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ASYMPTOTIC SERIES AND EXIT TIME PROBABILITIES

By W. H. FLEmiNG! anD M. R. JamEs?

Brown University and University of Kentucky

This paper is concerned with accurate asymptotic estimates for exit time
probabilities associated with nearly deterministic Markov diffusions. The
exit time probabilities are expressed as asymptotic series of WKB type in a
small parameter, which measures the strength of the random Brownian
motion inputs. This series is valid in certain regions in which the minimum
action function u(x, s) is a smooth function of state x and time s. The
function « is a solution to the corresponding Hamilton—Jacobi PDE of first
order.

1. Introduction. Let D c " be a bounded domain with smooth bound-
ary dD and consider the nondegenerate stochastic differential equation

(1.1) dxf = b°(xf,t) dt + Veo(xf) dw,, t>s,
x;=x€D,
where ¢ > 0 is a small parameter. Let 7° = 7; ; denote the exit time from D of
{;)he process x°. For any fixed T > 0, define the exit time probability function
y
(1.2) q°(x,8) =P, (7 <T).
We wish to expand ¢° in powers of ¢ in the form of an asymptotic series
q° = exp(—u/e —v/Ve —w)[1+ Ve, + ey + -
+e™ /%, + o(e’"/z)], ase |0,

for any m > 0, valid in certain regions N € D X [0, T) on which the function
u is smooth. The function u is the solution to a Hamilton-Jacobi equation,
and the remaining terms in the expansion are solutions to transport equations
which can be solved explicitly using the method of characteristics. If the vector
field 4° is independent of &, then v = 0 and the series (1.3) involves only
integer powers of €.
Freidlin and Wentzell (1984) proved that

(1.4) lin%)alogq"‘= -u.

This result has also been proved using stochastic control methods [Fleming
(1978)] and vanishing viscosity methods [Fleming and Souganidis (1986a)]. To

(1.3)
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1370 W. H. FLEMING AND M. R. JAMES

prove (1.4), Freildin and Wentzell apply a general large deviation asymptotic
principle,

1
(1.5) P, (xir€A) xexp(—— ian(G)) as €0,
’ € €A

where A c C([s,TD,R") and I(-) is the action function for the process x°
(see Section 2), to the set A = A, , where

A, ,={0€C([s,T],R"):6,=x,0, & D for some ¢ € [s,T]}.

This yields u(x,s) =inf,c 4  I(8), so that u is the value function for a
deterministic calculus of variations problem.

As far as asymptotic series are concerned, Fleming (1971) obtained an
expansion for the value function for a class of stochastic control problems with
small noise. Also, Fleming and Souganidis (1986a) use an analytical approach
associated with the vanishing viscosity method to obtain an asymptotic series
for the solutions to certain quasilinear elliptic PDE. In both cases, the series
obtained are valid in certain regions where the limit function is smooth.

In principle, either of the methods could be applied to our problem after
first making the logarithmic transformation u° = —e¢ log ¢°. Instead, in this
paper we make a sequence of factorizations [ef. Sheu (1986)] and employ the
Feynman-Kac formula to evaluate certain limits. The method yields a rather
direct proof and characterization of (1.3). A convergence result is presented in
Section 2 and applied in Section 3 to obtain a general asymptotic series
expansion of the type we need. The detailed result (Theorem 4.1) concerning
(1.3) is given in Section 4. As another application of our method, we obtain in
Section 5 a semiclassical asymptotic series expansion for the solution of an
imaginary time version of Schrédinger’s equation. In Theorem 4.1 two as-
sumptions, (A1) and (A2), are made. Assumption (A1) implies that the flow of
the unperturbed (¢ = 0) version of (1.1) is into D, while (A2) states that the
unique minimizing 6 € A,  exits from D before time T and has no conjugate
points. We do not know the appropriate asymptotic series for g° when the
minimizing 6 exits at time T'.

We also mention related work by Azencott (1985). He obtains expansions of
the general form

+e™/ %, + o(s’"/z)]

as ¢ | 0 for some m > 0 (depending on the data), where A, = inf,. 4, I(6). This
result depends on the smoothness of the boundary A of A near the minimiz-
ing extremal 6* € dA. The proof uses an expansion of a process related to xZ,
from which the terms in the series are computed. We do not know whether or
not the set A, ; defined above satisfies Azencott’s condition.

2. A convergence result. In this section we prove a convergence result
which will be used in the next section. Let us fix T > T’ > 0. Let B € C(R™ X
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[0,T],R™) be such that B(-, s) is also a Lipschitz function:
|B(x,s) —B(y,8)| <Llx —yl, =x,ye®",se[0,T].
Consider the differential equation
& =B(&,t), s<t<T,
(&, =x.
Let N be an open subset of R” X [0, T']. For (x, s) € N, define
o=o,,=inf{t >s:(£,t) € N},

(2.1)

y=yx,s=§¢r’ z=zx,s=(y’0)’
y(x,8) = {(&,t):s <t <o},
where ¢ satisfies (2.1).

DEFINITION 2.1. We say that N is a region of strong regularity (RSR)
provided dN =T, U T,, where )

I‘1 = {zx,s: (x,s) € N}

is a C* manifold, T'; is a relatively open subset of IN and y(x, s) crosses I';
nontangentially.

Note that if (x,s) € N, then y(x,s) c N U T;.
Let v denote the solution of
d D hv in N
—_— + . [ — —_
(2.2) s TP Dv=-g-hv nk,
v=v, only,
where g, h,v, € C,(R" X [0,T], the space of continuous real valued func-
tions defined on R™ X [0, T'] equipped with the supremum norm. We note that
(2.1) are the characteristic differential equations for (2.2). When N is a RSR
the method of characteristics gives the representation

v(x,s) = vo(z)exp(fah(g,,,t) dt)
(2.3) °

o t
+ [ exp( B () dr et 0y at
for (x,s) € N.
Let B € C(R™ x [0, T'], R™) satisfy
B° - B uniformlyas & — 0,
and

(24) |pe(x,s) - B(y,s)| <Klx —yl,x,y € R", s € [0,T], & > 0.
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Also, let v§, g% h° € C,(R" X [0, T') satisfy
Vo = Uy,

(2.5) g 8,
ht - h,

as ¢ — 0 uniformly in N and a uniform Lipschitz condition of the type (2.4).
Consider the stochastic differential equation

dés = B°(&8,t)dt + Veo(¢8) dw,, s<t<T,

(2.6)

& ==,
where o € C,(R") N C*(R™) satisfies the nondegeneracy condition
(2.7 a(x) =o(x)o(x) = ayl

for some @y > 0. The stochastic differential equation (2.6) is viewed as a
random perturbation of the ordinary differential equation (2.1), and the associ-
ated theory is presented in Freidlin and Wentzell (1984). .

Let P;, denote the distribution of £i; = {£; s <¢ < T} on C((s,T], ®™).
Using Freidlin and Wentzell (1984), Theorem 5.3.1, and Varadhan (1984),
Theorem 2.4, we deduce:

LEmMaA 2.1. {P; } obeys the large deviation principle (LDP) uniformly in
(x,s) € R™ X [0, T'] with action function

%f:[ﬂ} — B(6,,t)] a72(6,)[6; — B(6,,1)] dt,

I, .(0) = . .
,5(6) if 0, = x, and 0 is absolutely continuous,

+o, otherwise.

The action function I governs the asymptotic behavior of the measures P°¢
according to (1.5).
For (x, s) € N define

o, =inf{t > s: (£,t) € N},
¥y =& 2° = (y%,0°).
We consider functions v® € C(N) N C*Y(N) satisfying the PDE
av® €
(2.8) - + 5 tr(a(x)D*v*) + p* - Dv* = —g* — h*v* in N,
s
vi=vg only,

and the weak estimate

for all y > 0, there exist C > 0, ¢, > 0 (depending perhaps on y)

2.9
(29) such that [v?| < Ce”/¢in N forall 0 < & < &,.
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The function v°® has the Feynman-Kac representation

(2.10) vi(x,8) = Ex,s[vs(ze)exp([sashe(gf’t) dt)]

+ E[f “emp| (e r) dr (6 ) dt].
S S
We wish to prove that v® - v as ¢ » 0. An immediate consequence of
Lemma 2.1 is that
ésp 2p €7 ase o 0,

where £, is the solution of (2.1) on [s, T']. In fact, for each § > 0 there exists
C >0, ¢g > 0 such that if 0 < ¢ < ¢, then

(2.11) P, (llg° = €llsr > 8) <e©/¢ forall (x,s) € R" x [0,T].
More importantly:

LEmMMA 2.2. Assume that N is a RSR. For each 6 > 0, there exist C > 0,
€9 > 0 such that 0 < & < ¢, implies

(2.12) P, (Iz* — 2| >8) <e /¢

uniformly on compact subsets of N U I;.

Proor. Let K c N U T, be compact and let (x, s) € K. Then the fact that
y(x, s) crosses I'; nontangentially implies that for some a > 0,

(é,,t) N fors<t<o,
(é,t) €N foro<t<o+a.
Then if |2° — z| > §, we must have
ge — Ellsr > &
for some &' > 0. But then
P(lz° — z| > 8) < P(ll¢€° — €llsr > &)
and the result follows from (2.11). O

THEOREM 2.1. Assume that N is a RSR, and that (2.9) holds. Then

limve=v
e—0

uniformly on compact subsets of N U ;.

Proor. Assume for notational simplicity that g¢ = g = 0; the general case
is similar. In what follows, the letter C will be used to denote any constant.
Let K ¢ N UT, be compact and (x, s) € K. Define

B =B, , = {l&r — £l <8} 0 {lef — 2| <5},

where 6 > 0 is chosen small enough to ensure z° € I'; on the set B, ,, for
(x,s) € K.
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Choose C > 0, &, > 0 such that if 0 < ¢ < ¢,, then (2.11) and (2.12) hold.
Choose y < C/2 and let ¢, < &, be such that (2.9) holds. Now

v(x, ) = Ex’s[vﬁ(zﬁ)exp(jjehs(ff, £) dt); B]

+ B, o [0 at) B

= (A) + (B).
Then if 0 < ¢ < ¢,
|(B)| < Ce"/P(B°)
< Ce?/%e=C/®
< Ce=C/2%,
Next

f"zh'ﬁ(g;,t) dt — fah(g,,t) dtl

< [T1R(E5,0) = he(Es )|t + [7|RE(&, ) — h(&, 1) dt

+'["Eh(§,,t) dt‘

< C|l¢° = Ellsr + CllA® — Rl + Clo — o°|.
Now using (2.3),

I(A) - v(x, 9)]

<E,, vo(z)flexp(/\fozhs(ff,t) dt + (1= 1) [ h(&,1) dt) dA
0 s s

X ’f"‘m(g;,t) dt — f"h(g,,t) dtl + Clug(2°) — ve(2); B]

< CE, ,[lIg* = €llsr + IR° = Rl + lo — ¢l + |2° — 2| + llvg — v,ll; B]
< C6+ Clh®t — hll + C6 + C8 + llvg — v,ll.
Thus
lim sup |v®(x, s) — v(x,s)| < Cé.

e—0

Since § can be chosen arbitrarily small, the theorem is proved. O

3. Asymptotic series. In this section we obtain an asymptotic series
expansion for the solution Z° of

€

(3.1) ds

€
+ Etr(a(x)DzZE) + B¢ D= —hZ° in N

Ze=e "29° only,
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valid in a RSR N, for use in later sections. Here, Z*¢ satisfies an estimate of the
form (2.9) and we assume for each m =0,1,...,

B =B+ VeBy+eBy+ - +e™/%B,, +o(e/?)

uniformly in i” x [0, T],
h®=h+Veh, +ehy+ - +&™/%h,, + o(s™/?)
D=1+ Ved, +edy+ -+ +&™/2D, + 0(™/?)

as ¢!0, where ¥, and the terms in the series for A° and ®° belong
to C,(R" x[0,TD N Cy(NUT,. The terms for B° belong to C(R™ X
[0, T, R™) N CH(N UT,R"), and we assume that B°, h* and ®° satisfy a
uniform Lipschitz condition of the type (2.4).

(3.2)

uniformly in N,

THEOREM 3.1. Let N be a RSR and assume Z° satisfies (3.1), (3.2) and
(2.9). Then for each m = 0,1,2,... we have

Z°(x,8) = e = I[1 + Ve dy(x,5) + edy(x,8) + -
+e™/%p,.(x,8) + o(e"‘/z)]

as € |0 uniformly on compact subsets of N U I',. Here, w,¢,, € C*(N U T))
and satisfy (=1, ¢,, =0 if m <0)

(3.3)

Jw
— +B-Dw=~h inN,

(3.4) ds
w=Y, onlj,
0, m 1
‘g— +B- D¢m = — Z Bi . D¢m—i —Dwa - D¢Im—2 + —2— tr(aD2¢>m_2)
i=1
1
(3.5) + E(DwaDw' - tr(aD?*w))¢,,

i=1
¢, =P, onl.

ReEMARK. The terms in the expansion (8.3) can be computed using the
method of characteristics.

Proor. (a) Applying Theorem 2.1, we see that
lim Z° = Z uniformly on compact subsets of N U I,
-0
where Z satisfies
oz
a—+B-DZ= —hZ in N,
s

Z=eY onT.



1376 W. H. FLEMING AND M. R. JAMES

By the method of characteristics,

Z(x,s) = exp(—‘l'z(y,(r) + f:h(g,,t) dt).

Now set
w= —log Z.

Thus w € C*(N U I') solves (3.4).
(b) Let ¢, =1, ¢,, = 0 if m < 0 and recursively set

e _ fn—l - ¢m—1
¢m ‘/; ’
with ¢§ = Z°/Z. Define similarly B:,, and so forth. Let KcNUT; be a

ms

compact subset such that the interior K° is also a RSR. Let 8¢ € C(R" x
[0,T], R™) satisfy

B¢ =pB°—e¢Dwa in K,
|B*(x,5) = B*(y,5)| <Llx —y| in®"x[0,T]
and
B¢ — B uniformly in " x [0, T ] as ¢ — 0.
Select functions g¢, h* € C,(R" X [0, T']) satisfying
g°= Y. B D¢, ~ DwaD(dy 5+ Ve b, 1)
i=1
+%tr(a’D2(¢m—2 + \/g—d)m—l))
+3(DwaDw — tr(aD*w)) (¢, _5 + Ve d,,_y)
+) (-Bf Dw + h%)¢,,_; inK,
i=1
g% - g uniformlyin K as ¢ - 0,

where g € C(R"™ X [0, T] is a function which equals minus the term appear-
ing in the right-hand side of (3.5) in K and

Ve
ke =Ve|—B; Dw + h5 + — (DwaDw' - tr(aD?w))| in K.
Then ¢, satisfies (m > 1)

a5,
ds

€ ~
+ 5 tr(aD%,) + B° - Do, = —g* — k4, in K,

¢, =P;, on KNTj.
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Now for any y > 0,

C
/2 i
7| < cmae’ < Ce”/* in K,

for all sufficiently small ¢ > 0. Now apply Theorem 2.1 to see that

liné ¢¢, = ¢,, uniformly on K,
where ¢,, satisfies (3.5). O

4. Exit time probability function. Let D cR™ be smooth and
bounded, with outward unit normal vector v defined on dD. Fix T > 0, and on
some probability space (2, &, P) consider the Markov process (x°, P, ,) where

(4.1) dxf = b°(xf,t) dt + Veo(x)dw,, s<t<T,
xi=x€D,

and w is a given standard R”™-valued Wiener process. The diffusion coefficient
o satisfies the conditions of Section 2, and the vector field b° belongs to
C(R™ x [0,T],R™) and obeys the Lipschitz condition

|b%(x,t) — b(y,t)| < Llx —y| forallx,y e R",0<¢t<T,e>0.
We assume
(4.2) b*=b+ Veb, + &by + -+ +£™/2b, + 0(e™/?)

uniformly as /0, for any m > 0, and the terms in the series belong to
C*(R" x [0,T], R™). We also assume
(A1) b-v<0 onaD.

Among other things, (A1) ensures that the expansion (1.3) is nontrivial, with
u(x,s) > 0, where u is as in (4.5). The ordinary differential equation corre-
sponding to (4.1) is

x, =b(x,,t), s<t<T,
3 = b(x, 1)

X, = x,

and the action function is given in Lemma 2.1 (with b replacing B).
The exit time 7° = 7, ; is defined by

75 o = inf{¢ > s: x; & D},

where x{ =x. The exit time probability function q°(x,s) defined by (1.2)
belongs to C%(A) for all compact A € D X [0, T) and is the solution of

aq°
ds

+ -g—tr(a(x)que) +b°-Dg* =0 in D x (0,T),

(4.4) q°(x,s) =1 ondD Xx[0,T),

q°(x,T)=0 ifxe€D.
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Define
= inf I(6
u(x,s) = inf 1(0)
. TATp - r .
45) = peoqeitbn ezx{éfs [6, - 8(8,,8)] a=2(8,)[6, - b(6,,1)] s

x5},
where 7 =7, (0) = inf{t > s: 6, ¢ D, 6, = x} and

(x) = +o, iifxeD,
X 0, ifxeaD.

The principal term in the series expansion of g° arises from the following
large deviation result.
THEOREM 4.1 [Freidlin and Wentzell (1984)]. We have

lim elog g = —u
-0

uniformly on compact subsets of D x [0, T).

REMARK. One can give a PDE proof of Theorem 4.1 by showing that

u® = —¢log q° converges uniformly on compact subsets to the unique viscos-
ity solution of the Hamilton—Jacobi equation [Fleming and Souganidis (1986b)]
du 1
— +b-Du— —DuaDu' =0 in DX (0,T),
as 2
(4.6)

u(x,s) =0 onadD x[0,T],

u(x,s) > +o asstTifx eD.
The limit function « € C(D X [0,T)) satisfies the equation in (4.6) in the
classical sense at each point (x, s) where u is differentiable [Fleming (1969),

Theorem 1] and has the calculus of variations representation (4.5) valid in
D x [0, 7).

We next present the remainder of the series, employing the results of
Sections 2 and 3. Consider an open set N c D X [0,T’], where T’ < T, such
that u € C*(N). Using the notation of Section 2, we take B € C(R"™ X
[0, T'], R™) such that

B(x,s) =b(x,s) — Du(x,s)a(x), (x,8) €N,
B(x,8) —B(y,8)|<Llx—yl, x,ye®R", se[0,T].
[The extension of B to (R™ X [0,T'] \ N is otherwise arbitrary.] We assume
(A2) NcDXx[0,T'], whereT’ <T,isaRSR with respect to 8.

For (x,s) € N, there exists a unique ¢ € A, ,, which gives the minimum of
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(4.5) [Fleming (1969), page 520]. Moreover, classical arguments in calculus of
variations [Fleming (1969), Section 2] imply that

& =B(¢,t), s<t<oa,
¢ =x,

where (¢,,¢) exits from N at time o < T’ and (¢,,0) €I, with T}, c 4D x
(0,T"). In particular, under assumption (A1) there exists 6 > 0 such that
N =D; X [0,T'] is a RSR satisfying (A2) with u > 0 and u € C*(N), where
D, ={x € D: dist(x, aD) < 68}

(4.7

THEOREM 4.2. Let N satisfy (A2) and u € C*(N). Then for each m =
0,1,2,... we have

P, (7°<T) =exp(—u(x,s)/e —v(x,s)/Ve — w(x, 5))
(4.8) X[l + \/;d)l(x,s) + edy(x,8) + -
+e™/2%p, (x,s) + o(e"‘/z)] .

as €10 uniformly on compact subsets of N. Here, v,w,, € C(N) and
satisfy (=1, ¢,, =0 if m < 0)

dv
— +(b—Dua)-Dv=05b,-Du inN,
(4.9) ds '
v(x,8) =0 ondD X [0,T) NN,
™ 4 (b-Dua) D
£+( —Dua) - Dw
1 1
(4.10) = - [E tr(aD%u) — §DvaDv’ +b,Dv+b,-Du| inN,
w=0 ondDXx[0,T) NN,
P (5-D D
s T (b —Dua)-Dé,
m 1
= _[.Zlbi *Dé,,_, — Dwa - D¢, _, + 3 tr(a D%, _,)
1 2
(4.11) + E(DwaDw' - tr(aD*w))¢,,_, — DvaDé,, _,

1
-3 tr(aD?v)é,,_, + DvaDw

- Y (b;"Dw +b;,,-Dv+b,,, Du)p,_;,| inN,

i=1

¢,=0 ondD X [0,T)NN.
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ReEMARK. The characteristics of all these first order PDE satisfy (4.7).

Proor. Define

Z*(x,s) = q°(x,s)exp(u(x,s) /e + v(x,s)/Ve).

This type of factorization appears in Sheu (1986). Let K ¢ N U I'; be compact
with K° also a RSR for 8. Let g € C(R"™ x [0, T'], R") satisfy

Bt = b — (Du + Ve Dv)a in K,
B° — B uniformlyin R” X [0,T'] as ¢ — 0,
|B°(x,8) = B*(y,8)| <Lt —yl, x,y€R",s€[0,T'],¢>0,
and let A € C,(R™ X [0, T']) satisfy
he = —[%tr(aDzu) + Ve tr((aD?v) — DvaDv') + b% - Dv + b3 - Du] in K.
Then

E

€
+ —tr(a(x) D2Z¢) + B¢ - DZ* = —h*Z* in K°,
12y 9s T m@=)DZ)+E

Z*=1 ondD x [0,T) NK.
Now for each y > 0,
0 < Z° < Cexp((lu® — ul + \/e_C)/s)
< Ce?/*
for all sufficiently small ¢ > 0. Applying Theorem 2.1, we see that

lim Z° = Z uniformly on K.

e—0

To complete the proof, apply the result of Theorem 3.1 to the solution Z° of
(4.12). O

ReEMARKs. (i) Theorem 4.2 holds in any RSR satisfying (A2), whether or
not (Al) was used in the construction of N. For example, if

b-v>0 ondD,
then u(x,s) = 0in Dy X [0, T'] = N, for some 8 > 0 and T’ < T, and so N is
a RSR. In this case,
P (r°<T)=1+0(e™)
as £ 0 forany m > 0. Here v=w = ¢,, = 0in N.

(ii) If b° = b is independent of ¢ > 0, then the series involves only integer
powers of ¢. In this case, with o equal to the identity matrix, we have for each
m=20,12,...,

P, (7°<T)=-exp[—u(x,s)/e —w(x,s)]
X[1+ epy(x,8) + - +e™P,(x,8) +0(e™)]
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as ¢ | 0 uniformly on compact subsets of N. Here, w, ¢,, € C*(N) and satisfy
Wo=1
w

1
™ +(b—Du)-Dw=(—§Au) in N,

w=0 ondDX[0,T)NN,

Yn 6D .
78—4'( - u)‘Dl/lm— _[§(| lU| _Aw)l'llm—l

1
—Dw-D¢m_1+§A¢//m_1 in N,
$,=0 ondD X [0,T)NN.

Exampre. Letn =1, D =(-1,1), b°(x,s) = —x, o(x) = 1. The minimum
problem (4.5) can be solved explicitly, by elementary calculus of variations. For
lx| < 1and x +# 0, the minimizing £ € A, | is unique, and « € C}((D \ {0}) X
[0, 7). If exp(s — T') < x < 1, then ¢, exits D at time o < T and ¢, = 1. Thus
N; = {(x,s): exp(s — T') < x < 1} is a RSR. Similarly, N, = {(x, s): (-x,s) €
N,} is a RSR. Theorem 4.1 applies in N, and N,. If (x,s) € N; U N,, then up
to order 1 we have as ¢ — 0,

P, (7°<T) =exp(—(1—-=x2)/e — loglxl)[1 + e(1/x% — 1)/2 + o(s)].

If on the other hand 0 < x < exp(s — T'), then ¢ = T. We do not know the
appropriate form for an asymptotic series expansion for the exit probability in
that case. It would be helpful to have accurate asymptotic estimates for
q°(x,s) when T — s is small and x near 4D = {—1,1}.

5. The Cauchy problem. We wish to obtain an asymptotic series expan-
sion for the solution q° of the Cauchy problem

aq® € 1
: — + - D?q°) + b°-Dg* + —Vq* =0 in R" X (0,T),
(5.1) ds +2tr(a(x) q°) +b q £ 1 m ( )

q°(x,T)=C,e ¥/* if xeR".

When b°=0 and a is the identity matrix, this is an “imaginary time”
analogue of the problem of semiclassical limit for Schrédinger’s equation.

We take b° as in Section 4 and C, > 0 is a constant such that
lim, ,,elog C, = 0, and we assume for each m = 0,1,...,

VeE=V+ VeV, +eVy + -+ +e™/2V, + 0(s™/?),
V=W + Vel + W, + -0 +e™/2W, +o(s™/?),

uniformly as £ |0, where the terms in the series for V¢ belong to C,(R" x
[0, 7D N C(R" x [0, T], while the terms for ¥* belong to C,(R™) N C(R").

(5.2)
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The functions V° and ¥* are assumed to satisfy a uniform Lipschitz condition
of the type (2.4). Let

©° = exp(—(¥° — ¥ — Ve ¥, — £W,) /e);

then ®° ~ exp(— Ve ¥; — eW, — - - - ) satisfies (3.2).
Define

u(x,s) = —elogq°(x,s) inR"x[0,T].
Then u° is the solution of the quasilinear PDE

o et D?y¢ b° - Du*
% T3 r(a(x)D?u®) + u

1
(5.3) = gDutaDu’ -V =0 in %" x (0,T),

u(x,T)= —€logC, + ¥*(x) for xeR".

By assumption, V° and u°(-, T') are bounded independent of & for 0 < ¢ < 1.
Therefore, for suitable constants a;,b;, i = 1,2, a, + b;s is a subsolution of
(5.3) and a, + b, is a supersolution of (5.3). This implies, by the maximum
principle for parabolic PDE, that |u*(x, s)| < C for all (x, s) € R" x [0,T] and
0 < < 1. An easy adaptation of the method of Barles and Perthame (1988)
shows that

limu®=u

e—0
uniformly on compact subsets of R x [0, T'], where u € C,(R™ x[0,T) is
the unique viscosity solution of the Hamilton-dJacobi equation

du 1
- *tb-Du— ~DuaDu' -V =0 in R" % (0,T),
(5.4) s 2

u(x,T) =¥(x) forx e R".

The function u has a calculus of variations representation similar to (4.5):
u(x,s) =inf{J(6): 0 € C([s,t],R"), 6 absolutely continuous, 6, = x},

where

J(8) = [T(é[o’t = b(6,, )| a™X(6,)[6, - b(6,,1)] - V(8,,0)) dt + ¥(6y).

We consider an open set N c " x [0, T'] for which the previously defined
function u belongs to C*(N). We define B as was done in Section 4 and
assume that N is a RSR with respect to 8. We write T 1 =0N N (R" x{ThH.
By Theorem 2 of Fleming (1969), there exists a closed set E c ®”" X [0,T] of
Hausdorff dimension less than or equal to n such that each (x, s) € (" X
[0, 7]\ E belongs to a RSR.
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THEOREM 5.1. Let N Cc R" X [0,T] be a RSR, with u € C*(N). Then for
eachm =0,1,2,..., we have

q°(x,s) = C,exp(—u(x,s) /s — v(x,s)/Ve —w(x, s))
(5.5) X[1+ Ve dy(x,8) + eda(x,8) + -
+8m/2¢m(x’ S) + O(gm/2)]

as ¢ |0 uniformly on compact subsets of N U I';. Here, v,w, ,, € C(N UT})
and satisfy (¢ =1, ¢,, =0 if m <0)

v

— +(b—-D “Dv=0b, Du+ in N
(5.6) 78 ( vwa) - Dv=>b,-Du+V, inN,

v(x,T) =V¥y(x) forxwith(x,T) eI},

ow
— + (b —Dua) - Dw

ds
(5.7) 1,1 , |
= - Etr(aD u) — EDvaDv +b,Dv+by,-Du+V,| inN,
w(x,T) =Vy(x) forxwith (x,T) eI,
o b-D D
s T (b~ Dua) D¢,
m 1
== [ Z bi ’ D¢m—i —Dwa - D¢Im—2 + E t'r(aDzd)m—2)
i=1
1 ' 2
(5.8) +§(DwaDw - tr(aD*w))é,,_, — DvaDé,,

1
~3 tr(aD?v)¢,,_, + DvaDw

=2 (b;"Dw + by -Dv+b; - Du+V,3)é,_;| inN,

i=1

¢,.(x,T)=®,(x) forxwith (x,T) €T}.

REMARK. The series (5.5) is an imaginary time analogue of Maslov’s expan-
sion in quantum mechanics; see Fleming (1983).

Proor. Define
Z*(x,s) = C]'q*(x, s)exp(u(x,s)/e + v(x,s)/Ve)

and proceed as in the proof of Theorem 4.2. O
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