The Annals of Probability
1992, Vol. 20, No. 3, 1310-1340

LIMIT THEOREMS FOR THE FRONTIER OF A
ONE-DIMENSIONAL BRANCHING DIFFUSION

By S. LALLEY AND T'. SELLKE

Purdue University

Let R, be the position of the rightmost particle at time ¢ in a time-
homogeneous one-dimensional branching diffusion process. Let y(a, ¢) be
the ath quantile of R, under P° where P* denotes the probability
measure of the branching diffusion process starting with a single particle at
position x. We show that y(a, ) is a limiting quantile of R, under P* in
the sense that lim,_,, PR, < y(a,t)} exists for all « € (0,1) and all
x € R. If the underlying diffusion is recurrent, we show that, after an
appropriate rescaling of space, the P* distribution of R, — ¢ converges
weakly to a nontrivial limiting distribution w,.

0. Introduction. The simplest example of a branching diffusion process
in one dimension is branching Brownian motion, defined as follows. Starting
at time ¢ = 0 and position x € R, a particle begins a Brownian motion X,(¢).
At a random time T, independent of the motion X,(¢) and with the unit
exponential distribution, the particle undergoes a binary fission, creating a
daughter particle, which begins its own Brownian motion X,(t) starting at
(T, X(T)). Each particle repeatedly undergoes binary fissions following (inde-
pendent) exponentially distributed gestation periods, creating new particles
which behave as the original. At any given time ¢ > 0, the state of the process
is specified by the positions (X;(#)); _ ; . n(;, of the particles in existence at time
t, indexed according to the order of birth.

A remarkable feature of the branching Brownian motion is that the distri-
bution of the right frontier R, = max(X,(),..., Xy.(t)) is asymptotically a
“travelling wave” with velocity v2 . In particular, if y(1,/2, ¢) is the median of
the distribution of R, under P° (P* denotes the probability measure govern-
ing the process when the initial point is x), then

(0.1) lim y(1/2,¢) /t = V2
and
(0.2) lim P(R, < v(1/2,1) + 3} = wo(¥),

where w(y) is a proper, continuous c.d.f. (cf. [5]). There is also a conditional
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analogue of (1.2):
(0.3) lim lim PR, < y(1/2,t) + y|.% } = exp{—Ze 2%}

ro® oo
for a certain r.v. Z valued in (0, ), where &, = 0((X;(s)): s < r) (cf. [2]. This
exhibits the travelling wave wy(y) as a translation mixture of the extreme
value law exp{—e~ V25},

The purpose of this paper is to study the distribution of R, for a more
general class of one-dimensional branching diffusion processes in which the
motions of individual particles are governed by a (more or less) arbitrary
diffusion law (see below) and the rate of fission is position-dependent (as in [3]
and [4]). It is clear that (0.2) cannot hold in this generality, because the local
drift, diffusion and fission rate coefficients may vary wildly at «. Nevertheless,
we shail prove that the distribution of R, varies regularly in time in the sense
that
(0.4) tlimP"{Rt_s <y(a,t)} = g(a,s,x)
exists for all @« € (0,1) and s, x € R, where y(a, t) is the ath quantile of the
distribution of R, under P° (Theorem 3.2). Thus, although R, — y(1/2,t)
may not converge in law as ¢ — o, the quantiles y(a, ¢) change with ¢ in a
somewhat regular manner. Furthermore, we shall prove that if
lim, ., g(1/2,s,x)=1 and lim, ,_, g(1/2,s,x) =0, which is always the
case if the wunderlying diffusion is recurrent, then there exists a
homeomorphism f: R — R such that

(0.5) lim P*{f(R,) <t +y) =g(1/2,y,x), Vazx,y€R
t—

Thus, the rescaled branching diffusion exhibits the travelling wave phe-
nomenon (Theorem 3.6).
We shall also prove an analogue of the conditional law (0.3):
(0.6) lim lim P*{R, ,<y(a,t)IF}=Y,,
r—owit—o
exists a.s. (P*) for all « € (0,1) and s, x € R [cf. (4.2)]. Moreover, for each a,
the random function Y, ; assumes one of the following forms a.s. (P*):

1, ifs>U,
(0.7 Yoo = {0, ifs<U,
1, ifs<U,
(0.8) Yoo = {o, ifs> U,
or
(0.9) Y, , = exp(~Z,e),

where C, is a real constant and U, and Z, are random variables satisfying
-0 < U, <oand 0 < Z, < © (Theorem 5.1). For a given value of a, only one
of the forms (0.7)-(0.9) can occur with positive P*-probability. In cases (0.7)
and (0.8) the behavior of R, is ultimately predictable in the sense that the
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observed quantile @, = inf{a: R, < y(a,t)} stabilizes as ¢ — « (Proposition
5.2). The random variables U, and log Z, may be thought of as random
stabilization times. In Section 7 we shall present examples to show that each of
the three types of possible behavior (0.7), (0.8) and (0.9) actually occurs. The
reader should perhaps consult these examples before reading Sections 2-6.
The travelling wave phenomenon (0.2) occurs for many branching diffusions
other than branching Brownian motion (cf. e.g., [3] and [4]; see also Examples
7.2, 7.3 and 7.5). In Section 6 we investigate the implications of our general
results (0.4)-(0.9) for such processes. We will show that if (0.2) occurs, then
the quantiles y(a, ) must move linearly in ¢ (as ¢ — ). Furthermore, we will
show that the representations (0.7)-(0.9) simplify in this case by finding
relations among the quantities U,, Z, and C, for different a. We shall also
give a simple sufficient condition for (0.9), and thus for the wave front to be a
translation mixture of extreme value distributions exp{—e~¢?} (Proposition
6.5). Finally, we call the reader’s attention to Example 7.2, which exhibits a
peculiar feature. In this example the underlying particle motion is the stan-
dard Ornstein—Uhlenbeck process and the fission rate is 1; under any P~,

Rt_\/;—‘)go.

This shows that R,, suitably recentered, may converge in distribution even
when R, does not grow at a linear rate. However, Theorem 3.6 implies that if
R,/t »p 0 and R, — y(1/2,¢) converges in distribution, then the limit distri-
bution must be degenerate.

1. Branching diffusion processes. The individual particles in our pro-
cesses will move according to a conservative, nonsingular diffusion process in
(—o, ®). In particular, there are no killings and no shunts ([1], Chapters 3 and
4). A conservative, nonsingular diffusion in (—, ») is determined by its scale
function S(x) and its speed measure u(dx) ([1], Section 4.2); we assume for
simplicity that u has no atoms. An important fact that we will use repeatedly
is that for a one-dimensional diffusion process with no shunts the transition
probabilities P(¢, x, dy) satisfy

P(t,x,dy) = p(¢, x,y)n(dy),
p(t, x,y) >0, Vi>0,Vx,yeR

(cf. [1], Section 4.11 and Problem 4.11.5). Since u(J) > 0 for every nonempty,
open interval J, it follows that P(¢,x,J) > 0,V ¢t > 0, x € R and J open and
nonempty. Recall also that diffusion processes have continuous sample paths
—this is crucial for many of our arguments.

Individual particles reproduce as follows. The initial particle, moving along
its trajectory X,(¢), produces offspring at a random time T, where

P(T, > tIX\(s),s = 0) = exp{—/:B(Xl(s)) ds}

and B(x) > 0 is a continuous function. Observe that T, may be « with positive
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probability. Conditional on the path X,(s), s > 0, and the value of T, the
number of offspring produced at time T', is governed by a probability distribu-
tion {p(X(T)), ., where p,(x) are continuous functions of x satisfying
Y= _.p{x) = 1. The original particle and each of the offspring produced at
time T, then follow (conditionally) independent paths governed by the law of
the underlying diffusion, and obey the same reproduction law as the original
particle. We make no assumptions about B(x) and {p,(x)}, ., except that there
are no ‘“‘explosions,” that is, the number N(#) of particles born before time ¢ is
finite with probability 1. If B(x)L% _,np,(x) < C, V x € R, then the fact that
e~ C!N(?) is a nonnegative supermartingale implies that there are no explo-
sions.

We will generally consider only branching diffusion processes initiated by a
single particle located at position x at time ¢ = 0; the notation P* will be used
for the probability measure governing the process. (Sometimes we will let the
initial point be a random variable with distribution v, in which case P* will
denote the probability measure.) The state of the process at time ¢ consists of
the locations (X;(#)) of the particles in existence at ¢, j = 1,2,..., N(¢). In
some arguments we will need several copies of the branching diffusion process,
for example, (X;(¢)) and (X ()); in such cases we will use the same nota-
tional convention for all random variables associated with the processes, for
example, N, (¢) is the number of particles in (X (t)) at time ¢ and R ) =
max(X(?), ..., Xy(t)). Whenever several branchlng diffusion processes occur
in the same context they will always have the same diffusion law (S(x), u(dx))
and reproduction law (B(x),{p,(x)}), although they may have different initial
points. Sometimes it will be convenient to let a branching diffusion process
begin at a time ¢ other than 0.

Conditional on its history up to time s, the future of a branching diffusion
process (X;(2)) after s consists of a superposition of N(s) independent branch-
ing diffusion processes begun at positions X;(s), Xx(s), ..., Xy (s) at time s.
This is the Markov property for branching diffusion processes. The strong
Markov property also holds; this says the same thing as the Markov property,
but with the fixed time s replaced by a finite stopping time 7. In some
situations, for example, coupling arguments, o((X;(s)), s <¢) is not the
natural filtration. We define an admissible filtration to be a filtration (%), ,
such that (X;(¢)) is adapted to (%) and the strong Markov property holds,
that is, for any stopping time 7 < ® the distribution of (X;(t + 1), t > 0)
conditional on % is the same as that of N(7) independent branching diffusion
processes begun at X,(7),..., Xy ().

2. Comparison principles. Let v(x) be a Borel measurable function of
x € Rsuch that 0 <v < 1; for £ > 0, x € R define
N(@)
(2.1) u(t,x) =E"1_[10(Xj(t)).
j=
LEMMA 2.1. u(t, x) is a jointly continuous function of (t,x) € (0,) X R.
Moreover, if v is continuous at x, then u is continuous at (0, x).
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Proor. The joint continuity of u in (¢, x) for ¢ > 0 follows from a simple
coupling argument, since 0 < v < 1. [If independent branching diffusion pro-
cesses (X;(s)) and (X(s)) are started at x and x’, respectively, then with high
probability the paths X,(s) and Xj(s + €) will meet at some s < ¢ before a
fission has occurred on either path, provided |x — x'| and |¢| are small. On this
event the processes may be coupled; hence the products in the definitions of
u(t,x) and u(t + ¢, x') are equal with high probability, and thus |u(¢, x) —
u(t + &, x')| is small.]

Let v be continuous at x, and let ¢ and |x’ — x| be small. If (X,(s)) is a
branching diffusion process started at x’, then with high probability no fission
occurs by time ¢ and X,(¢) is near x, Wthh implies [v(X,(¢)) — v(x)| is small
and therefore that u(e, x') = v(x). O

LEmMA 2.2. Foreveryx €R, t > s,

N(s)

(2.2) u(t,x) =E"l—[u(t—s,Xj(s)).

Jj=1

Furthermore, if Y,(s) = I—IN(S)u(t —8,X(s)) for 0 <s <t, then Y(s) is a
martingale relative to any admzsszble ﬁltratzon (%) » 0, under any P*, x € R.

Proor. By (2.1),

N(s) Ni(t-s)
Y,(s) = l_IIEXJ‘(s) l_[1 v(Xij(t)),
Jj= i=

wiere X,(t), i =1,..., Ni(t —s), denote the positions at time ¢ of the
progeny of the partlcle at X (s) at time s. By the Markov property of (X,(2))
(conditional on %, the future has the same law as an aggregation of N(s)
independent branchmg processes, started at X(s),..., Xy(s)),

)

Thus, Y,(s) is a martingale, and (2.2) follows from u(¢, x) = Y,(0) = E*(Y(s)).
O

N@)
Y(s) = E"(JEIlv(X,-(t))

Let A be an open subset of (0,0) X R and let (X,(#)) be a branching
diffusion process started at some x € R. Define a new process (X (1)) by
“freezing” any particle in (X;(¢)) the instant it hits A, not allowmg it any
further movement or reproductlon Thus, let 7; = inf{t: (¢, X;(¢)) € A} and
define X*(¢) = X;(¢ A 7); then (X (t)) is the subset of (X*(t)) obtained by
deleting the path of any particle j' born of a particle j after time 7; (see
Figure 1). Let N(#) be the number of particles in the collection (X (t)) at
time ¢.
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3A

Fic. 1.

LEmMa 2.3. Foranyt> 0, x € R,

V(2)
(2.3) u(t, x) = Exli]_[ u(t — (7, A t), Xy(t A 7))
j=1

Proor. It follows from Lemma 2.2 that, for any stopping time v < ¢,

N@)
(2.4) u(t,x) =Exl_[u(t—— v,Xj(v)).
j=1
Let 0 < v, <v, < --- be the successive times at which paths in the collection

(X;(2)) reach (the boundary of) A. At time », one of the particles, say, the ith,
has reached dA. Consider (2.4) with v = v, A ¢; freeze the factor u(¢ — v, X,(v))
corresponding to the particle that has just reached dA, then apply (2.4) to each
of the other factors with v = v, A £. Proceeding recursively through v; A ¢,
vy At,..., at each step freezing the factor corresponding to any particle that
has reached dA, we obtain (2.3). O

Let v,(x) and vy(x) be Borel measurable functions of x € R satisfying
0 <v; <1, and let u(¢,x) and u,(¢, x) be defined by (2.1) with v = v; and
U = vy, respectively.

LEmMaA 2.4 (Majorization principle). If v(x) > vy(x) for each x € R, then
ut,x) = uyt,x) for each (t,x) € (0,) X R. If in addition v,(x) > vy(x) for
every x in some nonempty open interval, then u(¢,x) > u,(¢,x) for every
(t,x) € (0,%) X R.
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ProoF. By definition, u (¢, x) = E*T1*Qv(X;(®)). If v; > v,, then the in-
tegrand for i = 1 is greater than or equal to that for i = 2, so u; > u,. To
prove the second statement, we will show that if v, > v, in the interval (a, b),
then for every (¢, x) € (0, ) X R there is positive P*-probability that

N(@) N(@©)

[To(X;(1)) > TTua(X;(2)).

Jj=1 Jj=1
Let A ={N(¢)=1}. Then P*(A|#) > 0, where &, = o(X,(¢): ¢t = 0) [this
follows from the fact that the birth rate function B(x) is bounded on compact
intervals]. Let B = {X(¢) € (a, b)}. Then P*(B) > 0 (cf. [1], Problem 5, Sec-
tion 4.11). Since B € &, it follows that P*(A N B) > 0. O

LEmmMa 2.5 (Sign-change lemma). If

(2.5) vo(x) 2 vy(x), Vax>ux,
and
(2.6) vo(x) <vy(x), Vax<ux,
then

(2.7)  uy(t,xy) >u(t, %) = uy(t,x) >uyt,x), Vx=ux,
and
(2.8)  wuy(t,x5) <uy(t,xy) = wuy(t,x) <uyt,x), Vx<ux,.

Proor. It suffices to prove (2.7). Assume v,(x,) < v{(x,). The same argu-
ment with slight modification works when vy(x,) > v,(x,).

Define A ={(s,x): 0 <s <t and u,(¢ —s,x) > uy(t — s,x)}; by Lemma
2.1, A is an open subset of (0, x) X R.

We shall prove that if u,(¢, x;) > u(¢, x,) and if (2.5) and (2.6) hold, then
there is a continuous path y(s), 0 < s < ¢, such that y(0) = x,, y(¢) > x, and
(s,v(s)) € A° V¥ 0 < s < ¢t. Suppose not. Then every continuous path y(s),
0 < s <t, such that y(0) = x, must either enter A or terminate at y(¢) < x,,
but then Lemma 2.3 implies that u (¢, x;) < u(¢, x,), a contradiction.

The path y(s) satisfies u,(¢ — s,y(s)) > u,(t — s,y(s)) for each 0 <s < ¢.
Since y(0) =x; and u,(¢, x;) > u,(¢ x,), and since u,, u, are continuous,
there exists 8 > 0 such that u,(t —s,y(s)) > u,(¢t —s,v(s)) for 0 <s <é.
Define A* = {(s,x): 0 < s < ¢ and x < y(s)}. Observe that any path B(s) such
that B(0) > x; and such that (s, B(s)) enters A* must cross (s, y(s)) as it
enters A* (see Figure 2). We now apply Lemma 2.3 to calculate u (¢, x),
u (¢, x) for x > x,, this time using the region A* instead of A. Since (7}, X (7))

ison (s,y(s) if 7; <t and X;(¢) > y(t) > x, if ¢ < i

uyt = (1, A1), Xi(my At)) 2 ug(t — (r; A 8), Xi(r; A 8)), YV 1sj<N(2).
Furthermore, strict inequality occurs with positive P*-probability, because

there is positive probability that (s, X,(s)) crosses (s, y(s)) for some s < & ([1],
Section 4.11, Problem 5). Thus, by Lemma 2.3, u,(¢, x) > u (¢, x) for x > x,.
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O

Lemma 2.5 states that if (2.5) and (2.6) hold, then for each ¢ > 0 the
difference u,(¢, x) — u4(¢, x), as a function of x, has at most one sign change,
from — to +. A trivial but noteworthy consequence of Lemma 2.5 is that if
(2.5) and (2.6) hold, then

(2.9)  uy(t,xy) > uyt, %) = uy(t,x)zuy(tx), Vxzxx
(2.10) uy(t,x5) <uq(t,xy) = uy(t,x) <uy(t,x), Vx<x,

Say that a Borel function H: R — [0, 1] is a martingale function if,V x € R,
Vit=0,
N(t)
(2.11) H(x) = E"jlj[lH(Xj(t)).

Note that a pointwise limit of martingale functions is again a martingale
function, by the dominated convergence theorem.

LEMMA 2.6. Let H(x) be a martingale function. If H(x) = 0 for some
x € R, then H(x) = 0,V x € R, and if H(x) = 1 for somex € R, then H(x) = 1,
VxeR

Proor. If H(x) = 0, then, for any ¢ > 0, H(X,(¢)) = 0 a.s. (P*), because
conditional on X,(¢) there is positive P*-probability that N(¢) = 1. Now under
any P* x € R, the distribution of X,(¢) is equivalent to the speed measure
u(dy). Consequently, the distributions of X(¢#) under the measures P*, x € R,
are all equivalent to each other, so that, ¥ x € R, P{H(X(¢)) = 0} = 1. This
clearly implies that H(x) = 0, V x € R, in view of (2.11).

A similar argument proves the second statement of the lemma. O
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3. Existence of a travelling wave. Recall that R, = max(X,(?),...,
Xn(?). Define u(t, x, y) to be the distribution function of R, under P*, that
is,

N(@)
(3.1) u(t,x,y) = P{R, <y} = E* 1‘[1 1{X,(t) <y}
Jj=

For each £ > 0 and x € R, u(¢,x,y) is a strictly increasing function of y,
because, for any a < b, P{N(¢) = 1 and a < X(¢) < b} > 0 ([1], Section 4.11,
Problem 5 again). Thus, for 0 < @ < 1, the ath quantile y(a, ¢) of u(t,0, - ) is
the unique real number such that u(#,0,y(a,t)) =a, for 0 <a <1, and
v(a, t) is strictly increasing in . For « = 0 and a = 1, we set y(0,¢) = —x
and y(1,t) = o.

Let —o<s; <s; <o and —o <x; <x, <, and let K =[s;,s,] X
[x,, x,] € R2

LEmMA 3.1. For any & > 0, the set {u(t + s,x,y): t>8 —s;,, yER} is a
uniformly equicontinuous family of functions of (x,s) € K.

Proor. This follows from a simple coupling argument almost identical to
that used in the proof of Lemma 2.1. O
Equation (2.2) implies that, for any ¢ > 0, s > 0,

(3.2) u(t+s,x,y) =E"1\l]ii)u(t, X(s),y).
j=1

Also, the sign-change lemma implies that if ¢, < ¢,, then, for any y,, y, € R,
u(ty, x, y,) — u(ty, x, y;) has at most one sign change in x (— to +), that is,
u(ty, x1,¥2) > u(ty, 21,51) = u(ty, x,y2) > u(ty, x,51), Vx>ux,

u(t27x2ay2) < u(tlaxZayl) = u(t2ax7y2) < u(th x7y1)7 Vix < Xg.

THEOREM 3.2. For each a €[0,1], s €R and x € R,

g(a,s,x) = limu(t—s,x,y(a,t))
t— oo

3.3
(3.3) = lim P*{R,_, < y(e,¢))
t—o

exists, and the convergence is uniform for (s, x) in any compact subset K of
R X R.

NotE. g(a,0,0) =a,V a €(0,1).
Proor oF THEOREM 3.2. It follows from Lemma 3.1 and the Arzela-Ascoli

theorem that any sequence ¢, » © has a subsequence ¢, — ® such that
u(t, — s, x, y(a,t,)) converges uniformly for (s,x) € K. Suppose that ¢, <
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), <ty <ty < -+ — o are such that
u(t, — s, %,v(a,t)) > g(a, s, x),
u(t, — s, x,v(a,ty)) > &'(a,s,x).
We will show that g = g'.
Since £, > t,, u(t) — s,x,v(a, ;) — u(t, —s,x,v(a,t,)) has at most one
sign change in x, from — to +; consequently, g'(a, s, x) — g(a, s, x) has at
most one sign change, from — to +. On the other hand, since ¢;., > t, the

same argument shows that g(a, s, x) — g'(e, s, x) has at most one sign change,
also from — to +. Thus,

g(a,s,x) > g'(a,s,x) for some x = gla,s,x) >g(a,s,x)Vx;
gla,s,x) <g'(a,s,x) forsome x = g(a,s,x) <g'(a,s,x)Vx.

Suppose that for some s > 0, g(a, s, %) > g'(a,s,x)VxeRor gla,s,x) <
g'(a,s,x)V x € R. By (3.2),

N(s)

a = u(tk, 0, 'y(a, tk)) = EO lj[ u(tk - 8, XJ(S), 'y(a,tk)),
N(s)

a=u(ty,0,y(a,ty)) =E° _]_[1u(t’k -5, X;(s),v(a,t})),
j=

so by the dominated convergence theorem

N(s) N(s)
a= EOJl;-[lg(a, s, X;(s)) = onljlg’(a, s, X;(s))-

It now follows that g(a, s, X,(s)) = g'(a, s, X{(s)) PYas. Since g(a, s, x) and
g'(a, s, x) are continuous in x it follows that g(a, s,x) = g'(a,s,x),Vx €R.
Together with the results of the preceding paragraph this shows that
gla, s,x) = g'(a,s,x), for all xR and s> 0, and g(a,0,x) = g'(a,0,x)
follows by continuity.
Now let s < 0; by (3.2) again,
N(-5s)
u(t, —s,x,v(a,ty)) = E* ]—[1 u(ty, X;(—s),v(a, t))

and

N(-5s)
u(t, —s,x,v(a,ty)) = E* ]_[1 u(t’k, Xj(—s),y(a,t}z)),
j=
N(-s)
= g(a,s,x)=E* ]_[1 g(a,O, Xj(—s))
j=
and

N(-s)
g'(a,s,x) =E* I_[l g'(a,0, X;(—s))-
j=
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But g(a,0,x) = g'(a,0,x), V x € R, so it follows that g(a, s, x) = g'(a, s, x).
This completes the proof that the limit in (8.8) exists. The local uniformity in
(s, x) is an easy consequence of Lemma 3.1. O

ProposiTION 3.3. The function g(a, s, x) has the following properties:

N(s")

(3.4) g(a,s,x) = E* l_[lg(a,s +5,X;(s"), Vs=0;
j=

(3.5) g(a, s, x) is strictly increasing in a;

(3.6) g(a,s, x) is jointly continuous in a, s, x;

(3.7) g(a,s,x) =g(d,s',x) for somex = g(a,s +r,x)
=g(a,s"+r,x),Vx,r eR;

{gla,s +r,x): 0 <a < 1, s € R} is a uniformly equicontin-
(3.8)  uous family of functions of (r,x) € K, for any compact
K cRXR. )

Proor. (3.4) follows immediately from (3.2) and (3.3) by the dominated
convergence theorem.

By Lemma 3.1, the family {u(t + s,x,y): t > 8 — s;, y € R} is a uniformly
equicontinuous family of functions of (s, x) € [s,, s,] X [x,, x,]. Since each
g(a, s + r,x) is a uniform limit (locally) of functions in this collection, (3.8)
follows.

Observe that, V a, o’ € (0,1),V s, s’ € R, the function g(a, s, x) — g(a/, §', x)
has no sign change in x. (This may be proved by an argument similar to that
used in the proof of Theorem 3.2.) Thus, either g(a, s, x) > g(a/,s', x)V x € R
or gla,s,x) <gla,s',x)Vx €R.

If r <0, then

N(-r)
gla,s+r,x)=E* [] g(a, s, Xj(—r)),
j=1

N(-r)
g(a,s' +r,x) =E* ] g(a,s, Xj(—r)).
j=1

Thus, if g(a,s,x) =g(a,s’,x) V x €R, it follows that g(a,s +r,x) =
g(d,s' +r,x) ¥ r <0, x € R On the other hand, if g(a, s, x) > g, s, x) ¥
x € R with strict inequality for some «x, then strict inequality must hold for all
x in some open interval o, since g(a,s,x) and g(«/,s’,x) are continuous
functions of x. But then the integral representations above imply that g(a,
s+r,x)>gla,s"+r,x) ¥ r <0, x €R, because there is positive P*-prob-
ability that X,(-r) € J and N(-r) = 1. Thus, g(a,s,x) = g(a, s’, x) for
some x implies g(a,s + r,x) = g(a/,s + r,x) V r > 0, x € R, which in turn
implies equality V r < 0, x € R. This proves (3.7).
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Let a <a. Then g(a,0,0) =a <o = g(a,0,0); hence by (3.7),
gla, s, x) < gla,s,x) Vs, x € R. This proves (3.5).

To prove (3.6) it suffices to show that lim,_,, g(a,s,x) = glay, s, x), for
each (s,x), in view of (3.8). First consider the case 0 < a, < 1. By (3.5),
lim,,,, &(a,s,x)=_g'(ay,s,x)andlim gla, s, x) = g"(ay, s, x) exist, and
g <g <g" By(3.4),

alay

N(s")
g (ay,s,x) =E* l—llg’(a*, s+, Xj(s'))
Jj=

and
N(s")
g (ay,s,x) = E* l_[lg"(a*,s +5', X;(s"));
j=

consequently, by the same argument used to prove (3.7), either g'(a,, s, x) <
g'(ay,s,x) V s,x €R or g'(ay,s, x)=g"(ay,s,x) V s,x € R But
g8(a,0,0)=a VYV a €(0,1), so a, =g'(a,,0,0) =g"(a,,0,0) V a, €(0,1).
Hence g’ = g”. This proves that lim, ,,, g(a, s, x) = glay,s,x) ¥V a, € (0, 1),
V s, x € R. The argument for a, = 0 and a, = 1 is essentially the same. O

COROLLARY 3.4. g(a,s,x) = g(g(a,s,0),0, x).
Proor. Since g(g(a, s,0),0,0) = g(a, s,0), this follows from (3.7). O

ProrosiTION 3.5. The function g(a, s, x) is strictly increasing or strictly
decreasing, or is constant in s. Furthermore, for each « the same case holds
simultaneously V x € R.

Proor. By (3.7), for any s > 0 one of the following is true:
@ gla,r,x) <gla,s +r,x),Vx,reR;
Gi) gla,r,x) > gla,s +r,x),Vx,r eR;
Gi) gla,r,x) =gla,s +r,x),Vx,reR.
Setting r = ks, k € Z, we get that exactly one of the following is true:
G) gla, ks, x) < gla,(k + 1)s,x),Vx €R, k € Z;
(i) gla, ks, x) > gla,(k + Ds,x),Vx €R, k € Z;
Gii") g(a, ks, x) = gla,(k + 1)s,x),Vx ER, k € Z.
If we consider s of the form 27", n =0,1,2,..., it follows that g(a, s’, x) is
either strictly increasing in s’ V x, strictly decreasing in s’ V x, or constant in

s’ V x when s’ is restricted to integer multiples of 27", n = 0,1,2,... . The
proposition now follows from the continuity of g. O

THEOREM 3.6. Assume that
(3.9) lim g{(1/2,s,x) =1
s§—®©
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and
(3.10) lim g(1/2,s,x) =0, VxeR.

Then there exists an increasing homeomorphism f: R - R such that the
rescaled branching diffusion process (X;(¢)),_ ;. N defined by N(t) = N(¢)
and X(t) = f(X;(¢)) satisfies

(3.11) lim P*{R, <t +y} = g(1/2,y,x), Vax,y<R.
t—> oo

Note. (i) If the underlying diffusion process X,(¢) is recurrent, then (3.9)
and (3.10) must hold. See Proposition 5.4 for a more general sufficient
condition.

(i) The hypotheses (3.9) and (3.10) imply that for each x the function
8(1/2, s, x) is strictly increasing in s, by Proposition 3.5, and by (3.7) the same
is true for g(e, s, x), all a € (0, 1). Furthermore, g(1/2, y, x) is jointly contin-
uous in x and y, by (3.6). Thus, (3.11) implies that under each P%, x € R, the
random variables R, — ¢ converge in distribution to a proper, continuous,
strictly increasing distribution function, as stated in the abstract.

Proor oF THEOREM 3.6. First we will construct a suitable homeomorphism
f: R - R. Choose any s > 0; since g(1/2,s,x) 1 in s and

lim P{R, < y(1/2,t + s)} = g(1/2, s, x),
t— o
lim P¥(R, < y(1/2,t)} = g(1/2,0, x),
t— o

it follows that y(1/2,¢) < y(1/2,¢ + s) for all sufficiently large . Further-
more, by (3.9), y(1/2,t) >, as t >x. For n=1,2..., define t, =
min{k/2™: k>0 and y(1/2, j/2") < y(1/2,(j + 1)/2"), V¥ j > k} and note
that ¢, <¢, <¢; < --- . Now define
f(v(1/2,j/2™)) =j/2", Vj/2">t,;

f can be extended to an increasing homeomorphism of R onto R.

If X'j(t) = f(X;(#)), for 1 <j < N(¢) = N(t), then clearly R, = f(R)). Conse-
quently, for any j, k& such that (j + £)/2" > ¢,

PR, <j/o" + k/2"} = P*(R; ;0 < v(1/2,(j + k) /27)}.
It therefore follows from (3.3) and the continuity of g(1,/2,y,x) in y that as
¢t — » through any of the discrete sets D, = [k/2": k € 7},
P"{R';t <t +y} - g(1/2,y,x).
The result (3.11) now follows from Lemma 3.1 [applied to the rescaled branch-
ing diffusion process (X;(¢))]. O

4. A family of martingales and a coupling argument. For a € (0, 1),
s € Rand ¢ > 0, define
N@)
(4.1) Y, (¢) = jl—llg(a, s +¢, X(t)).
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Recall [cf. (8.7) and Proposition 3.5] that g(a, s, x) is increasing in a and
monotone in s; consequently, for each ¢ > 0, so is Y, (2).

ProposITION 4.1. Y, (¢) is a martingale relative to any admissible filtra-
tion (%), , under any P*, x € R.

Proor. This follows from (3.4) by the same argument as in the proof of
Lemma 2.2. O

We now examine more closely the martingales Y, ,(¢) defined by (4.1) and
their limits. Recall that y(a,t) is the ath quantile of R, under P°. By the
Markov property, if (%), , is any admissible filtration for the branching
diffusion process (X;(¢)), then

N(r)
Px{Rt—s = 7(“1 t)l.?; } = ].—I PXj(r){Rt—s—r =< 7(a7 t)}
i=1
N(r)
= [Tu(t-s-r, X,(r),v(a,t)),

Jj=1

for t — s > r. Letting ¢ — o and appealing to Theorem 3.2, we obtain

N(r)
lim P*{R,_, < y(e,t)|F } = [1g(a,s +r,X;(r))
t—> o Jj=1
= Ya,s(r)'

Since Y, ,(r) is a bounded martingale, it has a limit as r — c; thus, we may
define
(4.2) Y,,=limY, (r) = lim lim P¥{R,_, < y(a,t)|% }.

r—o r—ow -0

Observe that Y, ,(r) and Y, ; do not depend on the filtration (%), . ,. Fur-
thermore, with P*-probability 1, Y, , is nondecreasing in « and monotone in s
in the same direction as is g(a, s, x), because for each r the same properties
obtain for Y, [(r). Also, since Y, ,(r) is a bounded martingale under any P7

(4.3) E*Y, , = E*Y, ,(0) = g(a,s,%).

Since g(a, s, x) is continuous and monotone, there is a version of the process
Y, . which is right-continuous in s.

a, s

PROPOSITION 4.2. For any a,a, € (0,1) and s, , x € R, either

(4.4) Y,.2Y, s> V s € R with P*-probability 1,
or
(4.5) Y, . <Y, s> V s € R with P*-probability 1.

Proor. By (8.17), either g(a,s + r,x) > glay,,s + s, + r,x)Vx,r € Ror
gla,s +r,x) <glay,s+s,+r,x)Vx,reR By@D,Y, (=Y, .. ()



1324 S. LALLEY AND T. SELLKE

Y r > 0 in the first case and Y, (r) <Y, ,,,(r)V r> 0 in the second case.
O

The next result is similar, but requires a more sophisticated argument; it
does not seem to follow from the comparison methods of Section 2.

ProposiTioON 4.3. For any a < (0,1), s,,x € R and positive integers
ki, ko, with P*-probability 1, one of the following holds:

(4.6) Y’21 > Yk‘b’s+s , Vs eR,

or

(4.7 Yl <Y, , VseR
y Sty

REMARK. According to Proposition 4.3, it may be random whether (4.6)
holds or (4.7) holds. However, it will follow from results in Section 5 that
either (4.6) holds a.s. (P*) or (4.7) holds a.s. (P¥).

ProoF oF ProPOSITION 4.3. Since Y, , is a monotone right-continuous
function of s a.s. (P*), it suffices to prove that for any s,, s, x € R and any
e>0,

(4.8) P Yk >Yk ,  +eand Yl <Yk, —¢)=0.

We will use a coupling argument, which wﬂl involve the use of aux1hary
branching diffusion processes (X i), i=1,2,...,k;, and (X (8), i=
1,2,..., k. Let (%),., be the filtration generated by the processes (X (1),
i=1, 2 k,) and by the original process (X;(2)). Let (¥, ) 0 be the ﬁltra-
tion generated by the processes (X (@),i=1, 2 k). The processes will be
constructed in such a way that (9' iso 1S an admissible filtration for its

generating processes and likewise for (%, 7); > o- Random variables defined in

terms of (X i(t)) will be denoted by a superscript i and a tilde, for example,
Ni@) = number of particles in (X (1) at time ¢, R} = max(Xi(2),.. XNz(,),
and so on; similarly for (X {(t)).

We may assume w1thout loss of generality that s, < 0.

SteEP 1. The auxiliary processes (X }(t)) and (X Jf(t)) will coincide with the
original process (X;(¢)) up to a certain time. Specifically, for a certain r, <,
Ni(t) =N(t) and Xi(z) = X,(t),

Vi<r,,j=1,...,N(2),
Ni(¢) =N(¢) and Xi(t) =X,(t),
Vi<r, —s«,.j=1,...,N(2).
Fix 6 > 0 (small); r, < o should be chosen so that

P suplY, , = Y, (1)l > /4(ky + ko) | <

r>r,

(4.9)

(4.10)
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for s = s, 89,81 + 84,89 + Sy It follows from (4.2) that such an r, exists.
Now each of the processes (X i(t)) and (X (£)) has the same law as (X;(2)), so
the preceding inequality is vahd also for Ya‘ o Y' (r) and Ya‘ © Y" (r) But

Y, (ry) =Y. (r,)= Y'a‘ 4(r), since all the processes coincide up to time s
consequently,

PHY, - Y! |2e/2(ky +ky)} <28, 1<i<ky,
and
PHY, ,— Y l>e/2(k; +ky)} <26, 1<is<ky,

for s =s;,85,8; + 54, S3 + 54. Since all of the random variables Y, ,, Ya' o

Y;‘;s take values in [0, 1], it follows that for s = s, 59, 1 + S, Sg + Sy,

ky
7 i k
l_.[ Ya,s - Ya,ls

Px
i=1
ko

o i
i=1

The auxiliary processes are constructed in such a way that

> 8/2} < 2k,6

and

- Yk > 3/2} < 2k,8.

Ry ko by ko
(411) P TIY:, > [1Y:, ., and [TY,, < T1Y) 0.} = 0;

i=1 =1 i=1 7t =1
this therefore implies that

PHYk > Yk . +eand Y <Y}l

a,Sg+S,

— &} <4(ky + ky)0.

;81 +8y

Since & > 0 is arbitrary, (4.8) then follows.

Step 2. The processes (X i(t),i=1,2,...,k,, are constructed as follows.
Run the original branching d1ffus1on process (X;()) up to time ¢ =r,; by
(4.9), this determines the evolution of each (X (t)) up to ¢t =r,. At time
t = ry, each of the processes (X;(¢)) and (X (t)) i=1,..., &k, has a single
particle at each of the locations Xl(r*) Xo( r*) s Xngr, )(r*) Conditional on
.9' let each.of these (1 + k,)N(r,) particles begln 1ts own branching diffusion
process forward in time, independent of all the others; the paths of these
particles and their progeny constitute the futures (after time r,) of the
processes (X;(2)), (X 1(¢)), . (X k1(¢)). Note that conditional on .9-5* these
processes are mutually 1ndependent and have the same law

Let all of the particles in the processes (X (t), i = , k1, be colored
white, and let each white particle be shadowed in spacetlme by a red particle
—Sx ‘time units in the past. Thus, for each path X (t) of a white particle,
t> t > r,, define

Xi(t)=Xi(t+s,), t=2F-s,,
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and let each X {(t) be the path of a red particle. [Here, t’ is of course the birth
time of the whlte particle following path X i(t).] Observe that if a white
particle fissions at time ¢, then the correspondlng red particle fissions at time
¢t — sy, and the offspring red is the shadow particle of the offspring white.
Conditional on % , ., the processes (X ’(¢)) are independent branching dif-
fusion processes, each initiated by particles at (ry — s4, X{(r)), ...,
(ry — 84, Xnr,(7+)) in spacetime.

Step 3. The construction of the processes (X @), i=1,...,k, will in-
volve the paths of the red particles. The evolution of (X (1)), for t STy — Sy, 18
determined by (4.10). At time ¢ = r, — s, each of the processes (X (t)) has a
particle at each of the positions X (7, — s4),..., X, — (rs — ) let all of
these particles and their offspring be colored blue. At time ¢t = r,,< — s, there
are also red particles at positions X(ry),..., Xy (ry), each of which will
initiate a branching diffusion process of red particles.

Conditional on %, __ , let each of the blue particles begin its own branching
diffusion process, mdependent of all the other blue and red particles. However,
whenever a free (uncoupled) blue particle meets a free red particle the two
particles are coupled, and thereafter both particles follow the path of the red
(including fissions—whenever the red particle fissions, so does the blue, and
the offspring red and blue are coupled). The paths of the blue particles for
t > t, — s, constitute the processes (X (t)),i=1,..., k,. Observe that condi-

tional on .Z the processes (X (t)) 1=1, kz, are mutually indepen-
dent but are not independent of the processes (X (t)) it=1,...,k,.
For t >r,—s,, let $*= %,V .7 Observe that, for ¢>r, —s,,

(F*)isr, -, isan admlss1ble filtration for both the red processes (X!(¢)) and
for the biue processes (X @)).

Step 4. Consider the aggregation of all white particles, that is, the col-
lection of all particles in the process (X!t)),...,(XM(z). Let R} =
max;_; c, R! be the position of the rlghtmost whlte partlcle at time ¢.
Conditional on 5’ the random variables R},..., R* are independent; also,
for each i,

Y, = lim lim PR , < y(a,t)|.% },

r—o t—o0n

by (4.2). It follows that
by )
[1Y., = lim lim PR} <vy(a,t) % }.
i=1 r—o t—ow

Recall that each white particle is shadowed by a red particle —s,, time units
in the past. Hence, if RF is the position of the rightmost red particle at time ¢,
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then R?, = RY, so

kl

[1Y;, = lim lim Px{Rﬁs_s* <v(a, )& }
(412) i=1 r—owt—oow

lim lim PR, . <y(a,t)lF*}.

t—8s—8, —
r—o t—ow *

Similarly, if R? = max, _,_,_ R} is the position of the rightmost blue particle
at time ¢, then

k2
[1Y!, = lim lim P¥{RZ, < y(a,t) % )
i=1

r—ot—osow

lim tlim PH{R?, < y(a, ) F*}.
r—owt—-on

Consider next the relationship between RZ and RE. If the rightmost
particle at time ¢ (among all particles, red or blue) is a free red, then
Rf > R}; if it is a free blue, then RZ > RFE; if it is a coupled blue-red, then
R? = Rf. (Note: The P*-probability that two uncoupled particles are at the
same location at time ¢ > 0 is zero.) Call a set of free blue particles a blue
cluster if no two have a free red between them, and call a set of free red
particles a red cluster if no two have a free blue between them. If ¢, < ¢, and
R?>R[ but R2 <Rf, then between times ¢, and ¢, the rightmost blue
cluster disappears. (Recall that whenever a free red and a free blue meet they
couple.) Similarly, if ¢, < ¢, and R > R? but R < R?, then between times
t, and ¢, the rightmost red cluster aisappea.rs. Now after time r, — s, no new
red clusters or blue clusters arise, because a free red particle cannot cross a
free blue particle without coupling. Since there are only finitely many red and
blue clusters at time r, — s,, it follows that only finitely many clusters can
disappear after time r, — s, ; therefore,

P*{R? < RF eventually or R? > R} eventually} = 1.

Define events F = {Rf < R} eventually} and G = {RE < RF eventually}.
We will show that, V s € R,

(4.13)

ky ky

(4.14) [1Y;,>TIY:,,, onFas. (P%
i=1 i=1

and
2 k2

(4.15) 1Y, <I1Y:,.., onGas. (P%).
i=1 i=1

Since by the preceding paragraph P*(F U G) = 1, this will imply (4.11) and
therefore complete the proof of Proposition 4.2. Fix s € R, and define events

H,={RE,_, <v(a,t)} and K,={R? <v(a,t)};

t—s—8, —
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clearly
lim1p1ly,ge =0 as.(P¥) and lim1lgly g =0 as. (P*).
t— oo

t— o0
By the martingale convergence theorem,
lim P*(F|%*) = 1; as.(P*) and lim P*(G|%*) =1; as. (P%).

r—o

Choose 8 > 0 (small); then there exist ry; < «» and ¢; < « such that for all
r>rsand ¢t > ¢,

E*|1; — P*(F|&*) <8,
E*(Lplg, nps) <9,

= E*(P*(FIF*)1g, nm;) < 28,

= E*(P*(F|%*)P*(K, N H{f|%*)) < 28,

= E*(1zP*(K, N H{|F*)) < 28,

= P*{F n {P*(K, N H{|F*) > V25 }} < V25,

= P*(F n {P*(K|%*) - P*(H|F*) > V25 }} < V25 .

Since 8 > 0 is arbitrary, it follows that
lF( lim lim P*(K, Iy*)) < 1F( lim hmP"(HtI(?*)) a.s. (P*).

r—o t—o0 r—o t—o0n

By (4.12) and (4.13), this proves (4.14); (4.15) follows by a similar argument.
O

CoroLLARY 4.4. For any a €(0,1), s,,x € R and B € (0,®), with P*-
probability 1 either
(4.16) Y,
or

(4.17) Y,

Vs eR,
<Yf. .., VseR

Proor. For rational B this follows immediately from Proposition 4.3. Any
irrational B is the limit of an increasing sequence of rationals. O

Let (X,(¢)) and (X (¢)) be independent branching diffusion processes started
from s1ng1e partlcles at x and %, respectively, under P = P** Let random
variables defined in terms of (X (t)) be denoted by a tilde; for exa.mple N@)is
the number of particles in (X (t)) at time ¢.

PROPOSITION 4.5. For any a € (0,1), s, € R and x, % € R, with P**-prob-
ability 1 either

(4.18) Y, 2% 0., VseR,
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or

(4.19) Y, <Y, .\, VseR.

Proor. This is virtually the same as that of Proposition 4.3. Define a third
branching diffusion process (X (t)) as follows. Let (X (2)) coincide with (X (t)
up to time r. After time r, whenever a particle from (X (¢)) meets a partlcle
from (X,(¢ + s,)) the two particles are coupled and thereafter follow the path
of the particle from (X (¢ + s,)). As in the proof of Proposition 4.3, for any s,,
s €R,

Py, > ¥,

Furthermore, if r is chosen sufficiently large then

Px,£<|Ya’s+s* - Ya’s”*l > e/2} <&g,8=s5],8,.

and Y, ,, < %, 110, } = 0.

»S a,S1+Sy

Letting ¢ — 0, one obtains the desired result. O
5. The extreme value law.

THEOREM 5.1. For each a € (0,1), with P*-probability 1 (for any x € R)

the random functions Y, , must assume one of the following forms:

1, ifs>U
(5.1) Yos=10, ifs<U
1, ifs<U
(5.2) Yoo = 0, ifs>U,;
(5.3) Y, ,=exp{-Z,e %}, VseR,

where C, € R is a constant independent of x and the random variables U, and
Z, satisfy —o < U, <wand 0 <Z, < ». For a given a, only one of the three
types (5.1)-(5.3) may occur with positive P*-probability (excluding the trivial
overlaps where U, = +® and Z, = 0 or ). Moreover, with P*-probability 1 all
of the functions Y, ., a € (0, 1), are of the same type.

In Section 7 we give examples showing all three types (5.1)-(5.3) are
possible. Note that types (5.1) and (5.2) may be regarded as limiting cases of
(5.3) in which C, = +. In the event that the functions Y, , are of type (5.1)
or (5.2), the behavior of R, is ultimately predictable (see Proposition 5.2).

Proor oF THEOREM 5.1. Recall that Y, , is monotone in s and nondecreas-
ing in a. Suppose that 0 <Y, <1 a.nd 0<Y, s, <1 for some s €R,
s4 > 0. Then 0<Y, ,, <1 for all re [0, s,]. By Corollary 4.4, for each

r € [0, s, ] there exists b(r) € R such that
lOg Ya, s+r

g Y, , =b(r), VseR;
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a routine argument using the monotonicity in s of Y, , now shows that (5.3)
holds. This proves that with P*-probability 1 for each a the function Y, ,
must assume one of the forms (5.1)-(5.3).

Suppose that for some «a case (5.7) obtains (i = 1, 2 or 3) with —0 < U, <
(if i=1o0r 2) and 0 < Z, < o (if { = 3). Then by Proposition 4.2 the same
case (5.7) must obtain for all « € (0, 1) (although perhaps with U, = + or
Z, = 0 or ). Thus the probability space (Q, &, P*) is partitioned into four
disjoint events F, F,, F3, Fj; on F; (i = 1,2 or 3) all Y, , are of type (5.i) with
—o<U,<wor 0<Z,<» for some @, and on F, all Y, , are either
identically 1 or identically 0.

Suppose now that for some a = a, case (5.i) (with i = 1 or 2) holds and
that — < U, < » with positive P*-probability. Then by Proposition 4.5 the
same case (5.7) must hold with P*-probability 1 for & = a, (although U, may
assume the values + with positive probability). Similarly, if for some a = a,
case (5.3) holds and 0 < Z, < « with positive P*-probability, then by Proposi-
tion 4.5 case (5.3) must hold with P*-probability 1, for a = a,, and C,, must
be a constant r.v., the same for all initial points £. O

Define @, = inf{a: R, < y(a, t)}, that is, @, is the observed quantile of R, at
time ¢. As in the proof of Theorem 5.1, define F; (i = 1, 2 or 3) to be the event
on which all Y, _, @ € (0,1), are of type i and not all of another type i’, and

a, s?

define F, to be ‘the event on which all Y, ., @ €(0,1), are identically 0 or 1.

PROPOSITION 5.2. There exists a random variable Q such that @, converges
to @ in probability on F, U F, U F,, thatis,¥V ¢ > 0,V x € R,

(5.4) tliﬂpx{thlFlquuF‘, - Q]‘FIUFZUF4| > 5} =0.

Proor. This is a routine consequence of (4.2) with s = 0, because on
F,UF,UEFE,

v - 1, ifa>@Q,
«0 10, ifa<@,

for a suitable @ valued in [0,1]. O

ProposiTION 5.3. Assume P*(F;) = 1 for some x € R. Then
(5'5) g(a,s,x) =Exexp{——Zae_CaS}.

For any a € (0, 1) the constant C, = 0 iff g(a, s,0) is constant in s, C, > 0 iff
g(a, s,0) is increasing in s and C, < 0 iff g(a, s, 0) is decreasing in s. For any
a<d,if P{0<Z,<wand 0<Z, <o} >0, then C,=C, VY a" €la,].
If, for some a €(0,1) and x € R, P*{0 < Z, < o} = 1, then C, = C is the
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same ¥ a € (0,1). Finally, if C, # 0, then
lim g(a,s, x), ifC, <0,

. _ _ s§— 00
(5.6) PHZ, =0} lim g(a,s,x), ifC,>0,

§— —0

lim (1 - g(a,s,x)), ifC,>0,
(57) Px{Za — oo} = s>

lim (1 - g(e,s,x)), ifC,<O0.
§— —©

Proor. Since Y, ; is the limit as r —  of a bounded martingale Y, .(r)
with Y, (0) = g(a, s, x), (5.5) follows directly from (5.3), and (5.6) and (5.7)
are immediate consequences of (5.5). The necessary and sufficient conditions
for C, =0, C, <0 and C, > 0 also follow immediately from (5.5).

Suppose that P*{0 < Z, < © and 0 < Z_, < o} > 0; then with positive P*-
probability

Y, , = exp{—Z,e %}, Vs, 0<2Z, <o,

Y, ,=exp{-Z,e %}, Vs50<Z, <o,
Ya",s = eXP{—Zane—C“"s}, Vs,0< Zan <

(that 0 < Z_, < o when 0 < Z,, Z, <  follows from the monotonicity in a of
Y, ;). By Proposition 4.2, C, = C, = C,..

Finally, suppose P*{0 < Z, < o} = 1. Then for any o' # a, either P*{0 <
Z, < »} = 0, in which case the choice of C, is irrelevant, or P¥0 < Z,, Z, <
®} > 0, in which case C, = C,. O

Define
(5.8) G*(a,x) = limg(a,s,x),
(5.9) G (a,x) = lim g(a,s,x).

Let T = inf{¢t > 0: N(¢) > 2} and for x € Rlet 7, = inf{z > T: some X;(¢) = x}.

PROPOSITION 5.4. Suppose that either (5.10) or (5.11) holds:

(5.10) G*'(a,x) =1 and G (a,x) =0, Va,x.
(5.11) G*'(a,x) =0 and G (a,x)=1, Va,x.
Then, for somei =1,2 or 3,

(5.12) P¥(F) =1, VxeR.

If P*(F)) =1 or P*(Fy) =1, then —» <U, < a.s. (P*). If P*(Fy) =1,
then C, = C is independent of a, C + 0 and 0 < Z, < » a.s. (P¥).
If, for some x € R, P*{r, < ©} = 1, then (5.10) holds.
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NotEe. If X,(¢)is recurrent and B(x) > 0 somewhere, then P*{r, < o} = 1,
VxeR.

ProoF OF PrOPOSITION 5.4. Recall from (4.3) that g(a,s,x) = E*Y, ..
Consequently, if either (5.10) or (5.11) holds, then, for each a € (0, 1) and each
x €R,

PHY, ,=0VseRorY, ,=1VseR} =0.

Thus, Y, , must be of the form (5.1) or (5.2) with —» < U, < » or of the form
(5.3) with 0 <Z, < and C, # 0. But now Proposition 4.5 implies that
P*(F) =1V x or P(F) =1V x or P*(F3) =1V x. If P*(F,;) =1, then
C, = C is independent of «, by Proposition 5.3.

Note that G*(a, x) and G (a, x) are continuous functions of x, by (3.8).
Also, V a, [TNQG™(a, X;(#)) and T1}%9G (@, X,(t)) are martingales relative to
any admissible filtration (%,), under any P*, x € R, by Proposition 4.1 and the
dominated convergence theorem for conditional expectations. Thus, V a,
the functions G*(a, x) and G (a, x) are martingale functions of x, so if
G *(a, x) < 1 for some x € R, then G*(a,x) <1V x € R, by Lemma 2.6.

Assume now that P*(r, < »} =1 for some x. The martingale property
implies that

N(=,)
G*(a,x) = E* 1_11 Gi(a,Xj(Tx)),
j=

so by the result of the previous paragraph, if G*(a, x) < 1 for some x € R,
then G*(a,x) = 0 for all x € R, and similarly for G~. For each a € (0, 1),
£(a,0,0) = a, so by Proposition 3.5 the function g(a, s, x) is either strictly
increasing or strictly decreasing in s. Furthermore, it follows from
&(a,0,x) = EX(Y, ((7,)) and

Ya,O(Tx) =g(a’Tx’x) ]._.[ g(a’Txin(Tx))
X(r,)#x

that g(a, s, x) is increasing rather than decreasing in s. Consequently (5.10)
must hold. O

6. Travelling waves. For certain branching diffusion processes the dis-
tribution of R, — y(1/2,¢) has a weak limit as ¢ — « (cf. Theorem 3.6). In this
section we investigate some of the consequences of our previous results for
such processes. We assume throughout this section that

(6.1) lim PR, < y(1/2,1) +5) =wo(y), Vy€eR,

where w,(y) is a proper, continuous c.d.f. [thus wy(y) > 1 as y - © and
wo(y) > 0 as y » —x). Let y(a) = inf{y: wy(y) = a} be the ath quantile of
wo(y). Note that y is continuous at « iff w, is strictly increasing at y(a) [i.e.,
Ve>0, wyy(a) +e) —wy(y(a)) > 0 and wy(y(a)) — wy(y(a) — ) > 0].
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LEMMA 6.1. Assume (6.1). Then, for any a € (0,1) and s, x € R,

(6.2) tlim PHR,_, <v(1/2,t) + y(@)} = g(a, s, x).
Proor. By Theorem 3.2, for every o’ € (0, 1),
(6.3) tlimP"{Rt_s <y(a,t)} =g(ad,s,x),

and by Proposition 3.3, g(d/, s, x) is continuous in «’. Consequently, to prove
(6.2) it suffices to show that V £ > 0 3 ¢, such that for ¢ > ¢_,

y(a —e,t) <y(1/2,t) + y(a) < y(a +&,t).

But this follows from (6.1) and (6.3) with s =x =0 and o' = a + ¢, since
£(a',0,0) = @' and wy(y(a)) = a. O

ProPOSITION 6.2. Assume (6.1). Then there exists a constant v € R such
that,V a € (0,1) and s € R,

(6.4) lim (y(a,2) = y(a,t - 5)) = vs,
(6.5) tlimy(a,t)/t =v.

Moreover, v = 0 iff g(a, s, x) is constant in s for all a € (0,1) and x € R. If
v # 0, then

(66)  lim(y(1/2,t) - ¥(at)) = —v(a), Vae(0,1),

(6.7) wo(y) =g(1/2,y/v,0), VyeR,
(6.8) g(a,5,0) =g(1/2,s + y(a)/v,0), Vac(0,1),s€cR;

thus w, is strictly increasing and v is continuous.

Proor. Recall (Proposition 3.5) that V a € (0, 1) the function g(a, s, x) is
strictly increasing, strictly increasing or constant in s, and that the same case
obtains V x € R. Suppose that, for some o' € (0,1), g(«/, s,0) is not constant
in s; choose a” # @' such that g(d/,s,0) =a” for some s [recall that
g(a’,0,0) = ']. Since y(a) has at most countably many discontinuities and
g(a, s, x) is continuous and monotone in s, o’ may be chosen so that y(a) is
continuous at a = ", and thus w, is strictly increasing at y(a”).

It follows from (6.1) and (6.2) that if vy is continuous at a, then (y(1/2,¢) —
y(a,t)) » —vy(a) as t > . But by Lemma 6.1,

lim PYR,_, < y(1/2,¢t) + y(a')} = g(a',5,0) =a”,

t—o

lim PY{R,_, < y(1/2,t — s) + y(a")} = g(",0,0) = o,
t— o

SO
lim (v(1/2,¢) = v(1/2,¢ = 5)) = y(a") = v(&) # 0.
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[ Note: y(a') #+ y(a”) because @' # a” and w, is continuous.] Now (6.4) follows
for each a such that y(a) is continuous at «, since (y(1/2,¢) — y(a,t)) =
—v(a); but y(a) has at most countably many discontinuities and y(a,?) is
monotone in a, so (6.4) must hold V a € (0, 1). The relation (6.5) follows from
(6.4) by a routine but tedious argument which we shall omit.

We have shown that if g(a, s, 0) is not constant in s for some «, then (6.4)
holds with v # 0. It follows, by (6.1) and (6.2), that

wo(y) = im PR, < y(1/2,t) + y}
t—
lim PR, < y(1/2,t +y/v) + o(1)}
t— o
g(1/2,y/v,0),
provided w,, is strictly increasing at y. But by the continuity and monotonicity

in y of w, and in s of g(a, s,0), it follows that (6.7) holds V y € R. Similarly,
by (6.1), (6.2) and (6.4),

g(a,s,0)

It

lim P{R,_, < v(1/2,t) + y(a)}

t—ow

lim P(R,_, < y(1/2,t + y(a)/v) + o(1)}

t—>

g(1/2,s + y(a)/v,0),
proving (6.8). Now if (6.7) holds then by Proposition 3.5, w,(y) is strictly
increasing, so, by (6.1) and (6.2), (6.6) must hold V « € (0, 1).
Finally, suppose that, for all « € (0, 1), g(a, s, 0) is constant in s. Choose o’
so that y(a) is continuous at a = o’; then, by (6.2),
im PR, <v(1/2,t) + y(a')} = g(&',5,0) = g(',0,0) = &,

t— o

lim PY{R,_, <y(1/2,t —s) + y(&')} = g(/,0,0) = <.

t—>x

Il

I

Since w, is strictly increasing at y(a'), it follows that (y(1/2,¢) — y(1/2,
t—s)) > 0 as t > «. Routine arguments based on (6.1) now show that
(y(a,t) — y(a,t —s)) > 0as t > », ¥V a €(0,1), and (6.5) follows from (6.4).

0O

Recall (Section 5) that F, is the event that each of the functions Y, ,
a € (0, 1), is either identically 1 or identically 0 in s and that F,, i = 1, 2, 3, is
the event that (5.i) holds V « but not all of the Y, ; are identically 1 or

identically 0.

PrOPOSITION 6.3. Assume (6.1). If v =0 in (6.4), then P*(F;UF,) =1
VxeR and C,=0V a €(0,1). If v # 0, then either (5.10) or (5.11) holds,
and therefore (5.12) also holds. If v > 0, then P*(F,) =0V x, and if v <
0, then P*(F,) =0V x. If P*(F;) =1 or P*(F,) =1 and v # 0, then —» <
U, ,; < »a.s. (P*) and '

(6.9) U,=U, ) + v(a)/v a.s.(P%),
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Vae(0,1)and x € R. If P*(F;) = 1 and v + 0, then C, = C is independent
of a,C>0ifv>0,C<0ifv<0,0 <Zy,, <»a.s.(P*), and

(6.10) Z, =2, 06"/ g5 (P%),
Vaes(0,1) and x € R.

Proor. Suppose first that v = 0. Then by Proposition 6.2, g(a, s, x) is
constant in s for all «,x. But g(a,s,x) = E*Y, , by (4.3), and V « the
function Y,  is either nondecreasing in s a.s. (P*) or nonincreasing in s a.s.
(P*), by Theorem 5.1. Consequently, Y, . is constant in s as. (P*), so
P*(F;UF)=1.

Now suppose that v # 0. Since w,(y) is a proper c.d.f., (6.7) and (6.8) imply
that g(e,s,0) > 0 and 1 as s > + or F. Thus, either

G*(a,0)=1 and G («,0)=0, Vae/(0,1),
or
G*(@,00=0 and G7(2,0)=1, Vae(0,1).

Recall from the proof of Proposition 5.4 that V «, G*(a,x) and G (a, x) are
martingale functions of x; therefore, by Lemma 2.6, either (5.10) or (5.11)
holds. Proposition 5.4 implies that (5.12) also holds, and in addition implies
that —w0 < U, < w a.s. (P*) if P*(F) =1 for i = 1 or 2 and that C,=Cis
independent of «, that C # 0 and that 0 < Z_ < « a.s. (P*) if P¥(Fy) =1.1If
v > 0 then (6.7) and (6.8) imply that g(a, s, 0) is increasing in s, so P*(F,) = 0
by (4.3) and (5.12); similarly, if v <0, then P*(F)=0. If v>0 and
P*(Fy) = 1, then, by (4.3), C > 0; if v < 0 and P*(Fy) =1, then C < 0.

If v # 0, then, by Proposition 6.2, w(y) is strictly increasing and y(a) is
continuous. Recall from (4.2) that

Y, .= lim im PX(R, | < y(a,t)Z };

a,s
r—ow t—o

by (6.4) and (6.6),
lim PR, , <y(a,t)|% } = im PR, , < y(1/2,t) + y(a) % )

t—> o t—>

lim PHR,_, < v(1/2,¢ + y(a) /0)| % }

50 Y, s = Y15 54 ya)/v a-5. (P%). The relations (6.9) and (6.1) follow directly. O

PROPOSITION 6.4. Assume (6.1); define w,(y) = g(wy(y), 0, x). Then,
Vx €R, w(y) is a proper, continuous c.d. f. and

(6.11) lim P*(R, < v(1/2,2) + 5} = w,(y).

Proor. Lemma 6.1 with s = 0 implies (6.11) for y = y(a), a € (0, 1). Since
& and w, are continuous, it follows that (6.11) holds V y € R and that w,(y) is
jointly continuous in x, y € R. It remains to prove that w,(y) is a proper c.d.f,
that is, that w,(y) > 0 as y > —w and w(y) >lasy - o,
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Suppose first that g(a, s, x) is constant in s for all «, x (cf. Proposition 3.5).
Then by Proposition 4.1, for each a € (0, 1), g(e, 0, x) is a martingale function
(of x). Define

H*(x) = limw,(y) = limlg(a,O,x)
y—o© a—
and
H (x) = lim w/(y) = lin})g(a,O,x).
y—> —x a—
Then H* and H~ are martingale functions. Since g(«,0,0) =a, H*(0) =1
and H(0) = 0, so, by Lemma 2.6, H"(x) = 1and H (x) = 0,V x € R. Thus
w, is a proper c.d.f. V x € R.
Suppose now that for some «, g(a, s, x) is not constant in s. Consider the

functions G *(1/2, x) defined by (5.8) and (5.9); by Proposition 6.2, these are
identically 1 or 0, so, by (5.8) and (5.9),

lim g(1/2,s,x) = 1or0, VxeR,

and
lim g(1/2,s,x) =0orl, VxeR.
Now (6.11) and Corollary 3.4 imply that
w,(y) = g(wo(),0,x)
(6.12) =g(&(1/2,y/v,0),0,x)
=g(1/2,y/v,x),

so it follows that w,(y) > 1as y » ©and w,(y) >0asy » —w. O

When (6.1) holds it is often fairly easy to ascertain which of the cases
(5.1)-(5.3) holds in Theorem 5.1. We shall state a simple sufficient condition

for (5.3). Assume for simplicity that the underlying diffusion X,(¢) satisfies a
stochastic differential equation

dX,(t) = a(Xy(2)) dt + o(Xy(t)) dW(2),

where dW(t) is white noise and the local drift and diffusion coefficients a(x)
and o(x) are continuous.

PROPOSITION 6.5. Assume (6.1). If v > 0, |a(x)| is bounded as x — «, and
1/0(x) is bounded as x — «, then P*(F3) = 1. If v < 0, |a(x)| is bounded as
x = —», and 1/0(x) is bounded as x = —x, then P*(F3) = 1. In either case
0<Z,<0 a.s.(P*)and

(6.13) w,(y) = E* exp{—2Z, pe~©/*}.

Proor. If v # 0, then, by Proposition 6.2, P*(F;) = 1, V x € R, for some
i =1, 2 or 3. Suppose that P*(F;) = 1 for i = 1 or 2; then by Proposition 5.2
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the observed quantile @, converges in probability to a random variable Q. We
will show that if v + 0 and the functions a(x), o(x) satisfy the hypothesis
stated, then this cannot occur. This will prove that P*(F;) = 1.

Suppose that v < 0 and that |a(x)|, 1/0(x) are bounded as x — — (the
other case is similar). Then R, » — in P°-probability, by (6.5). Take t, so
large that P|Q, — Q| > &} <&, for all ¢ > ¢,, where & > 0 is small. Then at
time ¢,, R, is near y(Q,t,) with P° probability greater than or equal to
1 — &. But if |a(x)| and 1/0(x) are bounded as x > —, then there is a good
chance § > ¢ that the lead particle will wander out to beyond y(Q + 5, t,+1)
at time #,+ 1, in view of (6.1). But this contradicts the statement
PY|Q, — Q| > &} <, Vitxt,.

Thus, if v # 0, then P°(F3) = 1. But, by Proposition 6.3, if v # 0, then
(5.12) holds, so it follows that P*(Fy) =1, V¥V x € R. Since either (5.10) or
(5.11) holds, 0 < Z, < w a.s. (P*¥), C, = C is independent of «, and C # 0 (see
Proposition 6.3). Finally,

wx(y) = g(1/2’ —y/v, x)
= E* exp{ —Zl/ze'cy/”]
by Proposition 5.3 and (6.12), proving (6.13). O

7. Examples. In this section we discuss briefly some particular examples
which illustrate various facets of the theory developed in the previous sections.
In each example we will specify the branching diffusion process by identifying
(i) the branching rate function B(x), and (ii) the diffusion law, which in most
cases is determined by the local drift coefficient a(x) and the local diffusion
coefficient o(x). We always use p,(x) = 1.

ExampLE 7.1 [a(x) = u, o(x) =1, B(x) =1]. For u = 0 this process is
branching Brownian motion. It is known [5] that when wu = 0, (6.1) obtains
and that y(1/2,¢) ~ V2t as t - «. For arbitrary u, (6.1) must also obtain,
with y(1/2,¢) ~ (V2 + w)t; thus the velocity v of the travelling wave is
positive, negative, or zero depending on whether u is greater than, less than or
equal to — V2. By Proposition 6.2, the function &(a, s, x) is constant in s iff

= —V2; by (6.7), g(a,s,x) is strictly increasing in s if u < — V2 and
strictly decreasing if u > — V2. Proposition 6.5 implies that P*(F;UF) =1,
that is, case (5.3) of Theorem 5.1 obtains a.s., and (6.10) implies that C < 0 if
> —ﬁandC>Oifu< — V2. Also, if p # —\/g,thenO<Za<°oa.s.

Now consider the case u = — V2, for which v = 0. The law of (X (#)) under
P~ is the same as that of (X;(t) + x) under P°, since a(x), o(x) and B(x) are
all constant in x. Consequently P*{R, <y} = PR, <y — x}, and (6.1), (6.2)
and (6.4) imply that g(a, s, x) = g(a, 0, x) = wy(y(a) — x), so

N@)
- o
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By the arguments of [2], Section 2, we have 0 < Y, <1las. (P*). Therefore,
in the representation (5.1), C = 0 and 0<Z, <> a. s (P*).

ExampiE 7.2 [a(x) = —x, 0(x) = 1, B(x) = 1]. In this example the under-
lying diffusion X,(¢) is the Ornstein—Uhlenbeck process. This d1ﬁ'us1on is
positive recurrent, with stationary probability density (2m)~1/2¢~*"/2; hence,
by Proposition 5.4, the function g(e, s, x) is not constant in s. If the initial
point of the first partlcle is chosen at random from the stationary dlstrlbutlon
then at any time ¢ the expected number of particles in dx is e’(7)~1/% =* di;
consequently,

lim P(R, > Vt logt} = 0.
Thus, (6.5) does not hold with v # 0. Since g(a, s, x) is not constant in s,
Proposition 6.2 implies that (6.1) does not hold. In fact it is not difficult to
show that, Vx € R,V & > 0,

PR, - Vt| > &} = 0;

thus, (6.1) holds but with a discontinuous limiting c.d.f. wy(-). An argument
like that of [3] seems to show that vz (R, — Vt) converges in distribution to a
nontrivial limit.

ExampLE 7.3 [a(x) = —x/|x|, o(x) =1, B(x) = 1]. In this example the
underlying diffusion X,(#) is positive recurrent, with stationary probability
density (1/2)e~"*!. The distribution of R, behaves differently in this example
then in Example 7.2 because of the different tail behavior of the stationary
distribution. Here (6.1) holds and the velocity of the wave is v = 1. This may
be proved by an adaptation of the methods of [3]. By Proposition 6.5, P*(F,) =
1V x. Note that the wave velocity is different than that in Example 7.1 with
a(x) = —1, even though the two processes behave the same way on (0, «).

ExaMPLE 7.4 [a(x) = 2x/Ix|, o(x) =1, B(x) = 1]. Here the underlying
diffusion X,(¢) is transient, with either X,(t) = » or X(¢) » —« a.s. (P¥).
Under any P?*, there is positive probability that eventually there are no
particles to the right of the origin, because to the left of the origin particles
behave as in Example 7.1 with u = —2. But there is also positive P*-probabil-
ity that R,/t > 2 + V2, because to the right of the origin particles behave as
in Example 7.1 with u = +2. Using the results concerning the distribution of
R, in Example 7.1 with u = +2, it is not difficult to show that here

PR, <y(a,,t) +y} > w(y) and PHR,<y(a_,t) +y}—>w(y),

where

limw}(y) =1, lim w/(y) =«
y—o® y—o> —x
lim w,; (y) = a,, lim w; (y) =0
y—® y—> —®

a_<ay<a, and a,= P*{no particles to the right of 0 as ¢t — «}.
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Furthermore, y(a,,t)/t > 2 + V2 and y(a_,t)/t > —2 + V2 as t - . Thus
in this example the distribution of R, splits into two distinct travelling waves:
one travelling at velocity 2 + V2, the other at —2 + V2. Each of the two
waves is a defective c.d.f., and each is continuous.

Now consider the function g(e, s, x); it satisfies

g(w{;(y),s,O)=w5“(y+s(2+\/§)), Vy,sER,
g(ws(y),5,0) =wy(y +s(—-2+v2)), VyseR.

Consequently, g(a, s, x) is strictly increasing in s for a > «a, strictly decreas-
ing in s for a <a, and (by continuity) constant in s for a = a,. (See
Proposition 3.5—this shows that the same case need not obtain for all «.)

Since |a(x)| and 1/0(x) are bounded as x = +, an argument similar to
that in the proof of Proposition 6.5 shows that the observed quantile @,
cannot stabilize as ¢ — «; thus, by Proposition 5.2, P*(F;) =1V x € R. Let
A = {no particles to the right of 0 eventually}. Then, by (4.2) and (5.3), for
a > a, .

1{Z,=0} =1, as.(P%),
HZ,=x} =0 as.(PY),
but for a < a,
1{Z,=0}=0 a.s. (P%),
HZ,=o} =1-1, a.s.(P%);

moreover, C, = C_< 0, for @ < @y, C, = 0and C, = C,> 0, for @ > a,. This
shows that the constants C, in (5.3) need not always be equal or even of the
same sign.

ExampLE 7.5 [a(x) = 1, o(x) = min(1,e' %), B(x) = 0]. In this example
there are no fissions, only a single particle executing a diffusion R, with
coefficients a(x), o(x). Furthermore, R, — t is a martingale whose quadratic
variation V = [fo0%(R,)dt is finite a.s. (P*). Consequently R, —t —» U as.
(P~) for a suitable random variable U. Under P°, the random variable U has a
nonatomic distribution, because under P°, U = —T + U’, where T, U’ are
independent and T = inf{¢: R, = 1}, which is known to have a density. Thus
(6.1) holds, with w,(y) being a translate of the c.d.f. of U under P°. The
velocity v of the wave is 1.

Clearly, as ¢ — « the position R, of the particle becomes predictable, and
thus P*(F;) = 1. This shows that (5.1) is possible.
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