
structure of point processes on the line. The following lemma plays an
important role in the formulation of Theorem 3.7 in terms of compensators.

LemMaA 3.3. Suppose {X,} is a raw nonnegative integer-valued process. For
each o and each s > 0, there exist probability distributions (-, w) and
Z7 (-, w) on the nonnegative integers such that if, for each m > 0, {g,(m)} is
a bounded previsible process,

(3.4 6(X) = T g(m)@(m)
and
(35) 6(X) = T £(m); (m),

where P(m) is the process (s, w) = P({m}, ) and similarly for #. Fur-
thermore, Z(m) is °I[ X, = m] and £ ~(m) is’I[ X, = m].
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REMARK 3.6. The optional projection of a right-continuous left limits pro-
cess X is the unique right-continuous left limits process °X such that °X is a
version of E(X,): see, for example, Rogers and Williams [(1987), page 320,
Theorem 7.10]. This makes it easy to identify the optional projection later.

Proor oF LEMMA 3.3. We define &(m) and & (m) so that the last
sentence of the lemma is true. From the construction of the optional and
previsible projections, a nonnegative raw process has a nonnegative optional
and previsible projection. Furthermore, the optional and previsible projections
are linear operators. Thus, we may modify &£(m) and & (m) on a single
evanescent set so that, for all w and s,

0<Z(m,w), P (m,w) < 1.

Furthermore,

i I[X,=m]=1.

m=0

because X, takes values in {0,1,2,...}. Now the optional projection of the
sum on the left is the sum of the optional projections as is readily checked
from the definition and the monotone convergence theorem for conditional
expectations. Likewise, the previsible projection of the sum on the left is the
sum of the previsible projections. Hence the sum of #Z(m) and & (m) over m
in {0,1,2,...} is the optional projection of the constant 1. Making further
modifications on a single evanescent set we can ensure these sums are globally
1in s and w. We may therefore define, for a set of nonnegative integers I,

Z(I)= ¥ P(m) and F(I)= YL % (m),

mel mel

and these have the property that, pointwise in w, & and &2~ are probability
measures on {0,1,2,...}.
Suppose T is a bounded stopping time. For each w and s,

00

8.(X,) = L &(m)I[X,=m].
m=0
Because g is adapted, °(g,(m)I[X, = m]) = g,(m)#(m) and thus
Er{gr(m)I[ X, = ml} = gr(m)Pp(m). Hence, by bounded convergence and
linearity for conditional expectations,

E;(gr(Xp)) = f gr(m)Pp(m).

m=0

Now the right-hand side of (3.4) is the limit of optional processes and so is
optional. This and the last equation demonstrate (3.4), by the definition of the
optional projection. Similar considerations with T being previsible give (3.5).

O
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THEOREM 3.7. Suppose that N is a simple point process with compensator
A. For each t = 0,

d (N, Poisson()) < Ky(1) EIA, - ul + Ky(w)E{ L A4%(s))

(3.8)
+ KW E| [du(2, 2) dN,),

where P, P are the probability distributions defined in Lemma 3.3 for the
process X, =N, — N,, K(u) = 1 A (14p"1/?) and Ky(p) = (1 —e™*)/p.

REMARK 3.9. The first two terms of the above bound without the u-depen-
dent constants constitute the bound that appeared in Brown (1983). In many
cases (see the examples in Sections 4 and 5) it turns out that the third term of
the above bound can be shown to be of no greater order than the first two. In
these cases, the above bound will therefore be of lower order of magnitude for
large u than the bound of Brown (1983). This partly explains why previous
compensator bounds have not produced the correct orders of magnitude. All
the terms of the bound are zero if N is a simple Poisson process with history
generated by the process.

REMARK 3.10. The Wasserstein distance in the above integral can, by (2.8)
and the last sentence of Lemma 3.3, be expressed as an infinite sum of
absolute differences of previsible and optional processes and is therefore
optional. The integral is thus well defined.

REMARK 3.11. The third term has a nice intuitive explanation. The dis-
tance is a measure of the instantaneous change in our best estimation of the
distribution of the remaining number of points before ¢, and by integrating
with respect to dN,/u we are averaging this instantaneous change over the
points of N in [0, t]. For a good Poisson approximation, we should not be too
surprised about the number of points that still remain before ¢ at each point of
the process.

REMARK 3.12. The argument for Theorem 3.7 is simple relative to the
arguments used, for example, in Brown (1983), which relied heavily on cou-
pling. However coupling is used in several of the examples below, to estimate
the third term in the bound.

Proor oF THEOREM 3.7. We need to bound the right-hand side of (2.10) for
g satisfying (2.9) and (2.11). The first term of (3.8) is an upper bound for
|E{ug(N, + 1)} — E{A,g(N, + 1)}, and it is therefore enough to show that the
second and third terms are an upper bound for |[E{A,g(N, + 1)} — E(N,g(N)}|.
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We can write

B{Ag(N,+ 1) = B{ ['2(N, + 1) dA.}
- E{[O’Pg(m +1-AN,) st}

+ E{fot”(dg(Nt + 1)ANs)dAs},

in view of the identity g(N, + 1) = g(N,+ 1 — AN,) + dg(N, + 1) AN, and
elementary facts about optional, previsible and dual previsible projections [see,
e.g., Dellacherie and Meyer (1982), pages 122 and 135]. If the previsible
projection in the first term were an optional projection, the projection could be
removed, and that term would be E{[{g(N,) dN,} because N only increases at
jumps and at each jump AN = 1. We introduce g,(n) = g(N,_+ 1+ n) so
that g (N, — N,) =g(N,+1 - AN,) and g,(n), being left-continuous and
adapted, is previsible. We then have

E{A,g(N,+ D) - E(N.g(N)} = B{ ['Pa.(N, - N) ~“.(N, - N)] an,

+ B [[7(dg(N,+ 1) 8N ),

and it remains to bound the absolute value of the right-hand side. The
absolute value of the first term is bounded by the expected integral of the
absolute value of the integrand. Using Lemma 3.3, (2.6), (2.9) and (2.11),
the absolute value of the integrand is bounded above by K,(u)d (%, %)
and thus the absolute value of the first term is bounded by the third term of
(3.8). The absolute value of the second term is bounded by the expected
integral of the previsible projection of the absolute value of dg(N, + 1)AN,,
since for any process [PX| = PX*—-PX"| <?|X]. Since |dg(N,+ 1)AN,| <
K,(u) AN, and the previsible projection of AN is A A [Dellacherie and Meyer
(1982), page 136], the second term is bounded by the second term of (3.8) and
the proof is complete. O

It is possible to generalise the above bound to general point processes.

THEOREM 3.13. Suppose that N is a point process and that A is the
compensator of N. Then the bound of Theorem 3.7 remains true provided the
following extra term is added:

Ko(w)E{ L (AN, - 1) aN,}.

s<t
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ProoF. The proof is similar to the proof of Theorem 3.7 with the following
changes. The identity in the point process case

g(N,+1) =g(N,+1-AN,) +dg(N, + 1) AN;

has the second term replaced by g(N, + 1) — g(N, + 1 — AN,) but Ky(u) AN,
is still an upper bound for the absolute value of this term. The other change is
that E{g(N,)N,} is now

E{fotg(Nt +1-1) st}

and it is the absolute difference of this expression from
t
E{fg(N, +1-AN,) st}
0
which is bounded by the additional term. O
We can also consider the number of points at a stopping time.

THEOREM 3.14. Suppose 7 is a stopping time. Then Theorems 3.7 and 3.13
remain true with t everywhere replaced by t, provided the process X which
defines &, and &,_ becomes X, =N, — N_,,.

Proor. We can take ¢ = © in Theorems 3.7 and 3.13 because either
EN,_ = EA_ = », in which case the right-hand side of the bound is also «, or
EN,_ = EA_ < », in which case the proofs work. Thus Theorems 3.7 and 3.13
may be applied to the point process N stopped at 7 evaluated at », and this
gives the present theorem. O

It might be thought that the Wasserstein distance would always be difficult
to measure. However, it can be calculated relatively easily in a number of
special cases, as is seen in the next section.

4. Processes with conditionally independent increments. We say
that a point process N (on a general carrier space) has conditionally indepen-
dent increments if, for some locally finite random measure A, for all n =
1,2,3,... and for all bounded, disjoint, Borel sets By, B,,..., B,, we have
N(B,), N(B,),..., N(B,) independent with means A(B)), A(B,),..., A(B,)
conditional on A. For any h: Z*— [0, 1],

|ER{N(B)} — Poisson, h| < E|E(h{N(B)}|A) — Poisson, k|
D < E(dqy(#Na(B), Poisson,,)),

where N, has distribution that of N conditional on A. Thus the total
variation distance of N(B) from Poisson,, is dominated by the right-hand side
of (4.1). Two cases are of special interest.
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4.2. N i1s A Cox PrROCEsS. We say N is a Cox process if conditional on A it
is a Poisson process with mean measure A. The lav of N,(B) and (N5 — 8, X B)
coincide (as remarked before Theorem 3.1) and thus from (4.1) and (3.2) we
have

(4.3) d1y(-ZN(B), Poisson, ) < K,(n) E|A(B) - pl.

This estimate is Theorem I.C(i) of Barbour, Holst and Janson (1991).

If N has carrier space (0,»), B = (0,¢], and A is continuous and $°-mea-
surable, we can derive the same bound as (4.3) from Theorem 3.7. In this
case, N is a Cox process [see, e.g., Brown (1981), Theorem 2], but it is in-
structive nonetheless to see how the compensator bound works. The first
term of (3.8) coincides with the right-hand side of (4.3) and the second term is
zero by the assumption of continuity of A. Select a regular conditional
distribution &, for N given %,. If Y, =I[N,—~ N;,=m], for 0 <s <t¢,
m € Z*, then, by dominated convergence using &, Z: s = F|[N, — N, = m]
is right-continuous, since Y is right-continuous and Y, is domlnated by 1.
Moreover, because N is Cox,

E(Y,)% ) = Py(N, - N, = m)

and thus Z is the optional projection of Y [Rogers and Williams (1987),
Theorem VI.7.10]. It is also the previsible projection of Y because Z, being
Fs-measurable, is also previsible. Thus, in this case, d (%, %) = 0 identi-
cally. It is possible to extend this argument to the general Cox process on (0, «)
by approximating such a process by one having the atoms of A replaced by
diffuse components of the same size concentrated near to the atoms of A.

4.4. N 1s sIMPLE. Suppose that N is a simple point process with inde-
pendent increments on a general carrier space. Then, we may write [see
Kallenberg (1976), Theorem 7.1 and Corollary 7.4],

(4.5) N=N, +N,,

where N; is a Poisson process and N, is an independent simple point process
whose points are concentrated on the atoms of v. Now the reduced Palm
process of N; is N,, while, for an atom x of v, the reduced Palm process of N,
is easily seen to be N, — N,({x})8, (checking the required identity on a suitable
generating class as in the case of a Poisson process). Using Kallenberg [(1976),
Problem 10.3], we have the reduced Palm process for N as N except at atoms
x of v, where it is N — N({x})8,. Thus the Wasserstein distance between the
law of N(B) and that of (N* — § X B) is 0 except at the atoms x of v in B
where it is v({x}) [using (2.7)]. Thus, from (3.2), for p > 0.

drv(ZN(B), Poisson(p)) < K, (u)lv(B) — ul

+ Ko(w) [ v({x})v(dx).

It is worth remarking that the second term of the right-hand side of (4.6) is a

(4.6)
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sum of squares of jumps of the atoms of v, just as in the second term of the
linear case.

Now suppose that N is a simple point process with conditionally indepen-
dent increments. The reasoning leading to (4.6) may be applied to compute the
total variation distance of -ZN,(B) from Poisson(u). Equation (4.1) then gives

dry(ZN(B), Poisson,) < Ky(u)EIA(B) — ul

4.7
. + Ky(w)E [ A({x)) A(dx).

It is interesting that this is exactly the bound obtained by applying Theorem
3.7 for point processes on the line, the proof that dy (&, %) =0 being
exactly as in example 4.2.

Two special cases are now included to show that the first two terms of (3.8)
cannot be essentially improved.

4.8. BERNOULLI TRIALS. Suppose that I,...,I, are independent Be(p;)
random variables. This is the special case of (4.7) in which the carrier space is
{1,...,n} (n =1,2,...) and the process has independent increments. Taking
pn =X p;, (4.7) gives the bound Ky (wWX7_, pjz. The bound is the same as
was established in Barbour and Hall (1984), who also showed that the bound is
of best p-order. Hence the w-order of the multiplier of the second term in (3.8)
is also best possible.

4.9. Two VvALUES OF A. Suppose that A can take only two values, either
having constant intensity u + 10u'/2, with probability u~'/2, or having con-
stant intensity p — 10/(1 — p~'/2), with probability 1 — p~'/%, where p is
thought of as being large. Then only the first of the three terms in (3.8) is
nonzero, and at ¢ = 1 it takes the value

K(w)EIA, — pl = 20K,(p) < p~'2

On the other hand, it is not difficult to see directly that d(-ZN;, Poisson,,)
is of order u~1/2, as follows also from Theorem IILF of Barbour, Holst and
Janson (1991). Hence this example shows that the p-order of the multiplier of

E|A, — p| in (3.8) cannot in general be improved, even when p is chosen to
be EA,.

5. Processes with internal history. Here we consider only point pro-
cesses on the half-line and insist that the history used is internal, in that it is
generated by the point process and some extra information at time 0. It
happens that in this case we can derive an explicit formula for the Wasserstein
distance in (3.8) in terms of the conditional distributions for points given



1516 A.D. BARBOUR AND T. C. BROWN

the previous point locations and the initial information. These conditional
distributions are also those which are required for the computation of the
compensator [see, e.g., Jacod (1975)]. Hence, Theorem 5.2 only concerns the
Wasserstein distance term of the bound (3.8).

Suppose therefore that Y is a random element of some measurable space
(S, ) and that & =0(Y) V og(N,, z < s). Thus the initial information is
contained in Y: It will usually be possible to encapsulate such information in
some random element Y, since no restrictions are made on the space in which
Y takes its values. The purpose of requiring this is to avoid the notational
complexities that are inherent in using regular conditional distributions given
an arbitrary o-algebra at time 0—these notational complexities are, however,
the only problem encountered in the generalization.

The quantity that has to be calculated in order to compute the third term of
the bound is

(5.1) P(N,—N,=m|Y=y,T,=¢,...,T, =t

n

Tn+1 > S)

n?

for yin Sand 0<¢ <t,< --- <t,<sand m €{0,1,2,...}. Because we
require various properties of the quantity (5.1), the following theorem defines
it in a precise way. Let F,, be the joint probability distribution of (Y, T, ..., T,).

THEOREM 5.2. Suppose, for each n =0,1,2,..., that f,: S X RY)"*1 -
P(Z7) so that the following hold:
(a) foreach m €{0,1,2,...}, the mapping
(¥, 8,81 t5, ..., t,) = fo(¥,8,t,...,t,)(m)

is product-measurable;
(b) for each set F' in ., Borel set B of R*, min Z* and s > 0,

/ Fu3y 8,01, 8, ) (M) A, i3ty b )
FxBnNI[0,s]"x(s,»)

=P(N,-N,=m,(Ty,...,T,) €Bn[0,s]",T,,,>s,YEF);
(c) foreachyin S, t,,...,t,in R* and min 7%,

s fu(y,8,t,...,t,)(m)
is right-continuous.

Then
(5.3) P =Y (Y, 8, Ty,..., T[T, <s<T,.4]
n=0
and
.?;_=Z foi1(Y,s8,Ty,...,T,,s)(AA(S)
(5.4) n=0{ +1( ) )(AA(s))

+f(Y,8,Ty,...,T,)(1 — AA(S)H[T, <s < T, 1]
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Furthermore,

(5.5) E{f"tdW(%”@s_) dNS} - E{J;tds(l — AA(s)) st}

- E{fotds(l — AA(s)) dAs}’

where d,=dw(f, (Y,s,Ty,...,T,,s), f[(Y,s,Ty,...,T,) on [T,<s <
Tn+1]‘

ReEmARK 5.6. That f, is the quantity defined in (5.1) is the content of
requirements (a) and (b). Since #£,(m) is optional, arguments similar to those
in Jacod [(1975), Lemma 3.3], show that 2(m) has a decomposition satisfying
(5.3) for some functions f,. Requirement (b) is then a reexpression of the fact
that

Ps(lvt - Ns = m)I[Tn <s< Tn+1]

(5.7)
=P(N,-N,=mlY,T,,...,T,,T,.1>s),

which can be established as in Brown [(1978), Lemma 7]. Requirement (c)
arises because the optional projection of a right-continuous process is right-
continuous [Dellacherie and Meyer (1982), Theorem VI.47]. Thus functions
{f,} satisfying all of (a), (b) and (c) always exist. However, the proof the
theorem as stated is slightly simpler than fleshing out the above arguments. It
is also adequate for the applications later. Expression (5.1) is, however,
important for finding f, .

It is also worth remarking that the functions f, can be expressed directly in
terms of the compensator, although in such a complicated way that we have
not pursued this in general, leaving it to examples to do the computations (see
examples 5.8 and 5.20). The reason that f, can be expressed in terms of the
compensators is that by the uniqueness theorem of Jacod (1975) the condi-
tional distribution of point times given past points and Y can be written in
terms of the compensator. Hence so can the marginal distributions, and so also
can the distribution of the number of points in an interval, on using the
general relation that [N, > j] =[S, < ¢].

Proor or THEOREM 5.2. The probability attributed by the right-hand side
of (5.3) to m is right-continuous in s and so, by Rogers and Williams [(1987),
Theorem VI.7.10], this probability is &Z(m) if P,(N, — N, = m) is equal to the
right-hand side of (5.3) for each s. But, by checking on generating sets, it is
easily verified that # NI[T,<s<T, )=0(T,....,T)NIT, <s<T,, ]
Thus, the desired equation comes from requirements (a) and (b) on f,,.
Furthermore, the right-hand side of (5.3) is a probability distribution in Z*
for each s, thus completing the verification of (5.3).
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We can write, for s > 0,

P =3 (Y, 8,Ty,....,T,_1,8)I[T, = s]

n=1

+ ¥ £, 8, Ty, THIT, <s<T,,,]
0

{ Y oY, 8, Ty, T, s)I[T, <s < Tn+1]}AN(s)
n=0

+{ f fu(Y,s,Ty,...,THI[T, <s < T,,+1]}(1 — AN(s)).
n=0

We call the two processes in braces Y, and Y, respectively. By Jacod [(1975),
Lemma (3.3)], these two processes are previsible. Now it is easy to check that
the previsible projection of a raw process is equal to the previsible projection of
its optional projection and hence

PILN, - N, = m] =%(m)
and
AY AN + Y,(1 — AN)) = Y,’AN + Y, (1 - AN)
by Dellacherie and Meyer [(1982), page 106 (e) and page 104]. However, A A is
the previsible projection of A N [Dellacherie and Meyer (1982), page 136]. Thus

%_(m) = E {fn+l(Y’s’Tl7T2’""Tn’s)(m)I[Tn <s< Tn+1]AAs
n=0

(Y, 8,Ty,...,T)(m)I[T, <s<T,,,](1 - AA))}.
Equation (5.4) follows because the right-hand side is a probability distribution
over m, because it is a convex combination of probability distributions for each
path.

To obtain (5.5), suppose that 0 < p < 1 and that & and 2 are in P(N).
Then by (2.8), for I ={0,1, ..., i},

dw(#,p#+ (1-p)2) = L I2(I) - (p2(I) + (1 -p)2(1))|
i=0
= (1 -p)dw(£, 2).
Thuson[s =T, ,,n=0,1,2,...,
dw(Z, Z7)=01- AAs)dW(fn+1(Y’s,T1:“-7Tn’s) fn(Y’s’TD""Tn)),

which gives the first equation of (5.5). The second follows because d, is
previsible, by Jacod [(1975), Lemma 3.3]. O

The next two examples make use of Theorem 5.2 in concrete cases.

5.8. THE MARKOV POINT PROCESS. We consider a point process on the line
which is Markovian with stationary transition rates. In language suitable for



STEIN’S METHOD AND COMPENSATORS 1519

applying Theorem 3.7, we assume that N is a point process whose compen-
sator is

t
(5.9) A, = LAMH ds,

where A, A,, ... are positive constants, and, for the moment, %, is trivial. As
is well known, the times between points are then independent exponential
random variables X, X,,... with parameters Ay, Ay, ... . To obtain our
bounds, we assume that the A’s are bounded away from 0 and ». We let
m, = EN,, v, = Var N,, A;,¢(A ) be the infimum (supremum) of the A’s,
I = Agup/Aing> [+] be the integer part function,

(5.10) X=(m,+ 1)/{[()’"'*11/;\[”“(13}

(so that in some sense A is the “harmonic average” A experienced on [0, ¢]) and
¢ be the supremum of |1 — A /A;| over i € Z*. We would expect a good Poisson
approximation if r is close to 1 and ¢ is close to 0, because in this case the
system has independent exponential interpoint times with nearly constant
means.

We are able to prove that, for any ¢ > 0,

dy(N,, Poissony,) < K (At)e{y/m, + 1 + \fu, + 1}

+ K2(Xt){/\supt}{r(r - 1)}

In typical cases where the bound might be applied, m, and v, are both of order
¢ as ¢ increases, because otherwise a Poisson approximation with parameter At
might not be sensible. In this case, the bound is of constant order in ¢
Previous bounds using compensators, such as (1.1), all have the bound increas-
ing with the square root of ¢ rather than being of constant order and would
not reveal that the approximation is good whenever the rate that points appear
is nearly constant. Thus Stein’s technique enables one to get bounds that are
an order of magnitude better than otherwise. Although the approximation by a
Poisson distribution is perhaps of minor interest for this process, whose
distributions are in principle simple to calculate, it is of interest in under-
standing the significance of (3.8). It also appears to the authors to be difficult
to calculate the direct point process bound (3.2) for this process, although the
compensator bound is relatively straightforward.
The first term of (5.11) arises because from (5.9)

(5.11)

N, i}
(5.12) ElA, - Xtl <E| ¥ A, X; + Ay,.(t — Ty,) — At|.
i=1

We proceed to estimate the right-hand side of (5.12). Let  be the discrete
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stopping time N, + 1 for the sequence X, X,, ... . Using the triangle inequal-
ity, the right-hand side of (5.12) is bounded by

T

(5.13) BL, (- AA)E,

+E|(1 = A/A)A(T, - 8)l,

+ EI]:(I ~X/Apyen) ds

where E; = (A;X; — 1) is an exponential(1) random variable centered at its
mean. The reason for introducing E; is that we may apply Wald’s identity [in
its second moment form; see, for example, Chow and Teicher (1988), Exercise
5.3.8] to calculate the variance of the first sum in (5.13). This yields

(5.14) E({iél(l - X/)‘,.)E,.}2

_EY (1-2/n)
i=1

Using the fact that standard deviation exceeds mean absolute deviation, a
bound for the first term of (5.13) is

(5.15) sup|l — X/AiI\/E =¢eVET.
i

Now A has been defined precisely so that the next term can be estimated, using
the identity

fOE’(l ~X/Agyer) ds = 0.

Thus the second term of (5.13) is bounded by

[5 (1= 3 A g) s

By the Markov property, (T, — ¢) has an exponential distribution with parame-
ter A,, conditional on the value of 7. Thus, a bound for the last term of (5.13)
is ¢ times the mean absolute deviation of an exponential(1) random variable.
This with the information in (5.12)-(5.16) substituted into the first term of
(8.8) gives the first term of (5.11).

The second term of (3.8) is zero in this case because the compensator is
everywhere continuous. To obtain the third term of (3.8), we use the following
lemma, in conjunction with Theorem 5.2.

(5.16) E <¢Elr — Erl <e/Varr.

Lemma 5.17. Suppose that, for n =1,2,..., t > 0 and an n-vector x of
positive constants, F(t,x) denotes the distribution function of the sum of n
independent exponential random variables with means given by the elements of
x. Then, for any two vectors x,,Xx, of the form x, = (xy, xy,...,%,_;) and
x, =(x,...,x,),

F(t,x,) - F(t,x,) = [{xn - xo}/{xoxn}] f(t’(xo’ Xyseeos xn))’

where f is the density corresponding to F.
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Proor. We have

F(t,xy) = j:(l —exp(—xo(t = 8)) f(5,(%1,...,%,_1)) ds)
and
F(t,x;) = fot(l —exp(—x,(t —8)) f(s,(x1,...,%,_1)) ds).

Since exp(—x,(¢ — s)) is 1/x; times the density of an exponential(x;) at ¢ — s
(i = 0, n), we have

F(t,%,) — F(£,%0) = f(£,(%05- -1 %,-1)) /%0 = [(8(%1, -, %)) /%y

Feller [(1971), page 40], gives an explicit formula for f in the case where the
x’s are all different (note the minor misprint). In this case, the lemma results
from applying his formula in the last two equations, collecting together the
terms which have the same exponential and then taking out a factor {x, — x,}.
If some of the x’s are the same, the lemma results from an obvious continuity
argument. O

The relevance of Lemma 5.17 is that, in the terminology of Theorem 5.2, for
nmeZ",0<s<tand ¢, <t, < -+ <t, <s (here Y is deterministically
0 and the argument corresponding to it is omitted),

fa(sits s tpi)(m) = F(E = 5,(Asse s i)

- F(t - s’(An+l7"")‘n+m+l))’

an identity which is easy to check against the criteria (a), (b) and (c) using the
fact that the interpoint times are independent exponential random variables.
Hence at the jumps of N the random variable d; in (5.5) is

Z IF(t - s’(ANs’ ceey )\Ns+m)) - F(t - S,()\Ns_,_l, ceey ANS+m+1))|’

m=0
using (2.8) and the fact that the terms in the previous expression for f,(-) ()
telescope when added over j =m,m + 1,... . From Lemma 5.17,

(518) ds < {Asup - )‘inf}/)‘zinf E f(t - 87()‘Ns’ R /\Ns+m+l))'
m=0

The sum on the right-hand side of (5.18) is the derivative at ¢ — s of the
expected number of points in a Markov point process with rates A(N,), A(N, +
1),..., conditional on N,. This is clearly bounded above by the derivative of
the expected number of points in a Poisson process of rate A,,, which gives
d, < {r — 1}r and completes the proof of the bound (5.11), upon using (5.5)
and the previous bound for the rate of points.

The bound (5.11) is for a Markov point process with fixed initial state. For a
stationary Markov point process, it would be necessary to introduce an inde-
pendent nonnegative random variable Y and to suppose that, conditional on Y,
the rates of the process were Ay, Ay,q,.... The estimate for the second
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term of (3.8) remains 0 and the upper bound for d, of {r — 1}r remains true.
Hence the second term of (5.11) is unchanged. If A is arbitrary and Ay is
defined as in (5.10) but with rates Ay,;,Ay,,,... and with m, replaced by
E(N,|Y), so that Ay is a random variable, then

(5.19) E|A, - Atl < E{E[lA, - X;¢11Y]} + EIXy - Alt.

Since the conditional expectation on the right-hand side of (5.19) is a special
case of the expectation in (5.12), inequality (5.19) makes it possible to extend
(5.11) to an arbitrary initial distribution. The resulting bound will still be of
constant order in ¢ if the second term of (5.19) increases no faster than vz.

A specific example follows.

5.20. THE ALTERNATING Po1sSON PROCEss. We consider a stationary Markov
point process whose rates alternate between a and B with a« < 8. We can
think of this process as having a compensator whose derivative a is given by

a=a(l -2) + BZ,

where Z is a stationary Markov chain with state space {0, 1} and rates of
transition a from 0 to 1 and B from 1 to 0. In this case Y =Z; and A, = q,
AL =B, Ay =a,.... Now N, has the same expectation as A,, which, on using
Fubini’s theorem, is ¢Ea,. Thus, we choose

A =Ea,=2aB/(a + B),

using the fact that the stationary probability of Z being 0 is 8/(a + B). In this
example, it is easier to bound E|A, — At| directly rather than use (5.19). The
result is that, if r = 8/a and ¢ > 0,

d v (-ZN,, Poisson ;)
(5.21) < (r—1)[E)[At + 2 + 1}/(1 + r) + Ky(At)Btr]
<(r-1[4/(L+r)+ (1 +r)r/2].

Note that the bound only depends on r, so that for any ¢, if r is close to 1, a
good Poisson approximation is obtained.

The computation of an estimate for E|A, — At| follows the same idea as that
for (5.12), but we use the cyclic nature of the A’s. The estimate is computed by
first conditioning on Y, and as the argument is only notationally different for
the two possible values of Y, we assume Y = 0. In this case, odd interevent
times (X,,_;, £ =1,2,...) have exponential(a) distribution and even in-
terevent times (X,;, i = 1,2,...) have exponential(B) distribution. Let S; be
the sum of X,,..., X,,, so that S, S,,... are the times of a renewal process
with renewal distribution F, where F is the convolution of exponential(a)
with exponential(8). Let o be the index of the first renewal in this process
after ¢t and note that o is a stopping time for the discrete filtration & =
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o(X,, X,, ..., X,;). Arguing as for equations (5.13)-(5.16),
Y(@a=N)Xy  +(B-21)X,,
i=1

+ E|(A(S,) — A) = M(S, - t)].
The first term of (5.22) equals

E|A, - x| <E

(5.22)

(5.23) E

§1(ﬁ —a)(aXy_; — BXy)/(a+ 3)’

Now, conditional on N, even, the strong Markov property gives the distribu-
tion of A(S,) — A, as that of a X, + BX, and the distribution of A(S, — ¢) as
that of A(X; + X,). The same results are true if N, is odd. Hence the second
term of (5.22) is dominated by the expected absolute value of one of the
summands in (5.23). Thus, applying Wald’s identity as before and using the
fact that o < N,/2 + 1,

(5.24) EA, — Al < (r—=1{Vat +2 + 1} /(r + 1).

Equation (5.24) and the penultimate paragraph in the Markov point process
example 5.8 give the estimate (5.21).

Interestingly, for the alternating Poisson process the third term of (3.8) can
actually be computed exactly using renewal theory. The distance d, is related
to an integral with respect to the renewal function associated to F, which can
be evaluated from its Laplace transform. From this argument, whose details
we omit, the bound (5.21) can be sharpened to

dyv(-£N,, Poisson,,) < (r — 1)[ K (A){VAt + 2 + 1}

(5.25)
+Ky(At){At — v} /(r + 1),

where
Yy =A(1-exp(—(a + B)t))/(a+ B).

Elementary calculus shows that for all values of r, « and ¢ > 0, we have
¥ > 0. Moreover, for large mean, the bound (5.25) is asymptotically 2.4(r —
1)/(r + 1), by (2.9) and (2.11). The bound of K, for the function g in (2.10)
can actually be improved: Barbour and Brown (1990) show that g must be in
the range +(1 A 0.61x~!/2), thus improving the constant 1.4 in (2.9) to 0.61.
This means that the asymptotic value of the bound (5.25), for large A¢, can be
sharpened to 1.6(r — 1)/(r + 1).

One of the reasons for including this example is that the Palm probability
bound (3.2) can also be estimated in this case. We take p = A¢ so that (3.2)
only has one term. Then it can be shown that

(5.26) dry(N,, Poisson,,) < 3K (At)At(r — 1){(1 +r)® = 1}/(1 + 1),
which can be compared with the compensator bound (5.25). In general, (5.26)
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is smaller for r close to 1: For large mean, (5.26) gives the bound r(r — 1X2 +
r)/(2 + 2r), which improves on the compensator bound for r < 1.29. On the
other hand, the two bounds are still remarkably close. For large At and r close
to 1, the ratio of the two bounds is 1.61/1.5.

To demonstrate (5.26), in view of (3.2), it is enough to bound
dw(ZLN,, L(N° - 8,),), for all s in (0, ¢]. This we do as follows. For fixed s,
we construct N® and N @, on a common probability space, in such a way that
_/N(” = ZN, #N® = _/N* and N® + 1 is close to N®. To achieve this,
N® and N @ count the number of transitions in processes Z® and Z®
which are suitably defined. Realise Z® from the stationary Z-chain over the
whole of R, and independently choose Z® to be 0 or 1 with probability 2
[because the process N is stationary, the Palm probability can be ca.lculated as
in Baccelli and Brémaud (1980), (3.1.1), and it is then easy to see that 3 is the
correct value]. If Z® = Z®, we can define Z{’ = Z®, 4 > s, but this does not
work for u <s because a- and B-intervals alternate in the opposite order in
the two processes. Instead, for u < s, let V{?, i = 1,2, denote the time of the
kth transition of Z® before time s: We have defined V(l) by defining ZD, but
we need to define V{® for £ > 1. For j > 1, set V{? = V(JI) while constructlng
Vs, in such a way that it is maximally coupled with V5 ;, but has the
correct conditional distribution given the common values of V,;_, and V;; [see
Barbour, Holst and Janson (1992), Appendix, for the construction of maximal
couplings]. If Z® # Z®, use an analogous coupling for the portion z > s and
define the processes to be the same for u < s. The construction clearly yields
the required distributions for N® and N®, and has the property that
IN® + 1 - N | < 1, equality being possible for Z® = Z® if and only if
V(l) + V2 |, where J is such that (V,;,V,,;_,) 2 0, or under analogous

c1rcumstances when ZO # 29,
Now, direct calculatlon based on the exponential density function shows
that

P(V2, # V12D = 28,V 5 — Vy; =1, J = j) = tanh(I(B — a) /4)

<U(B - a)/4.

In addition, the standard formula for the expected length of the interval
containing zero in an equilibrium renewal process, evaluated for the renewal
distribution F, shows that

E(Voy_g—Voy) =2(1/a+1/B —1/(a + B)).
Hence
EIN® +1-N®| < §(B - a)(1/a + 1/B — 1/(a +B)),
and estimate (5.26) follows.
5.27. A CHANGE HALFWAY. This example shows that both the first term and

the third can be simultaneously of the critical order of magnitude. Let N be a
simple point process on {1,2,...,2m} and write I, = N({j}). Let I,,..., I,, be
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independent Be(p) random variables, and, conditional on N,, = mp + x, let
I,i1--., 15, be independent Be((p — ¥x),) random variables. Write W, =
N,,, Wy =N,,, — N,, and u = EN,,,. We consider the case in which m is
large, p = m /% and 0 = m~9/8,

To start with, we show that

dry(-£Ny,,, Poisson, ) > cm ¥ < m~1/8,

for some ¢ > 0, by comparing the two measures on the set B = {w: w — u| <
(2mp)'/?}. First, from elementary Chebyshev-type exponential inequalities for
the Bi(m, p) distribution, it follows easily that

w=2mp +o(m-V?¥),

so that it suffices to compare .£ZN,,, with Poisson,,, ,, and that
P[IW1 — mpl > (mp)**log m] =o(m~1/8).

Next, the Berry-Esseen theorem shows that, because only the set B is being
considered, replacing Poisson,,,,, -ZW, and Z(W,|W; = mp + x) by the
normal distributions with the same means and variances introduces an error
of at most O((mp)~'/?) = o(m~1/8) whenever |x| < (mp)*/?log m. Finally, by
considering the set {x: [x — ¢| < o}, an elementary calculation shows that

(5.28) dry(A (b, 021 + 1)), #($,0?)) = n(2we) "/

as n — 0. This last implies that Z(W,|W, = mp + x) can be replaced by
A (m(p — 9x), mp(1 — p)) with an error of

O(xp~') = O(m~3/8log m) = o(m~1/8)
whenever |x| < (mp)'/?log m. However, if W ~ .#(mp, mp(1 — p)) and,
given W* =mp +x, W ~ #(m(p — 9x), mp(1 — p)), the distribution of
Wi + Wt is A#(@2mp, mp(1 — p)[1 + (1 — m3)?)), so that, once again using
the calculation which gave rise to (5.28),
[P[Wf + W} € B] - P[.#(2mp,2mp) € B]| xp + m® x m~'/8,

Combining the various approximations leads to the desired result.

We now show that, in the bound on d(-ZN, Poisson,,) given by Theorem
3.7, both the first and third terms are of order m ~'/8 (the second is clearly of
order m~'/2). For the first term, observe that

Ay —2mp =m(p — (W, —mp)),— mp = —m3(W, — mp)

1/2 5/8

whenever W, <m'/? + m

Ky(k)ElA,,, — pl < (mp)”*md(mp)* = m9 = m~1/5,
For the third, note that dy (%, % ) =0 for s > m. Furthermore, since
dw(Bi(m, p),Bi(m, q)) = mlp — ql|, and using (5.5),

Kz(u)Efomdw(«gi, #,7) dN, = Ky(n) ép(l —p)(md + o(m~1®)),

, from which it follows easily that
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where the order term arises only from the possibility that W, > m!/2 + m5/8,
and thus the third term is also of order m9 = m~1/%,

5.29. THE THIRD TERM CAN BE LARGEST. Let N be the simple point process
with compensator A determined by the intensity

A t<1,
a(t) =\ I[N, e 27], ¢>1,

so that .#ZN, = Poisson,, and N, = N; + I[N, € 27]is N, rounded up to the
next odd integer. Then, if ¢ denotes the probability that N; is even, u =
EN, =\ + q and
dv(-ZN,, Poisson ) > Poisson (27) ~ 3 asu — .
Now the first term of (3.8) gives
K(n)EIA, — pl = 2ge™ 7K (p) =< n~12,

and the second term is zero. To compute the third term, observe that, for n
even, f, defined in Theorem 5.2 has support the odd integers and, for n odd,
it has support the even integers. Now, from (5.5), d, is always the distance
between an f, with n even and an f, with n odd. Taking % to be the
indicator of the even integers in (2.6), d w(%, &) is identically 1. Thus the
third term is just

pKy(pn) ~1 asp — o,
and hence the factor K,(u) in the third term is sharp up to at most a factor of i
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