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AN EXTENSION OF PITMAN’S THEOREM FOR SPECTRALLY
POSITIVE LEVY PROCESSES

By JEAN BERTOIN

Université Pierre et Marie Curie

If X is a spectrally positive Lévy process, X¢ the continuous part of its
maximum process, and J the sum of the jumps of X across its previous
maximum, then X — 2X°¢ — J has the same law as X conditioned to stay
negative. This extends a result due to Pitman, who links the real Brownian
motion and the three-dimensional Bessel process. Several other relations
between the Brownian motion and the Bessel process are extended in this
setting.

0. Iniroduction. Pitman (1975) constructs the three-dimensional Bessel
process R as the difference 2X — X, where X is a real Brownian motion (BM)
and X = sup{X,: 0 < s < ¢} its maximum process. This result is extended by
Rogers and Pitman (1981), who show that R may be replaced by the Euclidean
norm of a three-dimensional Brownian motion with constant drift « when X
is replaced by a real Brownian motion with drift +|a|. But, in terms of
diffusions, you cannot go much further: Rogers (1981) proves that the class of
real diffusions X such that 2X — X is a strong Markov process is essentially
restricted to the preceding processes.

Pitman’s theorem is not only a remarkable complement to Lévy’s identity
for the reflected Brownian motion, but also a cornerstone of other deep
connections between BM and Bessel(3). Let us briefly recall the main relations.
First, Doob (1957) and McKean (1963) observed that, roughly speaking,
Bessel(3) is a BM conditioned to stay positive. Ciesielski and Taylor (1962)
noted that the total time spent by a three-dimensional BM in the unit ball has
the same law as the first hitting time of 1 by a reflected BM. Further
important links are discovered by Williams (1974, 1979). In particular, BES(3)
appears when time-reversing BM at its first hitting time of 1 (this explains
very nicely the result of Ciesielski and Taylor) and when splitting the Brown-
ian excursion at its maximum. Various other relations can be found in
Williams (1979), Rogers and Williams (1987) and Revuz and Yor (1991). In this
framework, the links kz2tween Pitman’s theorem, Lévy’s identity, the invari-
ance of the Brownian excursion law by time reversal and Williams’ time
reversal identity between BM and Bessel(3) are illuminated by Exercise 4.15 in
Revuz and Yor [(1991), Chapter VID)].

The main result of this paper is an extension of Pitman’s theorem for
spectrally positive Lévy processes (i.e., processes with independent homoge-
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neous increments and no negative jumps). Specifically, if P is the law of a
spectrally positive Lévy processes X, if X° is the continuous part of the
increasing process X and if oJ, is the sum of the jumps accomplished by X
across its previous maximum before time ¢, then X — 2X° — J has the same
law, say, P, as X “‘conditioned to stay negative.” This conditioning is a priori
formal, since in general the event {X, < 0 for all ¢ > 0} has zero probability.
Nevertheless, just as for the Brownian motion, it can be made rigorous in
terms of h-processes. However, the exit properties of spectrally positive Lévy
processes enable us to introduce the law P using bare-hands methods without
any difficulty, and we will not need any notion of h-processes. The construc-
tion presented in this paper is not valid for all Lévy processes. If X is the
opposite of a compensated Poisson process, the paths of X —J — 2X¢ are
broken lines with slope +1, and X — 2X° — J is clearly not a Markov process.
The author has recently obtained further results in this direction [Bertoin
(1991)]. Note also that, in the Brownian case, X can be recovered from
2X — X, while in the Lévy setting, this feature has been lost in general.

The original proof of Pitman in the Brownian case was based on a random
walk analogue. Some developments in this setting were recently made by
Miyazaki and Tanaka (1989) and Tanaka (1989). Here, our approach relies
essentially on the following three points: first, the invariance property under
time reversal for the excursion law of X [due to Getoor and Sharpe (1982)];
second, an analogue of Lévy’s identity from which we deduce a description of
the excursion law of the reflected process X — X in terms of time reversal of
X; and third, a time reversal identity linking P and P, analogous to Williams’
result. Of course, the continuity of the Brownian path is crucial in exercise
4.15 of Revuz and Yor (1991), so we cannot simply repeat their arguments.
Nevertheless, the result follows straightforwardly from the preceding three
points when X has no Gaussian component. The general case is then deduced
by approximation, the difficulty consisting of checking that suitable conver-
gences hold.

The basic results on spectrally positive Lévy processes, their excursions and
their exit properties are recalled in Section 1. Section 2 is devoted to the study
of the reflected process. Several important results on the conditional law P are
presented in Section 3. The main theorem is proved in Section 4.

1. Preliminaries. We begin with some notation concerning the canonical
space. Let Q) be the space of right-continuous functions with left limits w:
[0,¢) - R, where { = {(w) is the lifetime. Q is endowed with Skorohod’s
topology, and & stands for its Borel o-algebra. For every Borel set A, we
denote by 7(A) and o(A), respectively, the first hitting time of A and the last
exit time from A:

(A) = inf{¢t > 0: w(¢) € A}, o(A) = sup(¢: w(2) € A},

with the usual convention: inf @ = », supJ = —. For convenience, we sim-
ply write 7(x) and o(x) instead of 7({x}) and o({x}).
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We denote by X the canonical process on Q, X,(w) = w(2), and we define

X, =sup{X,:0 <s < ¢}, X, =inf{X,:0 <s <t},

Xtc Xt - Z (Xs - }_(s—)’ J, = Z (X, - XS—)I(X3>Xs—)'

s<t s<t

Finally, (%,), . , stands for the canonical filtration.

We consider a probability measure P on ({2, %) such that, under P, X has
independent homogeneous increments, no negative jumps and P(X, = 0) = 1.
By the Lévy-Khintchine theorem,

E(exp{ —2X,}) = exp{¢t¥(z)}, t>0,Rez=0,

V(z) = az + 30822 + A )(e‘z" - 1+2x1,_,)dI(x), Rezx0,

where a is a real number, o, > 0 and II is a measure on (0,) such that
J(1 A x2)dTI(x) < ». We call ¥ the characteristic exponent and I the Lévy
measure of (X, P). Furthermore, we assume that X and —X are not sub-
ordinators under P. The mapping x — ¥(x) is convex on [0,»), and
lim, ,, ¥(x) = .

We denote the largest real solution of ¥(x) = 0 by ®(0) and by ®: [0, ») —
[®(0), =], the inverse function of x — W(x) on [®(0), ©). Since X has no
negative jumps, X is a continuous process, and the strong Markov property
implies that ¢ — 7(—¢) is a subordinator. Its Laplace transform is obtained by
use of the optional sampling theorem on the local martingale exp{—®(a)X, —
at}: for every x > 0,

(1.1) E(exp{ —ar(-x)}) = exp{ —x®(a)}

[see, for instance, Bingham (1975), Section 4].

We say that P drifts to +o (respectively, drifts to —o, oscillates) if
lim,,, X, = + (respectively, if lim,,, X, = —o, if lim,,, X, = +» and
lim,,, X, = —) P-a.s. In terms of the characteristic exponent, this property
is equivalent to ®(0) > 0 [respectively, ®(0) = 0 and ®'(0+ ) < o, ®(0) =0
and ®'(0+ ) = o].

For every x € R, we denote by P, the law of x + X under P. When I is an
open interval containing x, P/ stands for the law of the canonical process
killed at its first exit from I under P,. We denote by u the Itd6 measure of the
excursions away from 0 of (X, P) [see It6 (1972)]. Of course, u is specified only
up to a constant factor (which will be chosen in Section 2 for convenience).
When 0 is irregular for itself with respect to (X, P), u is regarded as being
proportional to the law of the canonical process killed at its first return to 0.
The constant factor does not play any role is this section.

The dual law of (X, P) is (— X, P) and, by Getoor and Sharpe [(1982), Section
71, the excursion measure has the following property of invariance under time
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reversal:

The measure 1) .4 is invariant under the transforma-
(1.2) tion w — &, where &(¢) = —w((7(0) — ¢t)-), for ¢t < 7(0),
and &(¢) = 0 otherwise.

One can also prove (1.2) using the fact that Lebesgue measure is stationary for
Lévy processes [see Pitman (1987)].

In the special case where P has no Gaussian component (ie., o, = 0), X
does not creep across positive levels, that is, P(7(y) = 7([y, ®©)) < ©) = 0 for
every y > 0 [see Millar (1973)]. We deduce that the generic excursion of (X, P)
necessarily has one of the following two forms. Either it stays negative or first
it is negative, then it jumps across 0 and, finally, it stays positive until it
(possibly) returns to 0. The law of the jump across 0 may be computed as a
special case of Rogers [(1984), Theorem 1]; see the remark following the proof
of Corollary 1 in Section 2 (the arbitrary factor in the definition of u is then
chosen to give the simplest formulas). Let us denote by j the unique time
when the excursion jumps across 0. By the strong Markov property, under u,
conditionally on X; = x, x > 0, the postj process (X;,,: 0 <¢ < 7(0) —j) is
independent of the pre-j process (X,: 0 < ¢ <j) and has law P{>*. Moreover,
again by the strong Markov property, the pre-j process has the same law under
p(-1X; = x) as under u(-|X; = x, 7(0) < ). Hence, the time reversal identity
(1.2) yields the following lemma.

LEMMA 1. Assume that o = 0, and set j = 7((0,®)). Under u, condition-
allyon —X;_=y and X; — X;_= 2, the processes (—X;_,_: 0 <t <j) and
(X;+ 0<t<7(0) —j) are independent. The first process has the law
IP;O’“’)(- |X,_= 0), that is, the law of the initial Lévy process starting from vy,
conditioned to hit 0 and then killed at 0. The second has the law PX.?.

Finally, we recall an important exit property for spectrally positive Lévy
processes. The two-sided exit problem consists of determining the probability
that X makes its first exit from [b,¢), b < 0 < ¢, through b. It is solved in
Takacs (1967) and Emery (1973); see also Rogers (1990). There is a continuous
increasing function W: [0, ) — [0, ), with Laplace—Stieltjes transform

f:e_“yW(y) dy =1/%(a), a>®(0),

such that
(1.3) P(r([c, %)) > (b)) = W(c)/W(c —b).

2. The reflected process. The purpose of this section is to investigate
the (strong Markov) reflected process X — X [see Bingham (1975), Greenwood
and Pitman (1980), Silverstein (1980) and Rogers (1984) for related studies].
In general, X cannot be reconstructed from X — X, because X — X does not
contain all the information about the jumps of X across its previous maxi-
mum. Since these quantities will play an important role in the sequel, they will
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be reintroduced in this study. Our main tool will be an identity of Lévy type
(Lemma 2); but first, we will need the following notation:

1. OX, is the amount by which X will first overshoot 0 after time ¢, that is,

OX, = X, where s = inf{r > ¢: X, > 0} (OX, = 0 when s = ).

2. OX, is the amount by which X will first overshoot X, after time ¢, that is,

OX, = X, — X,, where s = inf{r > t: X, > X,} (OX, = 0 when s = ).

3. T(#) = inf{s: [§1x <o dr > t}.

When P does not drift to +, T'(¢) is finite for all £ > 0, and we denote by
(Y, OY), the process (X, OX) after the time-substitution by T. When P drifts
to +o, the lifetime of T is ¢ = [§1x .o dr. We denote by (Y,0Y),
the resurrected process associated to (X, 0X)- T, which is constructed by

pasting together independent copies of (X, 0X)r,: t < £). Now we claim the
following.

LEmMMA 2. Under P, (X — X, 0X) and (Y, OY) have the same laws.

Proor. We will only prove the lemma when P does not drift to +. The
proof in the opposite case is almost the same, but with heavier notation. For
every ¢ > 0, we introduce two sequences of stopping times:

U(e,0) = V(&,0) = 0,
U(e,2n + 1) = inf{s > U(e,2n): X, < —¢},
U(e,2n + 2) = inf{s > U(e,2n + 1): X, > 0},
V(e,2n + 1) = inf{s > V(¢,2n): (X - X), < —¢},
V(e,2n + 2) = inf{s > V(¢,2n + 1): X, = X, }.

[U(e, n + 1) is the first time after U(e, n) when X hits [0, ©) again if n is odd,
and if —¢ is n is even; the construction for V(e, - ) is the same, but with
respect to X — X.] We consider the two increasing processes °A and °B defined
by “A(0) =°B(0) = 0 and

dA(t) = X Litze, 2+ 1), Ute, 2n+2y 5
n

dEB(t) = E 1[V(e,2n+1),V(e,2n+2)] dt.
n

We denote by “A~! and “B~! their respective right-continuous inverses. Recall
that X has no negative jumps and hits every negative real number (because P
does not drift to +o, this is the reason why we have to consider resurrec-
ted processes otherwise). Thus Xy, 5,+1) = —¢& whenever Ul(e, 2n) < « and
(X = Xy 2n+1) = —& wWhenever V(g, 2n) < ». In (-, 0), X — X evolves just
like X, so the two sequences of processes,

{(((X,0X) ye.2msse: 0 < t < U(e,2n + 2) — U(s,2n + 1)): n € N}
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and
{((X =X, 0%)vie,2n 1010 <t <V(&,2n +2) = V(e,2n +1)):n N},

have the same laws. The process (X, 0X) time-changed by “A~! is obtained
after pasting together the first sequence, and (X — X,0X)-°B~! is similarly
obtained with the second sequence. Thus they are equally distributed.

On the other hand, by Bingham [(1975), Proposition 10], the inverse local
time at 0 of X — X has no drift, that is,

fo 1y _x,dr=0 as.

Hence, a.s. for every s, [g1,x_x, <) dr converges to s as ¢ | 0. Since

—£)

fo 1x-x), <-dr <°B(s),

°B(s) increases to s as £ /0. Thus *B~1(¢) decreases to 't as & |0; similarly,
*A~1(t) decreases to T'(¢) as € | 0. This shows that (X — X, 0X) is distributed
as (Y,0Y) under P. O

Remember that we do not want to lose information about the jumps of X
across its maximum. Thus, we denote by % the excursion law of X — X but
where we replaced the value 0 at the lifetime of the excursion by the amount by
which X overshoots its previous maximum (i.e., @ is the excursion law of
t —» X, — X, ). The constant factor in the definition of & is chosen so that
Proposition 9 of Bingham (1975) holds.

When P has no Gaussian component, we deduce by time-change from
Lemma 1 the following description of i [parts (i) and (ii) are special cases of
Rogers (1984), Theorem 1].

COROLLARY 1. Assume that o, = 0, and remember that j is the time of the
unique jump across 0 for the generic excursion.

(D) w(X;_=0) =0, and u(j = ©) = (1/P'(0+ )10
(i) For 0 <y <z w(-X; e€dy, X, - X;_€dz) = e~ O gy dTI(2).
(iii) Under u(-| — X;_=y) the process (=X ;_,_: 0 <t <j) has the law
PO X, _= 0).

Proor. (i) and (ii) The equality m(X;_= 0) = 0 follows from the fact that
X does not creep across positive levels when P has no Gaussian component.

Introduce e, an independent exponential time of parameter ¢ > 0. Accord-
ing to Rogers [(1984), Theorem 1] and Bingham [(1975), Proposition 9],
u(j > e) = ¢/®(g). This quantity goes to 0 as £ |0 when ®(0) > 0, and to
1/®'(0+) otherwise. Moreover, Rogers obtains

E(X,_edy, X, ~ X;_edz, j < ¢) = (1/®(¢)) d1I(2)P(X, € dy).
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Since —X, has an exponential distribution of parameter ®(¢) under P, we get
w(-X;_edy, X; - X;_€ dz) = exp(— ®(0)y) dy dI1(2).

(iii)) When 0 is irregular for itself under P, the statement is a direct
consequence of Lemma 1. Suppose that 0 is regular and that P does not drift to
+ o0, and recall that ¢ is the local time at 0 for (X, P). We check that /- T is a
local time at 0 for Y. Indeed, if £ T(¢—) < £ - T(¢), then T(¢t—) < T(¢). By
the definition of T'(-), X, > 0 for Lebesgue a.e. s in [T(¢—), T(¢)]. So, by the
description of the excursions of (X, P), X, > 0 for every s in the open interval
(T(t-),T(t)). But ¢ only increases when X is null, so £ T(t—) = £/ T(2),
and /T is continuous a.s. Furthermore, ¢/ o T is a positive additive func-
tional of Y = X o T' which increases only when Y = 0, and ¢ - T' is a local time
at 0 for Y. Consequently, the It6 measure of the excursions of Y (where we
replaced the value 0 at the lifetime of the excursion by the value that takes OY
over the excursion interval) is simply the image of u by the mapping w — o/,
o'(r) = 0(r)ly,,_y<q [see, e.g, Bertoin (1990), Lemma I.1]. We need only
apply Lemma 1.

When P drifts to +, we denote by Z the process obtained by killing X
immediately after its last jump across 0, and then resurrected (at 0). If »
stands for the It6 measure of the excursions of Z, then, by Lemma 1 (recall
that j is the time of the jump across 0 for the generic excursion), the following
holds:

Under »(:| — X;_=y), (-X;_,,_: 0 <t <j) has the law
PO |X,_= 0) and (X, 0 < t < 17(0) — j) is nonnegative.

Corollary 1 then follows from this description and the same arguments as
before. O

RemMARK. Viewed from Lemma 2 and Corollary 1, there is now a natural
choice for the local time ¢ of X at 0. Namely, ¢ o T' should be the local time at
0 for Y, which has already been specified by Proposition 9 of Bingham (1975).
This forces the choice for the constant factor in u. The reader can check easily
that the description of u given in Lemma 1 when o, = 0 can now be completed
by the following:

() w(X, = 0) = 0and u(j = oo) — (/@O + D100,
(i) For every 0 <y <z, u(-X;_€dy, X; - X;_€ dz) = e~ " dydTI(2).

3. Spectrally positive Lévy processes conditioned to stay negative.
We want now to introduce, as simply as possible, a probability measure P on
(Q, &) which is defined intuitively as P conditioned by the event “X stays
negative.” The function W introduced in Section 1 plays the role of a scale
function for (X, P), and we simply follow the approach of Williams (1974)

First, we consider y < x < 0, and we introduce

PEO = PO X, =),

that is, the law of the initial Lévy process starting from x, conditioned to make
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its first exit from (y, 0) through y, and killed when it hits y. For every ¢ > 0
and A € &, the Markov property at time ¢ and (1.3) imply that

1
POO(At <) = mEx(lAl(t««y,or»W( —X.))-

By monotone convergence this quantity has a finite limit,

1
(3.1) P(A <) = W(—x) IEx(lA ’ 1(t<1‘([0,°o)))W( _Xt))

as y goes to —, and, according to the Vitali-Hahn-Saks theorem, P, is a
probability measure on (Q, ). Roughly speaking, P, is the law of the initial
Lévy process starting from x < 0 and conditioned to stay negative. Note that,
when P drifts to — o, this conditioning has a rigorous meaning, and P, fits it.

In terms of h-processes, we conditioned P{"® by the positive invariant
function W(—x). In particular, the lifetime ¢ is infinite P -a.s. It should be
clear that (Q, &, &, X, P,) has the strong Markov property. Finally, it follows
easily from Section 1 that P, drifts to —.

The famous Spitzer-Rogozin identity enables us to compute the Green
kernel for P,.

ProposITION 1. Let f: [0,%0) —» R be a continuous function with compact
support. We have

® 1 o
B [[F(-X,) de)] = s [ )W) (expl —u(0)) W( )

Ly <y W(—x —u))du.

Proor. Consider e, an independent exponential time with parameter a > 0.
By (3.1,

E.(f(-X,)) = E(f((X-X). - X, —x)

W(-x)
XW((X-X),— X, —x)Liz <)

According to the Spitzer-Rogozin identity for spectrally positive Lévy pro-

cesses [see Bingham (1975), Section 5], (X — X), and X, are independent

under P, (X — X), has an exponential distribution with parameter ®(a) and
X, has law ¢_(dy) and Laplace transform

Y ( a B
f[o,weﬁq“(dy)_(a-‘l'(ﬁ))(l <I>(a))’ £>0
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It follows that

® P(a »
E( [er(-x) dt) - ﬁ’x—) [ duf )W)

<[ el +x+n@(@laan)
Since the measure (®(a)/a)q (dy) has Laplace transform (®(a) — B)/(a —
¥(B)), a quantity which converges to (8 — ®(0))/¥(-B8) as alO,
®d(a)q, (dy)/a converges to dW(y) — ®(0)W(y) dy, and the proposition is ob-
tained by letting a | 0 in the preceding equality. O

It is time now to introduce the probability P which motivates this section.

ProposITION 2. The family (P,: x € (—»,0)) converges in Skorohod’s
sense as x 10 to a probability measure P such that

P(X,=0,{=o,X,<0 forallt >0) = 1.

Moreover, the semigroup associated to (P,: x € (—,0] fulfills the Feller
property.

Proor. Denote by P*? the law of the first excursion of (X, P) that hits x
and is killed at x, that is, the law of (X, ,; 0 <¢<{—0(0) under
P&)(-|X,_= x), or equivalently the law of (X;: 0 <t < 7(x)) under
w(7r(x) < ).

By the strong Markov property, for every y € (x,0), the processes (X,:
0 <t <7(y)and (X,,,,,: 0 <¢ < {— 7(y)) are independent under P*>?, and
their respective laws are P®® and P*®. Thus, the law of the process
obtained by pasting together two independent processes, the first with law
P9 and the second with law P,, does not depend on y; we denote it by P.

By construction, 7(x) < « for every x < 0 and lim  , , 7(x) = 0 P-a.s. Hence,
the family of the distributions of processes (X, ,,,,: ¢ > 0) under P converges
in Skorohod’s sense to P as x 10, that is,

P,—_P.

Finally, the Feller property of the associated semigroup follows from (3.1),
the continuity of W, and the fact that for every ¢ > 0, the P-law of X, is
atomless on (0, ») [see, e.g., Bingham (1975), Proposition 10-c]. O

REMARKS. (i) It is well-known that, if P is the Wiener measure (a = 0,
0, = 1, I1 = 0), then P is the law of the opposite of a three-dimensional Bessel
process [Doob (1957) and Williams (1974)]. If P is the law of a Brownian
motion with drift (a # 0, o, = 1, II = 0), then P is the diffusion process in
(-, 0) starting at 0 and with generator 1(d2f/dx2) + a coth(ax) df/dx. In
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other words, P is the law of the opposite of the radial part of a three-dimen-
sional Brownian motion with drift a in the direction of the first coordinate
axis [see Williams (1974) and Rogers and Pitman (1981)].

(i) When P drifts to —, the process (X, ;: ¢ > 0) is independent of the
pre-o(0) process (X,: 0 < ¢ < 0(0)) and has law P (last exit decomposition).
Similarly, the last excursion of the reflected process, (X — X)sq)+s: ¢ = 0),
where #(0) = sup{s: X, = X}, is independent of the pre-5(0) process and has
law P (decomposition at the maximum). When o, = 0, this completes the
description of the excursion measure u initiated in Corollary 1.

An important connection between the Brownian motion and the three-
dimensional Bessel process is the identity between the law of a Brownian
motion starting from 1 and time-reversed when it first hit 0, and the law of a
Bessel(3) starting from 0 and killed at its last exit time from 1 [Williams
(1974)]. We deduce from (1.2) an analogous identity for the spectrally positive
Lévy processes:

THEOREM 1. For every x < 0, the law of (=X, ,_,-: 0 <t < 7(0)) under
P_,(-|7(0) < ) is the same as the law of (X,: 0 <t < o(x)) under P.

Proor. Assume that 0 is regular for itself under P. For every z > 0, the
process of the excursions of (X,: 0 < ¢ < ¢(0)) under P*? is a Poisson point
process (p.p.p.) with characteristic measure 1, . x . ,,» and killed at an inde-
pendent exponential time e. By (1.2), the process of the excursions of the
opposite of the time reversed process (—X,(,_s_: 0 < ¢ < ¢(0)) under P*? is
a p.p.p. with characteristic measure 1,_, _ x . _,,u and killed at time e. Thus,
the law of (—X,)_s)_: 0 < ¢ < 0(0)) under P*?), is the same as the law of
(X,: 0 <t < 0(0)) under P(~>~®, But, under P*? as well as under P("> ™%,
the pre-o(0) process and the post-o(0) process are independent, and in the
former assertion we may replace P*? by P®2X(-|X, = x) and P>~ by
P(~= ~)(-|X,_= —2). Taking the limit as z 1, we get

((—Xo(-my-5-: 0 < t <7 (—2)), PG7(-1X,_= 0))
=, ((X,:0 <t <a(x)), P,).

That is, the law of the right-continuous version of the opposite of the initial
Lévy process, starting from —x, conditioned to hit 0, and time-reversed at its
last exit from —x before it hits 0, is the same as the law of the initial Lévy
process, starting from x, “conditioned to stay negative”” and killed at its last
exit from x. A simple modification of these arguments shows that the same
holds when 0 is irregular for itself under P.

Remember (see the proof of Proposition 2) that (X,: 0 < ¢ < 7(x)) has the
same law under P as under u(:|r(x) < », 7(0) < ®), and note that, by (1.2), it
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is also the law of (=X, o) _;_: 0 <¢ < 7(0) — 0(—x)) under u(:|r(—x) < o,
7(0) < ). By excursion theory, this distribution is also the law of (=X(yop-:
0 <t <{ - o(—x)) under P%(-|X,_= 0). Thus,

((=Xiop-:0 <t <L = 0(~x)),Po(-1X,_= 0))
=,((X,:0 <t <1(x)), P).
Since o(—x) and 7(x) are splitting times for PO(-1X,_=0) and P,
respectively, the lemma is proved by putting the pieces together. O

This time reversal identity yields the following last exit decomposition
for P.

CorOLLARY 2. Under P, the process (X,(xy+: — %: t > 0) is independent of
the pre-o(x) process (X,: 0 <t < o(x)) and has law P. In particular, the
process t — o(—t) is a subordinator, with Laplace transform

E(exp{—ao(-t)}) = exp{ —t(®(a) — ®(0))}, a> 0.
We are now able to make explicit the entrance law P(X, € dx).

CoroLLARY 3. The following identity between measures holds (x R_,
teR,):

P(X, € dx) dt = W(—x)P(r(x) € dt) dx.
Proor. By (1.1), P(X, < y) = exp{y®(0)}, y < 0, and, by (1.3),

lim, ,, W(n)/W(n + y) = exp{ —y®(0)}. But, for every n > —x, we deduce
from (3.1) that

W(y —x) W(n)
W(n +y) W(-x)’

P(7([y,0)) > 7(-n)) =

Taking the limit as n 1o, we get

x<y<0.

W(y - x)
W(-x) °
Denote by )?t = sup{X,: s > ¢}, the future maximum process. We deduce from

(3.2) and the Markov property that, if e is an independent exponential time
with parameter 6, then

(32) Px()_{w <y) = exp{ —yCI)(O)}

= W(y —
P(X. <y)= 2 2) n(—y®(0)) P(X. < dx).

(—oo,y) W( _x)

Since the law of o(y) under P is the same as the law of 7(y) under
P(-I7(y) < »), we have

P(X, <y) = P(1(y) < elr(y) <)
= exp(y(®(6) — ®(0))}, by (1.1).
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Hence,

(33) [ Wo-n B )
. —X)———— =¢e .

(—w,y] Y W(-x) P
Assume for the moment that there is a signed measure dM,(¢), A > 0, on [0, »)
such that W= M,(dt) = (1 — e *)dt, where * stands for the convolution
operator. Remember that the Laplace-Stieltjes transform of W is 1/¥(a), so

[ etamyr) = _¥la)_
[0, ) * a(a+A)’
It follows now from (3.3) that
P(X, € dx)
1-e®*)y— = = ®(0)) dM (-
f<_w,0)( ) =) [, cxly®(®)) dM(=y)
AB

e(0)(A + 0(6))
Hence, P(X, € dx)/W(—x) = 0e®®* dx, x < 0, that is, by (1.1),
j”e—atp(x, e dx)dt = W(—x)(f e "P(7(x) € dt)) dx.
0 [0,)
We still have to prove that M, exists. The functions

oi(t) = /(O’D(z — )1y, dTI(2) and @) = f[w(t - 2)1.,,dTI(2)

have respective Laplace transforms

1 ~ 1 _

— m)(e “ _ 1+ az)dll(z) and ?fu’w)(e “ _ 1) dII(z).
Thus, if we set ¢ = ¢, + ¢,, then the signed measure

Me(£) = Ae™ » o(+)(£)) dt
has Laplace transform
AM¥(A) + aa — 305a?)
a(a + 1) ’

and, if 8, stands for the Dirac mass at 0,
dM,(t) = )t((p(t) —de M xo()(8) + (308 + a))te_“) dt — 3028,

is the desired signed measure. O

REMARKS. (i) When P does not drift to +», we deduce from Lemma 2 an
analogue of the Ciesielski-Taylor [Ciesielski and Taylor (1962)] identity: The
law of the first hitting time of x < 0 by the reflected process X — X under P is
the same as the law of the total time spent by X in [x, 0] under P.
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(ii) It is interesting to note the following analogue of the Spitzer—Rogozin
identity which is an immediate consequence of Corollary 3 and (3.2). Remem-
ber that X is the future maximum process, and consider e, an independent
exponential time with parameter 6. One checks that, under P, (X - X), and
X, are independent, that (X — X), has Laplace transform

B+ ®(6) — &(0) 6
V(B + 2(6)) P(8) — (0)°
and that —)Z has an exponential distribution with parameter ®(6) — ®(0).

4. An extension of Pitman’s theorem. Remember that X° is the
continuous part of the supremum process and that o is the sum of the jumps
of X across its previous maximum. By Corollary 1,

[y Ay)dli(y),  if ®(0) =0,

f(l AY)B(X; - X;_€dy) = (1/q>(0))[(1 — em%O)(1 A y) dTI(y),
if ®(0) > 0,

and this quantity is always finite. This implies (by excursion theory) that J, is
finite for every t, P-a.s. We claim the following:

THEOREM 2. Under P, the processs X — 2X°¢ — J has law P.

The rest of this section is devoted to the proof of Theorem 2, which is
broken into three lemmas.

LEmMA 3. Assume that oy = 0. Under P, the process X — J has law P.

Proor. We first assume that P does not drift to —c. Let (x,: n € N) be a
sequence of negative real numbers, with ¥ ,x, = —. Consider (Z": n € N), a
sequence of independent processes, where Z" = (Z*: 0 < t < ¢") has the same
law as (X,: 0 < ¢ < o(x,)) under P. Introduce Z:

n—1
forO0 <t <¢", Z(£0+ - +¢m P +t) =21+ ), Zi(&-),
i=0
the process obtained after pasting together the processes (Z" + L7 4Z (¢ —):
n € N). By Corollary 2, (Z,: 0 <t < £° + -+ +£7™) has the same law as (X;:
0<t<o(xy+ - +x,)) under P. Since * ,x, = —», Z has law P.

Now, we randomize the sequence (x,: n € N) as follows: We fix a positive &,
and we pick the x,’s according to a sequence of i.i.d. r.v.’s with the same law
as X;_ under u(-|X; — X;_> ¢). The resulting Z = Z* still has law P._

On the other hand, under P, the sequence of the excursions of X — X, killed
just before time j and such that X =X >, has the same law as the
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sequence (Z" = Z™*: n € N) (by Corollary 1 and Theorem 1). Remember that
m(X; — X;_= 0) = 0 and that the inverse local time at 0 for X — X has no
drift [Bingham (1975), Proposition 10]. Thus, the process obtained by pasting
together the sequence of the excursions of X — X such that the jump at the
lifetime is larger than & converges a.s. when ¢ | 0, in the (localized) Skorohod
topology, to X — X. Consequently, under P, the process
t— (X - X)t - Z (Xs—_ Xs—)l(Xs>)—(s_)
s<t

has law P.

Since we assumed that (X, ) has no Gaussian component, X is P-a.s. pure
jumps, that is, X, =X, (X, — X, )1y . x ;. Thus the process X —J has
law P, and the lemma is proved when P does not drift to — .

The proof when P drifts to —o is an immediate modification of the
preceding arguments [simply consider a finite sequence (x,, ..., x,, x, 1), with
Xgy---r X, €E(—»,0) and x,,,; = — instead of the infinite sequence of finite
negative real numbers and remember Remark (ii) after Proposition 2]. O

Recall that X° = 0 P-a.s. when o, = 0, so in this case, Lemma 3 rephrases
Theorem 2. The case when o, = 1 will follow from Lemma 3 by approxima-
tion. We work under P. Denote by B a Brownian motion, and by ("B), ., a
sequence of processes such that the following hold:

1. (1/¢,)"B is a compensated Poisson process with intensity 1/¢2, where (¢,,)
is a sequence of positive real numbers, ¢, |0 and II({¢,}) = 0.
2. "B converges uniformly over every compact interval to B as n 1«, P-a.s.

The existence of such processes is guaranteed by Skorohod’s theorem, once we
remember that convergence in Skorohod’s topology to a continuous limit is
equivalent to uniform convergence. Also consider a process A which is inde-
pendent of the "B’s and which is a Lévy process with characteristic exponent

'V(z2) =az + T 1+ 2x1 dll(x).
(2) Z '[(o,w)(e (x<1)) (%)

We set "X =A, "X=A+"B, and X =A + B. Left superscripts, as in
"P,"X,"J, ..., will now refer to laws or processes related to "X.

Since A and "B are independent, their respective jump times are a.s.
distinct. We decompose "J as "J ="K +"L +"M +"N, where

nKt = E (nXs _nXs—)1("Xs>")_(s_,”Xs—"Xs_¢en)

s<t
n _ ny _n _
Li=Y ("X, ="X, )px, nx,_ nx,-"X,_+en
s<t
n n ny
Mt = Z ( Xs - Xs_)l(nxs>n}'?s_’nXs_nXs_=8n)
s<t

nNt = Z (n)_{s—_nXs—)l("Xs>"Xs_,"Xs—"Xs_=sn)7

s<t
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that is, "K (respectively, "M) is the sum of the overshoots of "X over its
previous maximum, where we only consider the jumps of "X which are jumps
of A (respectively, of "B) and "L (respectively, "N) is the sum of the differ-
ences X,_— X,_ at times when "X jumps across its previous maximum, and
where we only consider the jumps of "X which are jumps of A (respectively, of
"B). First, we study the convergence of "K and "L as n 1.

LEMMA 4. There is a subsequence of (¢,), also denoted by (e,) for conve-
nience, such that, P-a.s.,

"K, (respectively, "L,) converges uniformly over every com-
pact interval to T, (X, - X, )l x.x , (respectively,
)» s< t(Xs— - )(s—)]'(Xs > Xs_))'

Proor. Fix a positive ¢, consider e, an independent exponential time with
parameter 1, and introduce

n n n N
Jte = Z ( Xs - Xs—)l("Xs>")_(s_,"Xs—"Xs_e(o,e)\(e"))-

s<t

("Jf is the sum of the jumps of "X across its previous maximum, where we
only consider jumps of size less than ¢ and which are jumps of A.) First, we
show that E("J¢) goes to 0 uniformly in n as & |0. By excursion theory, for
every a > 0,

E(exp{—a"J¢}) = [E(j;) dt exp{—p(t) — a"JE('p'(t))])f(l —e)d"u
(where p is the inverse local time at 0 for X — X)
J(1-eV)d"E

f(l - exP{ —J —a(X; - Xj—)l(x,—x,_e(o,s)\(s,.»>) d"m |

In particular,

-1
(34) E(J:) < [(X; = X )lix,—x,_c,0n e 4 "E X ([(1 —e™) d"ﬁ) .

Furthermore, by Corollary 1, we have
n— 2 n
J(X =X, ) x—x,_co.0iem @B =[(O )dn(z)([oyexp{— ®(0)y) dy)

< 22dI1(z).
0, &)

This last quantity is independent of n and converges to 0 as ¢ | 0. Moreover,
Fristedt’s identity for spectrally positive Lévy processes [see Bingham (1975),
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Proposition 9] yields E(exp{ —p(¢)}) = exp{—t /" ®(1)}. Hence,

(fa-ev) d"n)_l — ([ arexp( -5} ) "0,

and this quantity converges to ®(1) as n 1«. In particular, it is bounded. It
follows from (3.4) that

(3.5) 11?3 sup{E("J¢): n € N} = 0.

Recall now that P(X,_= X, <X, or X, <X, = X, for some s) = 0 [see
Rogers (1984), Corollary 1]. Since "X converges P-a.s. to X uniformly over
every compact interval, for every ¢ > 0, if X jumps at time s < e across its
previous maximum and if the size of the jump, X, — X,_, is larger than e,
then, for every sufficiently large n [i.e.,, n > ny(w)], "X jumps too at time s
across its previous maximum, and the size of its jump is "X, -"X, =X, — X, _.
Conversely, P-a.s., for every sufficiently large n [ie., n > ny (o)), if "X jumps
at time s < e across its previous maximum and if "X, —"X,_> ¢, then X also
jumps across its previous maximum at time s, with a jump of size X, —
X, ="X,-"X,_ [for all m > ny(w)].

Put
"I = sup{ L ("X, "X, )lpx, 5nx, nx,nx, >0
s<t
“ X (X - X )iz x,-x 59 0StS e}’
s<t
"Il = SUP{ Y ("Xo_ "X, )lpx, snx,  nx,—nx, >0
s<t
- Z (Xs—_ Xs—)l(Xs> Ry, X,~X,_>e} | 0<t< e}?
s<t
"III ="J¢,

V=% (X, - X, )ix>x_ x-x,_<eo

s<e

For each integer £ > 1, we first choose &, > 0 so that [by (3.5)]
P(III, > 1/k) < 1/k%, withe=¢}, andforalln > 1,
P(IV > 1/k) < 1/k%,  with ¢ = &, (because J, < ©),
and then an integer n, so that
P(I,>1/k) <1/k?, withe=¢} andforaln >n,,
P(II, > 1/k) < 1/k%,  withe =¢}, andforalln > n,,
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hold. Then
P[Sllp{ nKt - Z (Xs - Xs—)l(Xs>)—(s_)
s<t

<P, > 1/k) + P(IL, > 1/k) + P(IV > 1/k)

< 3/k%, forevery n > n,;

:Ostse}>3/k]

hence, an application of the Borel-Cantelli lemma yields

sup{‘”Kt - Y (X, -X, )x.x

s<t

:0<t< e} -0, P-as,,

as nto via n; <n, < ---, and a similar result for "L,. Note that the
subsequence {n,} corresponds to a subsequence of {¢,}. O

Then, we study the convergence of "M and "N.

LEMMA 5. There is a subsequence of (¢,,) such that P-a.s.,” M (respectively,
"N) converges to X°¢ uniformly over every compact interval.

Proor. We will only prove this assertion when 0 is regular for itself with
respect to A (and hence to all the "X’s), because the proof for the opposite case
is simply the discrete analogue of the following arguments.

Recall that "X has no Gaussian component and that "X is pure jumps a.s.,
that is, "X ="K +"M. Since "X converges uniformly to X and "K to X — X°¢
(by Lemma 4), "M converges uniformly to X°. It is now sufficient to prove that
"M —"N converges uniformly to 0. )

First, we assume that °P oscillates (then so do all the "P’s). We denote by "/
the local time at 0 for "X —"X, by "p its right-continuous inverse, and by
(£)i50 = (F5, )10 the filtration of the excursion process of "X —"X.

For every ¢t > 0, "¢, is a (#)-stopping time, "» = ("M —"N).,, has inde-
pendent homogeneous increments and, by Corollary 1, it is symmetric and
square-integrable. In particular, it is a square-integrable (#,)-martingale and,
by Doob’s inequality,

[E(sup{("Ms —"Ns)2: 0<s< t}) < [E(sup{"mzs: 0<s $"2t>)

< 4[E( "n], )
4
where [‘] is the usual bracket for square-integrable (%,)-martingales. This
quantity is less than

4[E( Y ("X, +"X,_ - 2"Xs_)21%>n,—(mnxs_nxs_=€n,) + 42

s<t

[the term 4¢? is an upper bound for 4("X, +"X, — 2"X, )? evaluated at
s = inf{¢’ > ¢: "X, >"X/}], that is, the sum of the mean of an additive func-
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tional taken at time ¢ and 4¢2. We deduce from techniques similar to the ones
used in the proof of (3.4) that, if e is an independent exponential time with
parameter 1,

n

E(sup{("M, —"N,)": s<e}) - 4¢2
< 4[(Xj + Xj—)zl(xj_xj—=8n) d"m X (f(l —e™) d"ﬁ)_l

- 42X, X = o) [ - ey a7R)

By Corollary 1, "u(X; — X;_=¢,) = 1/¢,, and we saw in the proof of Lemma
4 that (J(1 —e7)d"m)"! is bounded. Thus, Lemma 5 is proved when °P
oscillates.

The proof when °P drifts to —» is an immediate modification (the only
difference is that the process of the excursions of "X —"X is now a killed
p.p.p.).

Assume now that °P drifts to +. The process ("M —"N).;., still has
homogeneous independent increments, but it is no longer a («,)-martingale.
However, we have

_fXj_l(nxj_an_=sn) dnl._L
=¢g,2 /e"x exp{—"®(0)x} dx
0

= (1 — exp{~"®(0)z,} —"®(0)s, exp{~"P(0)e,})("®(0)e,)

:=nc.

Similarly,
JXLpx, o, e @7 = €3% [ (e, = x)exp(="®(0)x} dx

= (1 - exp{~"®(0)s,})/("®(0)¢,) —"c

="c.

Note that "®(0) converges to ®(0) > 0, and that "c and "¢’ both converge to 3
as nto. Now ("¢"M —"¢'"N).,., is a square-integrable (#)-martingale.
The very same arguments as when P was assumed to oscillate prove that

there is a subsequence of (¢,) such that P-a.s.,

"¢"M —"¢'"N converges uniformly over every compact in-
terval to 0.

Since "M converges uniformly to X¢, so does "N. O
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Recapitulating Lemmas 4 and 5, we have constructed a subsequence of (¢,,),
still denoted by (e,,), such that P-a.s.,

"J converges to J + 2X° uniformly over every compact interval.

Let us denote by @ the law of X — 2X°¢ — J (under P) and by "P the law of
"X —"J. We know that @ is the limit of the "P’s in Skorohod’s sense. We still
need to prove that "P = , P.

On {r(—1) < »}, X enters (—o, —1) immediately after time 7(—1) P-a.s.,
and liminf, ,,,"7(—1) < 7(—1). On the other hand, X, > —1forall ¢ < 7(-1),
so "7(—1) converges to 7(—1) P-a.s. Consequently, the sequence
Aprr—1y<og Xprr—1y-g—: 0 < t <"7(—1)) converges P-a.s. for Skorohod’s topol-
ogy to (1j;(_1)<qXir—1-g—* 0 <t <7(=1)). By Theorem 1, the law of the
canonical process killed at its last exit from —1 under "P converges in
Skorohod’s sense to the law of the same process under P. It follows now from
Corollary 2 that "P converges to P in Skorohod’s sense. The proof of Theorem
2 is now complete. O
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