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RANDOM STATIONARY PROCESSES

By KENNETH S. ALEXANDER! AND STEVEN A. KALIKOW 2

University of Southern California

Given a finite alphabet, there is an inductive method for constructing a
stationary measure on doubly infinite words from this alphabet. This
construction can be randomized; the main focus here is on a particular
uniform randomization which intuitively corresponds to the idea of choos-
ing a generic stationary process. It is shown that with probability 1, the
random stationary process has zero entropy and gives positive probability
to every periodic infinite word.

1. Introduction. Stationary processes in which each random variable
takes values in a fixed finite set (or alphabet) have long been an object of study
in ergodic theory. In analogy to random walk in a random environment, we
wish to consider here what happens when randomness is used in constructing
the law of such a process. We will mainly focus on a randomized construction
which intuitively corresponds to the idea of obtaining a generic stationary
measure, selected uniformly over all the possibilities, though ‘“uniformly”’
makes no formal sense here. Of particular interest are entropy and periodicity
properties of our generic stationary process.

Let A = {x,,..., x;} be an alphabet. We begin by describing a method, later
to be randomized, of constructing an A-valued stationary process X = {X,,
n € 7}. This method has a more probability-theoretic flavor than the standard
ergodic-theoretic method of cutting and stacking (see, e.g., [2]). It suffices to
define the stationary measure v on all finite words. We first choose the
measure v; on length-one words, by choosing the vector of probabilities
(vy(xy),...,v(xy)) from the set of all d-vectors having nonnegative entries
which sum to 1. We then choose the measure v, on length-two words, which is
specified by the d X d matrix (v,(x;x;)). This matrix is constrained to have
nonnegative entries and to have marginals (i.e., row and column sums) given
by the measure v, on length-one words. The d? entries must thus satisfy
2d — 1 linearly independent equality constraints, besides being nonnegative,
so our choice of a matrix is equivalently specified by a point from a convex
polyhedral region in a (d — 1)%-dimensional subspace of R%".

Then inductively, having specified the measure v, on length-n words, we
proceed as follows: Fix a length-(n — 1) word w,_;. Let W, denote the word
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X; -+ X,.Given W, ,_, = w,_;, we know the marginal (conditional) distribu-
tions of X, and of X,. The joint (conditional) distribution of X, and X, is
then specified by a d X d matrix, constrained to have nonnegative entries and
to have row and column sums given by the marginal (conditional) distributions
of X, and X, respectively. We denote this matrix by #(w, _,). Specifying
such a matrix (or equivalently, a point from a polyhedral region, as discussed
above) for each of the d"~! possible choices of w,_; determines the measure
v, .1 on length-(n + 1) words. Note that these matrices are free parameters in
the sense that the selection of any one does not further constrain the others.

This construction is well defined, in the sense that the set of allowed
matrices is never empty, because one can always select each matrix entry to be
the product of the corresponding marginals, which corresponds to making X,
and X, conditionally independent given W, ,_; = w,,_;. Further, it is easy to
see that the sequence of measures {v,} is consistent, in that v, is the image of
v, ., under either of the projections of A”*! onto A" given by deleting the
first or last letter of an (n + 1)-letter word. Since n is arbitrary, this also
shows that the finite-dimensional distributions are shift-invariant; thus the
measure on infinite words resulting from our construction is indeed always
stationary. Further, every A-valued stationary process can be constructed in
this way.

This construction is simplest in the case of a two-letter alphabet, say
A ={0,1}. There, given v, and given W; ,_, = w,_;, the choice of a joint
conditional distribution for X, and X, reduces to the choice of a single
parameter from some allowed interval. If welet a = v (X, = 1IW, ,_; =w,_,)
and b = v,(X, = 1lW, ,_; = w,_,), then the joint conditional distribution is
determined by the choice of v,(X,=1,X, =1|W, ,_, = w,_,) from the al-
lowed interval

(1.1) [0,min(a,d)] ifa+b<1, [a+b—1,min(a,b)] ifa+b>1.

We can obtain a random stationary measure from this construction by
choosing at random at each stage, from the allowed interval or polyhedron, the
point which specifies each matrix #(w). Of course the result depends on the
joint distribution of the matrices #(w), which we have not yet specified. Let
#(A”) denote the space of all probability measures on the set of doubly
infinite words. The randomized construction gives a probability measure [i on
#(A”), concentrated on stationary measures. Any probability measure on
#(A”) induces a probability measure on .#;(A”) X A”; one can choose a
measure v from .#(A”) using [i and then use v to select a specific word X
from A”. Thus our randomized construction corresponds to a probability
measure u on the space .#;(A*) X A®, which is the joint law of (v, X). n has
the property that given v, X is a stationary process with law v. We will call
any probability measure u on #;(A*) X A which has this property a con-
struction law.

The (unconditioned) measure v, may be viewed asa d X - - X d, n-dimen-
sional array of nonnegative numbers which due to stationarity are subject to
certain linear constraints, or equivalently may be viewed as a point in a
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polyhedral region in a subspace of R?". Let o, denote this polyhedral region,
whose points correspond one to one with stationary measures v,. In order that
w select a truly generic stationary measure, ideally u would be such that v,
were uniform over J,, for all n. Unfortunately the uniform laws on the sets J,
are not compatible in the necessary way as n varies, so there is no such u.

The most natural option instead, perhaps, is to select each v, ., uniformly
given v,, which seems as generic as possible. Since the P(w,_,) are free
parameters, this can be accomplished by selecting, given »,, the matrices
{#(w,_): w,_, € A"} independently, each uniformly over its allowed poly-
hedral region. We will refer to this as independent uniform selection. For
clarity of exposition we will first give our main results for this case, further
restricting in the proof to A = {0,1). Then in Section 3 we will cover the
general case.

Since independent uniform selection seems like a very random way of
choosing a stationary process, one might expect that typically the stationary
process selected would exhibit very random behavior, but quite the opposite
seems to be true.

THEOREM 1.1. Under independent uniform selection, with u-probability 1,
every doubly infinite periodic word S has v(S) > 0.

THEOREM 1.2. Under independent uniform selection, with w-probability 1,
the stationary process X has zero entropy.

For intuition purposes, one may consider A = {0, 1} and suppose that for
some (n — 1)-letter word w,_,, given W, , ; = w,_, the letters X, and X,
are nearly determined in the sense that for each, one of the two possible values
occurs only with small probability, say v, (X,=1W,,_; =w,_,) =8 and
v(X,=0lW,,_;=w,_,)=¢ with 0 <8 <e. We can think of the events
X, =1and X, = 0 as errors. If the two errors are nearly independent, then
the probability of both errors occurring is of order £5. Under independent
uniform selection, however, the v,,; probability of both errors is chosen
uniformly from [0, 8] so is usually of much larger order 8. Thus errors are
. typically quite correlated even at long distances, which underlies our two main
results.

Given our results, it is natural to ask whether the set of all doubly infinite
periodic words has v-probability 1, u-a.s. We are unable to resolve this
question. Some of our results (see the remarks following Lemma 3.7) make it
plausible that only periodic words might occur, but simulations (see Section 5)
seem to give some aperiodic words.

A completely different way of introducing randomness into the construction
of stationary processes has been studied in the context of time series, with the
coefficients in an autoregressive model being chosen randomly. See, for exam-
ple, [1].
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2. Periodic words: Two-letter alphabets, independent uniform se-
lection. In this section we will prove Theorem 1.1 for A ={0,1}. As a
preliminary, let us show that the word of all zeroes has positive probability.
Let z,, n < », be the n-letter word of all zeroes and let Z, := v(z,), H, =
Z, ,—Z, and C, =max(Z, — H,,0). Then Z,_, is chosen uniformly from
c,.z,:-2,,,=2,-V,(Z, - C,) for some iid sequence V,, n > 1, uniform
in [0, 1]. Note that if H, < Z,, then H, ., = V,H,,.

Fix £ > 1 and let N be the least n such that max(V,_,,...,V,_;) <1/3.
Then Hy_,,; <37Zy_, for j =1,..., k. Hence

ZN = ZN—k/z and HN < 3_kZN—k < 3_(k_1\ZN°

Now let T be the first m > N such that H,, > Z,,, with T = « if there is no
such m. For N <j <T we have H;,, = V,H,, so letting M, == L%_ V.V, ,
--- V,, we obtain

T
j=N+1

If T = and Z, = 0, this shows M, > 3*~1; if T < o, then
Zy<Hp<Hy<3 *bz,,

so Zy < 3~*=D(1 + My)Z,, which gives My, > 3%~ — 1. The distribution of
My, does not depend on the value of N, so we have

w(T <®) +p(T =, Z,=0) <p(M >31-1)

which can be made arbitrarily small by taking %k to be large. Thus
w(Z,>0) =1

For general words, let us fix a doubly infinite periodic word S = ---
§_1808; - and let ¢ be the length of the period. Many of the quantities we
deal with in this section will be functions of S, a fact which wll be suppressed
in the notation. Define left and right error probabilities

L ._ —

an; = V(X # 5 Wiiq jin1 = Si1 Sitn-1)>
R ._ —

ap =V (X, #8IW,_ i1 =8 p1 $;_1)

for n > 1; by stationarity these quantities depend only on the value of { mod ¢,
so we will think of i as an equivalence class of integers. Note the error
probabilities are functions of ». For each n there are 2¢ error probabilities.
These are naturally broken down into ¢ pairs; we say indices ¢ and j are
paired at stage n if (some representatives of) i and j are the left and right
endpoints, respectively, of an n-letter word; that is, if j — i = n — 1 mod ¢. We
thereby obtain a set of ¢ points in [0, 1]

Q, = {(a,fi,afj): 1<i<t,(i,Jj) paired at stage n}
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Since every finite word has positive v-probability u-a.s., to show »(S) > 0
u-a.s., it is enough to show

¢
(2.1) Y Y (afi+af) <o pas.
n>1i=1
This will be true if the points of @, move toward the origin sufficiently rapidly
as n — o, That in turn will be established in two stages. Roughly, first it will
be shown that uniformly in all » and in all possible ‘“pasts” v,, the time until
the next index n + m for which all points of @,,, are near the origin is
typically not too large. Then supermartingale arguments will be used to show
that once all points of @, are near the origin for some n, there is a positive
probability that from that n onward these points will be drawn toward the
origin so rapidly that (2.1) holds.
Let

Q, = {(a,’;l,a ) 1<ix<t,(i, J)pa.lredatstagen+1}

The set of first coordinates of the ¢ points in @, is the same as for @), and
likewise for the second coordinates, but these coordinates are paired differ-
ently. For (i, j) paired at stage n, let

Bnij = Vn(Xi#:s X, #s; |W+1, 1= Si+1 " sj—l)

be the probability of errors at both ends of an n-letter subword of S, where
the representatives i and j are of course chosen so that Jj—i=n—1 Now
let i and j be paired at stage n + 1 and let (al;, af ) be the corresponding
point of @;. Then, given W, J-1=8s41 "7 Sj1 aﬁﬂ ; represents the
probablllty of a left-end error at i glven there is not a rlght end error at j,
where j — i = n, and similarly for anﬂd So anH,, and anﬂd have the form

a;I;+1,i = (arL[i - B(n+1)ij)/(1 - afj),
“r}f+1,j = (afj - B(n+1)ij)/(1 - aﬁi)'

Under independent uniform selection, we have four cases; here and through-
out this paper we let U denote a generic uniform [0, 1] random variable.

(2.2)

Casel. af +af; >1and af; > af - Then [cf. (1.1)] B, 1;; has the form
ay; + af; —1+U(1—aL)so
a1 =(1-af - Ul -ak))/(1-af),

nj

R =1-
a,.,;=1-U.

CasE 2. ol +af. >1and %, <aF - Then similarly to Case 1, we have

nj—

L =1-
a1, =1-U,

af ;=1 -ak - U1 -ak))/(1-ak).
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CasE 3. ay; +ar; <land af; > af,. Then B, ), has the form UaZ;, so
ar€+1,i = (ani - Uanj)/(l - afj),
ar}f+1,j = (1 - U)afj/(l - arlfi)~

CasE 4. af +a ' <1land af; <af - Then similarly to Case 3, we have
ayyr=(1- U)ani/(l - anj),
af+1,j = (afj - Uarl;i)/(l - a;I{i .

In all four cases, it is easy to verify the following geometric description, valid
unless (1, 1) € ,, which u-a.s. never occurs:

(af s, i af, ;) lies on the line ! which passes through
(af;, aF;) and (1, 1). If « denotes the point on the bottom
or left 51de of [0, 1]° where ! meets the boundary, then
more precisely, (an+1,n af, ;) is chosen uniformly over
a segment [ of [, which has one endpoint at «, and the
second endpoint between (af;, aF;) and (1, 1), inclusive.
Thls second endpoint is equal to (1,1) if and only if

ak +a,” > 1.

(2.3)

Note that U = 1 in Cases 1 through 4 gives maximum correlation of the left
and right errors and corresponds to selecting the point x from I, or to making
the maximum possible choice of B, . 1y;-

We may think of the progression from @, to @, ., ; as occurring in two steps:
In the first step, the coordinates are re-paired to form @,; in the second step,
for each point (ay;, af;) of @, the corresponding point (af,,;,af,; ;) of
@, .1 is chosen from the corresponding line segment [ as described in (2.3).

We wish to show the points of @, rapidly approach the origin. Define the
event

A,(8) = [max{a};:1<i<t¢, *=LorR}<4],

which says that all points of @, are near the origin, define the left and lower
boundary strip

Cs = {(x,y) € [0,1]* min(x,y) < 6}
and define the event
B,(8) =[Q, c C;].

From the geometrlc description (2.3), it is clear that regardless of the location
of (al;, af ) the fraction of the line segment [ which lies in C; is always at
least 6. Slnce t points are selected for each n, this establishes the following
result.
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Lemma 2.1.  For a two-letter alphabet, under independent uniform selec-
tion,

p(B,1(8)lv,) 28" a.s. foralln > 1and & € (0,1).

We next show that we typically need not wait long in our inductive
construction of v for all the points of @, to be near the origin. Define the sum
of the 2¢ errors at stage n:

t
gn = E (arllli + afi)'
i=1

LemMa 2.2. Let 6 €(0,1) and for n > 1 let T, = min{m > 0: A, ,,(6)
occurs}. For a two-letter alphabet, under zndependent uniform selection, there
exist r =r(0,t) >0 and A = A(0,t) > 0 such that w(T, <rlv,) > A a.s. for
all n. Consequently, u(A,(6) i.o.) =1 forall 6 € (0, 1).

Proor. By Lemma 2.1, it is enough to show that sufficient consecutive
occurrences of the events B, , (8) force the occurrence of an event A, ., (6);
that is, for some r and §,

Bn+1(6) n--- an+r(6) c [Tn = r]'

Roughly speaking this is because the sum ¢,,, tends to decrease by a
bounded-below amount as long as the B, ,(8) (k¢ = 1,2,...) continue to occur
and A, ,,(0) continues not to occur, and ¢,., is nonnegative so cannot
decrease indefinitely. Let

5 = 0/2t%(4¢t + 2).

First we show that no error probability can increase much when an event

B, . 8) occurs. Let i and j be pa.lred at stage n + 1,50 (af;, af;) is a point of
Q;,. Suppose for simplicity that o’ x.. Now (am, aX) and (anH g )
are both on the line [ of (2.3), whlch a.s. has a slope y€(0,1) and a y-
intercept b € [0,1). If B, ,(8) occurs, we have af,, ; < § and therefore

af,;=b+yak, , <b+8<al +5.

A similar argument applies if aZ; > aF., and we obtain

nj»

n+1(6) = an+ll<a ; + 0

(2.4)

foralln>1,1<i<tand *=L or R.
Iterating (2.4) gives
(25) Bn+1(6) n--nN Bn+m(6) = §n+k = fn+k—1 + 26

foralln,m >1andalll <k <m.

Now suppose B,,,(8) N - N B, ,,(8) occurs but T, > 2¢; that is, none of
A0),..., A, ,(0) occurs. We will show that at some stage between n + 1
and n + ¢, some error probability has a significant decrease. Specifically, we
know there is an i <t such that either af., ;>0 or af,,, ;> 0. Let us
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assume for the moment (Case 1) that o}, ,, ; > 6; that is, at stage n + 2¢ at
least one of the ¢ left error probabilities is large. We will show that at some
stage between n + ¢ and n + 2¢, at least one of the ¢ right error probabilities
must also be large. Essentially this is because, by stationarity and periodicity,
if we start from an (n + #)-letter erroriess word running from location i + ¢ to
location i + 2¢ + n — 1, the probability of making no errors when adding ¢
letters onto the left end of this string must be the same as the probability of
making no errors when adding ¢ letters onto the right end of the same string.
More precisely,

t
1-60>21-a«a n+2t12 ]:_[( n+t+kl+t k)

_ VW, ivarin-1=5i """ Siivaten-1)
v(W, i+t i+2+n—-1 " Si+s *°° Siv20+n-1)
(2.6)
_ (W+t i+8t+n—1 = Si4e si,i+3t+n—1)
v(W, i+t i+2+n—1 " Si+s *°° Sivoten—1)
¢
= U( n+t+k i+2t+n— 1+k)

which implies that for some 1 < k2 < ¢ and (since the second subscript of « is
defined mod ¢) 1 <j <'¢,

(2.7) ar13+t+k jz 0/t

There must exist an m, 0 < m < ¢ — 1, such that { and j are paired at stage
n + m. By (2.4), since af 5, ; > 6, we have

Ay, ;20—2t8>0/t—2t6 and af,, ; >0/t 2t5.
Therefore if (Case la) af,,, ; < aF,, ., since by assumption B, . (8) oc-

curs, as in the argument precedmg (2.4) we have
arI;+m+1 i <0< a£+m,i - (0/t - (2t + 1)5)
Similarly, if (Case 1b) aZ then

— (6/t — (2t + 1)0).

> al

n+m,i n+m,j’

A, SO <y ;

Either way, with (2.4) we obtain
Enimer < bnom + 485 — 0/t

and therefore by (2.5),

(2.8) £ .o <& + (At +2)t5 — 0/t <&, — 0/2t.

A similar argument establishes (2.8) if (Case 2) af,,, ; > 6. Thus we have

(29) Bn+1(6) n--nN Bn+2t(6) and Tn > 2t = §n+2t = gn - 0/2t
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Applying (2.9) repeatedly shows that for u > 1,
Bn+l(6) n--nN Bn+2ut(8) and Tn > 2ut = §n+2ut = gn - uo/zt

Since ¢, €[0,1] for all n, this shows that for u > 2¢/6, B,,,(8) N -+ N
B, ,5,/{8) implies T, < 2ut, and the lemma follows easily. O

Define the class of functions
&= {g:(0,1) - R: g nonincreasing, 0 < g(x) < 1/2x, x2g(x) convex}.

This class will be used when we generalize from independent uniform selec-
tion. As we will use the following minor lemma for both that special case and
its generalization, we will give it in greater generality than presently needed.

LeMMA 2.3. Letg € 4, let 0 < x <y and let X and Y be random variables
satisfying EX <x, EY <y,0 <X <5x/4 and 0 <Y < 5y/4. Then

E(X+Y-g(max(X,Y))XY) <x+y— g(y)xy/20.
In particular, for 0 <c < 3,
E(X+Y-cmin(X,Y)) <x +y — cx/20.
ProoF. Since g(z) is nonincreasing and bounded by 1/z, the function
f(x,y) = x + y — g(max(x, y))xy is a nondecreasing function of x or of y
when the other variable is held fixed. Therefore it is enough to prove the

lemma when EX = x and EY = y. But then we have P[X > x/2] > 2/3 and
PlY>y/2]>2/3,s0 P[X>x/2,Y >y/2] > 1/3. It follows that

Eg(max(X,Y)XY) > (1/3)g(5y/4)(x/2)(y/2) = g(¥)xy/20,

where we have used the fact that z2g(z) is nondecreasing for g € £. O

We will next show that, when all error probabilities are near 0, they tend to
shrink like an exponentially decreasing supermartingale.

LeMMA 2.4. For a two-letter alphabet, under independent uniform selec-
tion, there exist 6, = 0(t) > 0 and h = h(¢) € (0,1) for which

(2.10) E(f(k+1)t|”kt) <(1-h)¢&, a.s.onh,(6,)
forall k > 1.

Proor. From Cases 3 and 4 preceding (2.3), we have a supermartingale-like
property: For each i and j paired at some stage n + 1,

ay;<1/2and af; <1/2 =
2.11
( ) E(afn,il"n) <ay, E(“fﬂ,,"”n) < afj-
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Further, by (2.2),

(2.12) a£+1’i < aﬁl/(l - a,}fj) and af_',l’j < a,}fj/(l - af;i .

From (2.12) it is easily seen that once they become small, the error probabili-
ties can increase only very slowly; more precisely, for some 6, = 6,(¢) > 0,

AL(60)) = afyim,; <Bap, /4
foralll <m <t,1<i<tand *=RorL.

Now consider the largest error probability at stage k¢; that is, choose
l<i<tand M =R or L so that

(2.13)

M _ * . *
ap; ;= max{a}, ,;1<u<t¢ *=RorlL}.

Suppose for concreteness that M = L; that is, the largest error probability is a
left one. Then

(2.14) gy Z Epe/2t
We claim that for some 1 <j < ¢,
(2.15) ag ;= &,/3t%.

In fact, similarly to (2.6) and (2.7) there must be a right error probability
al,,,, with 0<v<t—-1 and 1<j<t¢, satisfying ag, ;> ag, ;/t =
&,,/2t% But then our claim (2.15) follows from (2.13).

Now let 0 < r < ¢ — 1 be such that (the equivalence classes of) i and j are
paired at stage k¢ + r + 1. Note that

0<b<a<1/6 = (a—b/2)/(1-b)<a—-0b/3;

this and (2.13), together with the formulas from Cases 3 and 4, show that for
6, < min(6,, 1/8) we have

L R
E(akt+r+1,i t Qpriri,j |th+r)

(2.16)
=< al%t+r,i + alljt+r,j - mln(algt+r,i’ alle%t+r,j)/3 p-a.s. on Akt(OO)‘

With (2.11), (2.13), (2.14), (2.15) and Lemma 2.3, this shows that
E(&prnelvae) < E(E(€resrsalVresr Vi)

(2.17) < E(t4sr, — min(afy,, i afar ;) /3i)

< &, — min(ag, ;, af, ;)/60
< (1 -1/180t%)¢,,, w-a.s.on A, (6,). m]
PrOOF OF THEOREM 1.1 FOR TWO-LETTER ALPHABETS. From Lemma 2.4 [or

just from (2.11)] we know that {min(¢,,,6,): £ > 1} is a nonnegative super-
martingale, hence convergent a.s. From Lemma 2.2 and (2.2) [cf. (2.12)] we
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obtain that
li;cn infé,, =0 p-as.,

so &,, » 0 p-as., and E¢,, - 0.

To obtain summability, we need to alter the process so that (2.10) is valid
a.s., not just on A,,(6,). This is accomplished by removing most of the finite
set of terms £,, which are larger than 6. Specifically, define stopping times

N(n) inductively by
N(n) +1, if Enenye < 0o
N(n+1) = ( e =
min{m > N(n): &, < (1 —h)6}, if &y = 0.

Let &%, denote the o-field 0(vy(,), N(n)) and Y, = min(éy,,, 8,). If Y, = 6,,
then Y,,, <(1 - h)f,, so

(2.18) E(Y,.1|%,) < (1- k)8 = (1 - h)Y,.

If Y, <6,, then by Lemma 2.4,

(219) E(Yn+1|'gr-l) = E(£(N(n)+1)t|‘gr—z) < (1 - h)fN(n)t = (1 - h)Yn
Therefore,

(2.20) EY, ., <(1—-h)EY, foralln,

so that X, EY, < © and then L ,Y, < » a.s. Since £,, = 0 u-a.s., the sequence
{Y,, n > 1} incorporates all but finitely many of the terms in the sequence {¢,,,
k > 1}, and it follows that

™Ms

&y < p-a.s.

k=1

Because of (2.13), then

£, <o p-a.s.
1

This [cf. (2.1)] proves the theorem. O

7[‘18

3. Periodic words: The general case. When the alphabet has more
than two letters, there is more than one letter choice which constitutes an
error, so B, ,q,; is the sum of several entries of the matrix giving the
conditional joint distribution of X, and X,; as a result, under uniform
selection of this matrix, B, ,;; will not be uniform over its allowed interval,
given v,. Thus we need a generalization of the method in Section 2, to cover
nonuniform B, y;;. Our results, specifically Theorem 3.2, will be stronger
than the minimum necessary to handle the case of independent uniform
selection of matrices, in order to focus attention on the robustness of our
methods under deviations from uniformity.

There are two main ingredients that make the proof of Theorem 1.1, for
two-letter alphabets with independent uniform selection, work. The first is
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that the lim inf of the sum of error probabilities is 0. The second is that, when
large error possibilities are omitted, the expected values of the error probabili-
ties are summable, which follows from (2.20). But (2.20) is much stronger than
needed. This extra strength essentially comes from the fact discussed after the
statement of Theorem 1.2: The probability B, . ;);; of errors at both ends of an
(n + 1)-letter word, when the middle n — 1 letters match those of S, is chosen
uniformly over [0, min(af;, aF;)] when both af; and aF; are small, so that
E(B(ns1ylv,) = min(al;, aF;)/2, which is much more than the value af;af;
of B, 1y;; under independence of the two errors. In the general case, it is still
necessary to bound the joint distribution of error probabilities away, on
average, from the independent-errors case, by requiring that

E(B(n+1)ij|”n) = g(max(a,l;i, afj))areiafj

for some function g which becomes large as its argument approaches 0. Note
this condition is weaker than if ‘““max’ were replaced by ‘“min,” and it holds
for independent uniform selection with g(x) = 1/2x. It says that the amount
of overlap between the two error events must on the average be a large
multiple of what it would be for independent errors.

To find the exact condition to impose on g, we can make use of the
following lemma. Recall that

&= {g:(0,1) - R: g nonincreasing, 0 < g(x) < 1/2x, x2g(x) convex}.

Note that if g € &, then x2g(x) —» 0 as x — 0, so x2g(x) is increasing.

LEMMA 3.1. Let g € &, let a, €(0,1) and define a,,, =a, — gla,)a,
n > 1. Then

Y a,<w
n=1
if and only if

fll/xg(x) dx < o,
0

Proor. Let J, == (a,/2**!,a,/2*] and I, = {n: a, € J,}. Then I, is an
interval of integers since {a,} is decreasing. The gaps between successive
points a, in J, are of length between (a,/2**1)%g(a,/2**!) and
(a,;/2%)2g(a,/2*). Therefore

1/2(a,/2")g(ar/2%) - 1 < [(a1/24*1)/(ar/2*) g(ar/2%)] < L),

where [-] denotes the integer part and

I < (a1/2k+1)/(a1/2k+1)2g(a1/2k+1) — 1/(a1/2k+1)g(a1/2k+1).
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Hence

Y a,>1/4g(a,/2%) —a/2** > (1/4)[J 1/xg(x) dx — a,/2*1

nel,

and

Y a,<2/g(a;/2%) < 4[] 1/xg(x) dx,

nel,

from which the lemma follows easily. O

THEOREM 3.2. For some finite alphabet A, doubly infinite periodic word S
and construction law u, suppose that:

() liminf, £, = 0 p-a., or equivalently u(A,(0) i.0.) =1 forall 6 > 0.
(ii) For some 8> 0, E(B,,1y;lv,) = glmax(ar;, afNakaF; pn-a.s. on

A,(8,) for all n and all (i, j) paired at stage n + 1, where g € 4 satisfies

/ll/xg(x) dx < o,
0
Then v(S) > 0 p-a.s.

Obviously the integral condition in (ii) can be satisfied with functions g(x)
much smaller than the choice g(x) = 1/2x which, as previously noted, ap-
pears for independent uniform selection. The integral condition is in a sense
necessary—see Proposition 3.6.

Before proving Theorem 3.2, note that the proof of Lemma 2.2 uses the
assumption of a two-letter alphabet with independent uniform selection only
to permit the application of Lemma 2.1. As the lower bound & from Lemma
2.1 can be replaced with any positive constant ¢(§, ¢), we have the following.

LEmMMmA 3.3. For a finite alphabet A, doubly infinite periodic word S and
construction law w, suppose that for each & € (0,1) there exists c(8,S) > 0
such that uw(B,, (lv,) = c(8,8) a.s. for all n > 1. Then u(A,(0) i.0) =1
for all 6 > 0.

Substituting for Lemma 2.4 we have the following.

LemMMA 3.4. For an arbitrary finite alphabet A, doubly infinite periodic
word S and construction law w, under Theorem 3.2(ii), there exists 6, =
0,(¢) €(0,1/2) and y = y(¢t) € (0,1) for which

E(f(k+1)t|”kt) <&pe — ’Yg(fkt)§ft a.s.onA,(0,).
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Proor. By (2.2) and Theorem 3.2(ii), since g(x) —» « as x — 0, for some
0, < 0, of (ii) we have for all n,i, j as in (ii),
ar; <6, and af <6, =
E(arl;+1,ilyn) <al; - g(max(afi, afj))aﬁ'ﬁafj/z’
E(afn,j"’n) <af - g(max(arlfi’ afj))arlhafj/z
and (2.13) is valid.

Fix k > 1. Note that (2.14) and (2.15) are valid for some i and j, and let
0 <r <t -1 be such that i and j are paired at stage k¢t + r + 1. By (2.13)
and (3.1), parallel to (2.16) we have for 6, = 6,/2,

(3.1)

L R
E(akt+r+l,i + akt+r+1,j|”kt+r)

L R L R L R
S Qkpar,i T Qptar,j — g(max(akt+r,i7 akt+r,j)akt+r,iakt+r,j
p-a.s.on A,,(65).

With (3.1), (2.13), (2.14), (2.15) and Lemma 2.3, parallel to (2.17) this shows
that

E(f(kn)zh’kt) <SE(E(¢épri1lViesr)lvie)
< E(kar - g(max(alfnr,i’ aftw,j)allimr,iaftw,j'”kt)
< &g — g(max(aft,i, a/ﬁ,j)alft,ialﬁ,j
< &g — g(sz/zt)(fkt/zt)(sz/3t2)
< & — 8(E)€R,/68° p-as.on Ay (6,). o
ProoOF OoF THEOREM 3.2. dJust as in the proof of Theorem 1.1 for two-letter

alphabets, from Theorem 3.2(i) and Lemma 3.4 we obtain &,, —» 0 u-a.s. and
E¢,, — 0. Continuing to parallel that proof, we define stopping times N(n) by

N(n) +1, if Engny < 02,
min{m > N(n): £, < 0, — v8(0,)03}, if &xny = 05,

where y and 6, are from Lemma 3.4, and let Y, := min(¢y,,,;, 85). By (2.2) [cf.
(2.12)], since 0, < 1/2 we have &y, < 28, for all n. For g € & it is easily
verified that x — yg(x)x? is nondecreasing in a neighborhood of 0, which we
may assume includes (0, 26,). As in (2.18)-(2.20), by Lemma 3.4 and convexity
of g(x)x? we have

EY,,, <E(Y, - yg(Y,)Y?) < EY, — yg(EY,)(EY,)".

Letting a, = EY, and a,,, =a, — v8(a,)a%, n > 1, we then have by obvi-
ous induction using monotonicity of x — yg(x)x2 that EY, <a, for all n.
Since yg € &, Theorem 3.2(ii) and Lemma 3.1 then show that ¥ , EY, < ». As
with Theorem 1.1, this proves the result. O

N(n+1)=
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To prove Theorem 1.1 for general finite alphabets, we will show that the
hypotheses of Theorem 3.2 are satisfied. The main tool is the next lemma on
random joint distributions with specified marginals. Let Q, denote the set of
d X d matrices with nonnegative entries which sum to 1. Define B: Q, — [0, 1]
by

d d
B(q) =Y X qu.
j=2 k=2
If X% 191 = u, and L% ,q;; = vy, then
(3.2) B(qg)=1-u,—v, +qq
and
(3.3) B(q) € [max(1 - u; — v;,0),min(1 — u,,1 - v,)].
LEmMMA 3.5. Suppose u,...,uq,Vy,...,03>0 with d>2, T u, =1,

r?¢ w; =1and u; <v,. Let Q be a random matrix uniformly distributed over
the set

d d
D:={qeQ,; Y qjr=1u; forallj<d, ) q;,=v, forallk <d}.
k=1 j=1
Let Z be a random variable with density
f(B)=c(l—v; = B)*™, B e [max(l—u;-v,0),1-0,],
where c is such that f is a density. Then B(Q) is stochastically larger than Z.

Before proving this lemma, let us see how it is used to prove Theorem 1.1.

PrOOF OF THEOREM 1.1, GENERAL CASE. Let A be the alphabet and d = |A|,
and fix a doubly infinite periodic word S. By Theorem 3.2 and Lemma 3.3 it is
sufficient to prove the following:

for each 6 €(0,1) there exists c(8,S) > 0 such that

(B4 (B, (),) > c(5,8) as. forall n > 1,
and ‘
(3.5) for some y >0, E(B,,1;lv,) = y min(al;, aF;) p-as.

on A,(1/2) for all n and all (i, j) paired at stage n + 1.

Fix n, i and j as in (3.5). We may assume that: (i) the representatives i and
J are chosen so j — i = n; (ii) af; > af;; and (iii) the correct letters at i and j
are s; = s; = a,. (The proof does not depend on what the correct letters are.)
Let @ = P(s;,; **- s;_1), u; =1 - a}; and v; == 1 — aF;. Then the proba-
bility of errors at both i and j is

B(n+1)ij =B(Q)-

Now the geometric description (2.3) and the note immediately following re-
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main valid in the present context except that the choice of (af,; ;, af,; ;)
from [, or equivalently the variable U, is no longer necessarily uniform.
It is therefore clear that the point (af,, ;,af,; ;) will fall in C; provided
that B,.y, falls in the upper & fraction of its possible interval of values
[max(1 — u; — vy,0),1 — v,] [cf. (3.3)]. (By the upper é fraction of an interval
[x, y] we mean the interval [6x + (1 — 8)y, y].) By Lemma 3.5 the probability
of such a value for B, , ;) is at least as great as for the random variable Z of
that lemma; the probability that Z falls in the upper & fraction is readily
shown to be at least 52¢~3. Therefore, as there are ¢ choices of (i, j) paired at
stage n,

(B, 1(8)lv,) = 8243 as foralln > 1,
and (3.4) is proved.

Turning to (3.5), note that if max(ay;, ;) <1/2,then1 — u; —v; <0, s0
that in Lemma 3.5 we have EZ = (1 — v,)/(2d — 2). Therefore by Lemma 3.5,
on A,(1/2) we have

E(B(n+1)ijlyn) = (1 - Vl)/(zd - 2) = mln( Ay Oy )/(2d 2) n-a.s.,

which proves (3.5). O

Proor oF LEMMA 3.5. Let ¢(-) denote the density of B(Q). It is sufficient
to show that

o(B)/(1 — vy — B)M_4 is a nondecreasing function of B on

(36) I=[max(1 —u; —v;,0),1 —v,].

Let Q, denote the set of d X d matrices with positive entries which sum to at
most 1, let m: R?*? —» RE@-DX(@-D denote projection onto the upper left
(d — 1) X (d — 1) submatrix, 7, the restriction of 7 to D and

d-1
D=n(D)={Ge€Qu_1: Y g <u,foral j<d-1
k=1
d-1 -1d-
Y. Gjp<v,forall k <d - Z Z >1—-uz—vy}.
j=1 j=1 k=1
Then 7, is a one-to-one linear map of D onto D which carries uniform

measure to uniform measure. Define [see (3.2)]
D,={qeD:B(q) =B} ={q€D:qy =u; +v, +p -1},
Dy=m(Dp) = {G€D: Gy = uy +v,+ 8 - 1}.

Then for some constant c,

(3.7) ¢(B) = c vol(D,) forall g,

where vol(+) denotes (d — 1)?>-dimensional volume.
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Fix g and & > 0 such that both B and B + ¢ are in I. In view of (3.6) and
(3.7), we wish to define a one-to-one map 7, of D, into Dj,,, which shrinks
volumes by at most a restricted amount. There is of course a corresponding
map 7, = wp'e 7, o mp of Dg into Dy, which is what we actually define first.
What we would like 7, to do is as follows. A matrix ¢ € D can be divided into
four disjoint parts: the upper left element R,(q) = q,;, the lower right
(d — 1) X (d — 1) submatrix R,,(q), the lower left (d — 1) X 1 submatrix
R,,(q) and the upper right 1 X (d — 1) submatrix R,,(q). Thinking of q as a
joint distribution, we will define 7, so that it increases the mass in each of R,
and R,, by &, decreases the mass in each of R,, and R,; by &, keeps the
relative masses the same within R;, and within R,, and keeps the marginal
distributions the same (so that n, maps into D).

To construct 7,, we first replace each entry in R,, and R,; with the
corresponding relative proportion. Thus define y: D —» R?*9 by

qjr fj=k=1lorj>2,k=>2,
x(@)jr=1qu/(¥1—q), fj=1k=2,
qjl/(vl_qll)’ ifj>=2,k=1.
Note that y is a one-to-one map, and for { € y(D) the inverse image x ~1(¢) is
given by multiplying the entries in R,({) and R,({) by u, — {;; and by

v; — {41, respectively. Next we add on to the coordinates in R;; and R,,,
defining {,: (D) —» R%*? by

X11+8, ifj=k=1,
LX) e = {Xir T &Xjixw, j22,k22,
Xjk’ ifj=1,k220rj22,k=l.

Finally define n, on Dg by

N, = X—logsox'

It is straightforward to check {, maps x(D,) into x(D,,,), so that n, maps D,
into Dy, .. Furthermore all of these maps are determined by looking at the
upper left (d — 1) X (d — 1) submatrix. More formally, the maps ¥~ 1, ¢, ¥
given on appropriate subsets of R@~D*(@=1 by the preceding formulas form a
commuting diagram with 7 and x~1,¢,, x. Thus we have

~ . -1 _ ~=1_+¢ ~
M = Tpen.omp =X °f°X.

To compute the volume change, note that the Jacobian matrices of ¥ and {;
are lower triangular when the coordinates are ordered using R,; then R,
then R, then R,, From this we easily compute the Jacobian at a point
G € Dy:

dx/9q = 1/(“1 - qu)d_z(% - ‘fu)ti_2
=1/(L-u, -B)**A - v, - B)* %,
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using (3.2) and the Jacobian
al./ox = 1.
Therefore, for § € D,
0,/0G = (1L —uy — (B+2)) (1 —v, — (B+2)) 7%/
(1—u, - B)d—z(l — U~ B)d_z
>(1-v,—(B+2)* /(1 -v, - )™

It follows that

vol(ﬁﬁﬂ) > vol(DB)(l —v; — (B +¢))
which with (3.6) and (3.7) proves the lemma. O

2d—4 2d—4

/(l_vl—B) ’

Let us now show that the integral condition in Theorem 3.2(ii) cannot be
weakened.

PROPOSITION 3.6. Let A be a finite alphabet and let g € & with

fll/xg(x) dx = .
0

Then there exists a construction law u such that for every doubly infinite
periodic word S, all hypotheses of Theorem 3.2 other than the integral
condition are satisfied, but v(S) = 0 u-a.s.

Proor. We may assume A is a two-letter alphabet, say {0, 1}, by putting no
mass on other letters. We may also assume g(x) - « as x = 0. Let § > 0 be
such that g(x) > 1 on (0, §).

Given i, j, a finite word x = x; - - - x; and a doubly infinite periodic word S
with period ¢, we say S is a periodic extension of x if x is a subword of S and
|x| > 2¢. The latter condition ensures that a given x has at most one periodic
extension.

Pick v,(0) uniformly in (0, 1). Given v, and x; ‘- x,_; € A*~!, we define
the joint distribution of X, and X, given W, ,_, =x; --- x,_; as follows:
Specify
Vs 1(Xo # 80, Xy #8,IWy =2y 0 %, )
(3.8) = g(max(ayo, ar,))aoar,
if x; --- x,_,; has a periodic extension S, and A,(5)

occurs for S. (Here the error probabilities a}; are
defined for S).

3 Otherwise, choose v,, (X, =1, X, =1|W, , ;=% - x,_¢)
(39) uniformly over its allowed interval.

This determines v, ;. In this way we obtain the law u.
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Now fix a periodic S with period ¢ and let 7' be the least n > 2¢ for which
A, (8) occurs for S, with T' = « if there is no such n. Note that T is a function
of v. Since independent uniform selection is used to determine probabilities for
all length-n subwords of S when 2t < n < T, it follows from Lemma 2.2 that
T < o p-as.

The first inequality in Theorem 3.2(ii), with 6, = §, is immediate under
(3.8), and under (3.9) follows from the fact g(x) < 1/2x.

Since g > 1, it is easily verified that if n > 2¢ and A,(8) occurs, then the
errors for S satisfy

a¥,,;<a¥ fori=1,...,tand*=RorL

so A, (&) also occurs. It follows that (3.8), and not (3.9), will be used to
define v,,, for all n > T. It also follows that each lim, a}; exists; by an
argument analogous to the proof of Lemma 3.4 it can be shown that no such
limit can be strictly positive. Thus

limé¢, =0 p-as,
so Theorem 3.2(i) holds.

For all n > T and (i, j) paired at stage n + 1, by (3.8) and monotonicity
of g,

L R\\,L R
an+1,+an+“2a ;T oap, ~—2g(max( ay;, o ))a 0y

= ok + ol — g(aki) (ki) — g (all) (o)’
so that, since x2g(x) is convex and approaches 0 as x — 0,
§n+1 = §n - g(gn)grzz

By Lemma 3.1 [trivially modified to allow for functions defined on (0, §)] this
shows

Y &, = p-as.,
which implies »(S) = 0 p-a.s. O

For our remaining results we need a new concept of “error’” that is not
relative to any fixed word S. Given a stationary measure p and w,_, € A"},
there exist preferred letters p;(p,,w,_,) and pg(p,,w,_,) in A, with corre-
sponding error probabilities y;(p,,w; ,_,) and yg(p,,w; ,_,), together de-
fined by

1= v(Pps Wi n-1) = Pn(Xo =pL|W1,n—1 = wn—l)

=max{pn(X0 leln 1= Wy, 1)z1$iSd}
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and
1 = Yr(Pns W1 n-1) = Pu(Xp =PLIWy o1 = w,_y)
= max{p,(X, =x|W, ,_, =w,_,):1<i<d},

with the convention that the preferred letter x; has the minimal index i for
which the maximum is achieved, if a tie must be broken; thus each preferred
letter is unique. Let

Ln = YL(Vn’ Wl,n—l)’ Rn = YR(Vn’ WI,n—l)‘

Let . denote the set of all doubly infinite periodic words. As has been
mentioned, it is possible, but we are unable to prove, that () = 1 u-a.s. The
next two results may be considered (weak) evidence for this possibility; they
will also be used in the proof of Theorem 1.2. The first result may be
interpreted as saying that, regardless of u, if we construct a semiinfinite word
by choosing v and then building toward the right, choosing X; then X, then
X, and so forth, and the sum of the right error probabilities encountered as we
build is finite, then the word built essentially must be periodic. This is not
immediately obvious because the preferred letter at stage n need not be X, in
general.

LemMa 3.7. For any finite alphabet A and construction law u,

s

Y R, <, Xnotperiodic) =0.
n=1

Proor. Define events

b

G==[Z R,<wo
n=1

H:=[X, #pp(v,,W, ,_1)i0].
Fix £ > 0 and choose N large enough so that the event
GN = [ Z Rn < G:I
n=N
has u(Gy) = u(G) — . Define

k
Gk = ZR,LSS}, k>N,
n=N

and define T to be the least n > N for which X, # pg(v,, W, ,_), with T = »
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if there is no such n. Then

]

n(Gy N H) = X_:NM(GN, T=n)

<El ) w(Gy, T = nlv,, Wl,n—l))
n=N

n=N n=N k=n
® k
<e+ FE Z ( Z Rn)lGllE,\GkJ+l)
k=N \n=N

< 2e,

so that u(G N H) < 3¢. Since ¢ is arbitrary this means u(G N H) = 0.

Now suppose p is a stationary measure and y a doubly infinite word with
(p,y) €GN H and p,(y; --* »,) > 0 for all n. Then for n > some N we
have pplp,,y1 *** ¥n_1) = ¥, Therefore, u(X = YWy Ny 1=y yn-D >0
since (p,y) € G. It follows that u(X =y) > 0, which is possible only for
periodic y. O

The next proposition will show that for independent uniform selection, a
result somewhat similar to the summability condition in Lemma 3.7 holds a.s.
The similarity is enhanced by the observation that the random variables
L,, R, are identically distributed, in fact exchangable. On the other hand, the
similarity is reduced by the fact that there are stationary measures p for
which

]

Z min(YL(pn’Wl,n—l)’ YR(pn’Wl,n—l)) <® p-a.s.,

n=1

but

il

’YR(Pn’Wl,n—l) = p-a.s.
1

We will not give the details here, but in particular this is true for the process
with two-letter alphabet obtained by dividing the unit circle in half and
iterating an irrational rotation, for certain irrationals.
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We will need some definitions: We say a stationary measure p is nondegen-
erate if p(w) > 0 for every finite word w. Given a stationary measure p and
w,_; €A1 let

B(pn+1’ wn—l)

= pn+1(X0 :#pL(pn’ wn—l)’ Xn ;EpR(pn’ wn—l)lwl,n—l = wn—l)‘
The possible values of

Brs1=BWpi1, WI,n—l)
form the interval [B,, i, By, max] Where
Bn,min = maX[Ln +Rn_ 1’0]’ Bn,max = min[Ln’Rn]

[cf. (1.1)]. These endpoints are unequal provided » is nondegenerate, in which
case we define

n+1 (Bn+1 Bn min)/(Bn max Bn min) € [0 1]

Note that U, is a function of v,,; and W, , _ 1 If we think of W, ,_, asa
portion of some periodic word S, then this U, , ; is just the variable U defined
(for that S) implicitly by Cases 1-4. Of course U, ,; here is not necessarily
uniform.

Note that the main hypothesis (3.10) of Proposition 3.8, like that of Lemma
3.3 and like Theorem 3.2(ii), just says that the distribution of the double-error
probability B,,; has sufficient mass toward the upper end of the allowed

interval [Bn, min? Bn,max]'

ProprosITION 3.8. Suppose u is invariant under time reversal of v, suppose
v is nondegenerate a.s. and suppose that for some & > 0,

(3.10) E((Un+1 —(d - 1)/d)1[U,,+12(d—1)/d]|vn: Wl,n—l) >0
u-a.s. foralln > 1,

where d = |A|. Then

Y. Emin(L,,R,) < ».

n=1

In particular, for independent uniform selection.,

Y, min(L,,R,) <® p-a.s.
n=1
Proor. It is enough to show that
(3.11) EL, ,<EL,- (8/2)Emin(L,,R,).

We wish to define a variation of L, in which the preferred letter is the same
as for L,. Thus let

I:n+1 =V 1(Xo # (v, Wy, )IW, ).
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It is immediate from the definition of preferred letter that

Ln+1 =< Ln+1'

Further,
(312) E(L~n+1lvn’Wl,n—1’Un+1) =L

so that (L,, L, ,,) forms a supermartingale:
(313) E(Ln+1|Vn’Wl,n—1) SLn'

The idea is to show that, if L, > R, and we further condition on X, being an
error and on U, ., > (d — 1)/d, the inequality (3.13) is strict enough so that
(3.11) holds. Note that the two further conditions are conditionally indepen-
dent given v, W, , _,.

Suppose first that L, > R, and L, + R, > 1. If X, = pp(v,,W; ,,_,), then
[cf. (2.2)]

I:n+1 = (Ln - Bn+1)/(1 _Rn) = (1 - Rn - Un+1(1 - Ln))/(l_ Rn)’
with (3.12) this implies that
E(f‘n+llvn’Wl,n—l’ Un+17 Xn q&pR(Vn’Wl,n—l))
= (Ln + Rn -1+ Un+1(1 - Ln))/Rn 2 Un+1'

Suppose next that L, >R, and L, + R, <1. Then similarly, if X, =
pR(Vn, Wl,n—l)’ then

L~n+1 = (Ln - Bn+1)/(1 _Rn) = (Ln - Un+1Rn)/(1 - Rn)’
with (8.12) this implies that
E(I:n+1|Vn’Wl,n—l’ Un+1’ Xn ;&pR(Vn’WI,n—I)) = Un+1‘
Combining these cases shows that
Ln = Rn = E(I:n+llvn’Wl,n—11 Un+1’ Xn :’epR(vn’Wl,n—l))

2 Un+1‘

(3.14)

From the definition of preferred letter it is clear that L, , <(d — 1)/d.
Therefore, from (3.14), (3.10) and (3.12) we obtain that if L, > R, then

E(L,1lv,, W, ,_1) < E(f’n+llvn’ WI,n—l)

(3.15) ~E((Ln.y ~ (d - 1)/d)

x 1[Un.+1 2(d—- 1)/d]1[Xn. # PRy, Wl,n—l)]l Vns Wl; n— 1)
<L, -8R,
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The assumed invariance under time reversal implies that L, and R, are
exchangable, so (3.15) and (3.13) show that

E(Ln+1) s E(Ln -6 min(Ln’ Rn)l[L,,zR,,])
<E(L,) - (5/2)Emin(L,, R,).

For independent uniform selection, (3.10) follows from Lemma 3.5, analo-
gously to the proof of Theorem 1.1. O

4. Zero entropy. The statement that a stationary process X with law v
has zero entropy is equivalent to the statement that ‘‘the past (or the future)
determines the present,”” or more precisely to the statement that

Y(Ves Wi 1) 2 0 v-as,

so that X has zero entropy u-a.s. provided L, — 0 u-a.s. With this in mind,
the proof of the following Theorem 4.1, which by Proposition 3.8 implies
Theorem 1.2, becomes easy.

THEOREM 4.1. Suppose u is a construction law with the property that

0

(3.16) Y min(L,,R,) <® u-a.s.

n=1

Then u(X has zero entropy) = 1.

Proor. Since {L,} is a nonnegative supermartingale [see (3.13)], we know
that L, — (some L > 0) u-a.s. By (3.16), on the event [L > 0] we have

Y R,<» pu-as.

n=1
Thus by Lemma 3.7,
X is periodic u-a.s. on the event [ L > 0].

If v(X) > 0 for some point (v, X) of the probability space, necessarily with X
periodic, then certainly L, — 0 at that point. Therefore, on the event [L > 0]
we have X periodic and »(X) = 0, both u-a.s. As there are only countably
many periodic words, this shows that u(L > 0) = 0. O

5. Simulations. We have simulated the construction of a realization X
of the random stationary process with independent uniform selection and
alphabet A = {0, 1}. Two hundred trials were executed. In each trial X,,..., X,
were constructed, with £ = 64 in most trials; some trials were extended to
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larger k. Each trial used a separate independent realization of the random law
v. These were the results:

Apparent period Trials

1 126

2 18

3 5

4 3

5 1

6 1

13 1

14 1

17 1
aperiodic 43

The behavior of the sequences L, and R, of error probabilities is relevant to
the question of periodicity, as discussed in Section 3. In the apparently
aperiodic trials, the sequence R, for n roughly 40 to 120 is extremely
irregular, with many small values (often 1071° or less) interspersed in some
trials with occasional much larger values (0.1 or more). In contrast, the
sequence L, , which is a supermartingale, usually seems to decrease relatively
regularly, exponentially rapidly toward 0, even in most of the apparently
aperiodic trials. But in a few of the apparently aperiodic trials, L, decreases
extremely slowly, remaining above 0.1 even for n near 100. Summability of
EL, would imply periodicity a.s., but it is possible that a small probability of
slow decrease allows L% _,EL, = L% _,ER, = =, in spite of the first conclu-
sion of Proposition 3.8. This would be compatible with a positive probability
for aperiodic words. For now, such questions remain open.
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