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INTERNAL DIFFUSION LIMITED AGGREGATION!!

By GREGORY F. LAWLER, MAURY BRAMSON AND DAVID GRIFFEATH

Duke University, University of Wisconsin and University of Wisconsin

We study the asymptotic shape of the occupied region for an interacting
lattice system proposed recently by Diaconis and Fulton. In this model
particles are repeatedly dropped at the origin of the d-dimensional integers.
Each successive particle then performs an independent simple random walk
until it “sticks” at the first site not previously occupied. Our main theorem
asserts that as the cluster of stuck particles grows, its shape approaches a
Euclidean ball. The proof of this result involves Green’s function asymp-
totics, duality and large deviation bounds. We also quantify the time scale
of the model, establish close connections with a continuous-time variant
and pose some challenging problems concerning more detailed aspects of
the dynamics.

1. Introduction. We study the following simple multidimensional lattice
dynamic that starts with only the origin of the d-dimensional integers Z¢
occupied and grows a random cluster over time.

THE RULE. One by one, particles perform independent simple symmetric
d-dimensional discrete-time random walks Xi(¢), i = 1,2,... . Each particle
starts from the origin 0 and moves until it reaches a site that has not been
visited previously, at which point it stops. Let A(n) denote the cluster of
occupied sites after the nth particle stops. By convention, A(0) = {0}. Thus the
process A(n) is a Markov chain with transition probabilities

A —> AU {x} with probability A( A°, x),
where % ,(B,C) denotes the probability that a random walk starting from z
first hits the set of sites B at some site in set C, and we abbreviate
h(B, x) = ho(B, {x}).

We first learned about this rule from Persi Diaconis (private communica-
tion). In reference [3], Diaconis and Fulton have formulated a way to ““multi-
ply” subsets of a commutative ring R that (in a special case) makes reference
to an underlying discrete-time Markov chain X(¢) with state space R. If R is
the d-dimensional integers and X(¢#) is simple random walk, repeated ‘‘multi-
plication” of {0} by itself gives rise to the process A(n).

Their model is most succinctly described as an internal variant of the
celebrated Witten—Sander [12] rule for diffusion limited aggregation (DLA).
The Witten—Sander model starts with only 0 occupied and repeatedly sends
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random walks “in from «”’: Each walk stops as soon as it neighbors the
previously occupied cluster. DLA exhibits intriguing dendritic growth that is
widely believed to enjoy fractal characteristics. See reference [12], or Plate 12
in Toffoli and Margolus [11] for pictures. Very roughly, tendrils result from the
propensity of exterior wandering particles to first hit the neighborhood of
extreme sites in the occupied cluster. By way of contrast, in the Diaconis—
Fulton rule particles diffusing through the interior of the occupied cluster are
most likely to stop at unoccupied sites that are closest to 0. In other words,
whereas DLA tends to exacerbate irregularities, A(n) tends to eliminate them
and so might well be expected to grow like an expanding ball. We will call this
model internal DLA.

For a preliminary indication that A(n) is well behaved, consider the one-
dimensional situation. If d = 1, the occupied cluster of the model is always an
(integer) interval. The dynamics of this interval [/,r] are governed by
Friedman’s ““safety campaign’ urn model [7]. Namely, simple gambler’s ruin
considerations show that the next particle adjoins the left and right ends with
probabilities ( + 1) /(I + r + 2)and (I + 1)/(l + r + 2), respectively (I = r =
0 at time n = 0). Whereas the celebrated Polya urn scheme reinforces in-
equities, Friedman’s urn has a central tendency. In our setting this means that
with overwhelming probability both the left and right edges of A(n) are close
to n/2. In fact, the fluctuations of the edges about n /2 are Gaussian, of order
CVn for a computable constant C (cf., Freedman [6]). Evidently internal DLA
on the integers is quite simple and amenable to explicit analysis. So, except for
a small remark toward the end of the paper, we assume henceforth that the
dimension of the lattice is at least 2.

How does A(n) grow for d > 2? As already indicated, one expects the
occupied cluster to exhibit a fairly regular and predictable shape once it is
reasonably large. With a little work, isotropy of Brownian motion and the
invariance principle imply that the hitting distribution of simple random walk
for large lattice spheres is asymptotically uniform. So if A(n) has a limiting
shape after suitable normalization, then it is not too hard to show that this
shape must be a Euclidean ball. Roughly speaking, if the boundary of the
asymptotic shape were not isotropic, then a disproportionately high density of
particles would stick along regions of the boundary that were closest to the
origin. Computer simulations also indicate that internal DLA produces a
spherical asymptotic shape. For instance, if we simulate the two-dimensional
chain A(n) until time n = 7 - 1002, the maximal (/) distance from any
occupied site to the lattice ball {||x|| < 100} rarely exceeds 3.

There is by now a sizable literature on ‘“‘shape theory” for lattice interac-
tions; a very nice introduction is provided by Durrett [4]. Lattice systems for
which asymptotic shape results can be proved include: branching random
walks, first-passage percolation, the Richardson and Williams-Bjerknes growth
models, contact processes and various epidemic and forest-fire dynamics. The
limiting shape for branching random walks, described by a Legendre trans-
form (Biggins [1]), is not isotropic. Shapes of the other systems just mentioned
are characterized implicitly by means of the subadditive ergodic theorem, so
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rigorous quantitative descriptions are lacking. However, current empirical
consensus suggests that none of these shapes is a Euclidean ball: Cluster
growth retains the effect of lattice anisotropy even in the limit. In this
connection one should mention Eden’s famous process [5], arguably the oldest
and simplest of all growth models. Identifying each site x € Z¢ with a
d-dimensional unit cube in R centered at x, Eden’s rule recursively pastes a
new cube to a randomly chosen boundary face of the occupied cluster. Early
Monte Carlo simulations suggested that Eden’s model in Z2 might be asymp-
totically circular. Since then, Kesten (unpublished) has proved that the limit-
ing shape is not a ball if d is sufficiently large, and recent supercomputer
experiments indicate persuasively that even for d = 2 the limit differs slightly
from a ball. Evidently the issue of isotropic shape is a delicate one.

Our primary objective in this paper is to show that the asymptotic shape of
an internal DLA cluster is, in fact, a Euclidean ball. We are motivated to some
extent by a hope that the Markov chain A(n) will provide a relatively tractable
prototype for the spread of certain complex spatial structures. In addition, as
indicated by the previous paragraph, our result provides a rare instance where
the geometry of the limiting shape can be identified explicitly. To the best of
our knowledge this is the first lattice rule for which isotropic growth has been
rigorously established.

Let w, be the volume of the d-dimensional Euclidean ball of radius 1, and
let. B, = {x € Z%: |lx|l < r} be the d-dimensional “lattice ball”’ of radius r.
Extend the process A(:) to real ¢ > 0 by setting A(#) = A(|¢]), where |f]
denotes the greatest integer less than or equal to ¢#. Our main result is:

THEOREM 1. At time wyn®, internal DLA occupies a set of sites close to a
d-dimensional ball of radius n. More precisely, for any € > 0,
(1.1) B,1-. CA(wgn®) C€B,4,,, forallsufficientlylargen
with probability 1.
Our argument for Theorem 1 is divided into two parts. Part A, the main
step, shows that for any ¢ > 0, with probability 1,
(1.2) B, CA(wgn?) for all sufficiently large n.
Making use of (1.2), Part B shows that with probability 1,
(1.3) A(wgn®) CB,,,,, forall sufficiently large n.

The proofs of (1.2) and (1.3) rely on Green’s function asymptotics for simple
random walk, as well as large deviation bounds. We have collected these
preliminary results in Section 2, making frequent reference to Lawler [10] for
" neéded random walk estimates. Parts A and B are completed in Sections 3 and
4, respectively.

Sections 5 and 6 discuss two variants of internal DLA. The first variant is
simply the same process running on the time scale of individual random walk



2120 G. F. LAWLER, M. BRAMSON AND D. GRIFFEATH

steps. In essence, Theorem 2 asserts that (dw,/(d + 2))n?*? steps are needed
to grow a lattice ball of radius n. The second variant is a continuous time
system in which particles are dropped at the origin according to a rate 1
Poisson stream and execute independent rate 1 continuous time random walks
thereafter until they stick at a site not previously occupied by any other
particle. For this model, let B, denote the set of sites occupied by one or more
particles at time ¢. By means of a coupling argument, we prove in Theorem 3
that B, satisfies the same shape result (1.1) as A(n) (with n replaced by ¢)
provided d > 3. Our proof breaks down for the two-dimensional continuous
time system. Indeed, Monte Carlo simulation and heuristic reasoning suggest
an interesting ‘‘hydrodynamic” effect in that case. We conclude Section 6 with
a computer graphic and a formal calculation to illustrate the intriguing
behavior when d = 2. Finally, in Section 7, we mention models with several
sources of particles and also offer a few tentative remarks concerning the
asymptotic order of fluctuations at the edge of the growth cluster.

2. Preliminaries. We first review a few facts from probabilistic potential
theory. Let P, and E, be the probability law and expectation operator,
respectively, of a random walk X(t) starting from y € Z¢. For d > 3, the
Green’s function G is defined by

G(y,z) = Ey[ Y 1{X(t)=z,], ze 74
t=0

As ||z]l = », G(0, 2) is asymptotic to constant - ||z[|>~¢, which is not surprising
since the latter is the Green’s function of Brownian motion. We will require
estimates for G,, the Green’s function of random walk stopped upon leaving
B ,,. Introduce 7, = minf{t: X(¢) & B} and let

T,—1

E, ZO I(X(t)=z)}, z€®B,.
t=

Since the total number of visits to the origin starting at a point z € B, can be
split into those that occur before 7, and those after 7,

G(0,2) = G(z,0) = G,(2,0) + E,[G(X(,),0)],

the asymptotics for G suggest that G, (0, 2), whlch equals G,(z,0) by symme-
try, should be approximately constant - (||z||2 n2-9),

The Green’s function G, is defined equally Well for d = 2, although G is
not. Nevertheless the same type of analysis can be carrled out using the
potential kernel

G,(y,2) =

R

. t
a(y,z) = im E, 20(1(X<s)=y; = Lix=a)|-
os

In this case a(0, z) is asymptotic to constant - In||z||, one can show that
—-a(0,2) = —a(z,0) = G,(2,0) — E,[a(X(7,),0)]
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and G,(0, z) behaves like constant - (In n — In||z|). A precise development of
these ideas, including an analysis of the error in the asymptotics, can be found
in reference [10].

In Lemma 1 we collect the facts about Green’s function asymptotics that we
will need. Two estimates for G,(0, z) will be used when d > 3: one when z is
small compared to n; the other when z is large. Error terms denoted by O or o
may depend on both n and z, but are uniform in the unspecified variable. To
avoid exceptional cases when z = 0, let us denote [2] = max{||z[|, 1}.

LEMMA 1. Letz €%B,,. Then

2 n 1 1
(2.1) Gn(O,z)=—ln—+o(—)+O(—), d=2,

m  [2] [=] n
(2.2a) = G(0,2) + O(n®>™ %), d >3,
2 1
- - = 2-d _ ,2-d 1-d
(2.2b) d-2w, (=1 n?*=%) + O([2]'°), d = 3.
Moreover, if z € B, _,,, then the following elementary inequalities hold:
(2.3) G.,.(0,0) <G, (2,2) <G,,(0,0).

Proor. See Theorem 1.6.6, Proposition 1.6.7 and Proposition 1.5.9 of [10].
O

Our next preliminary result is a familiar stopped martingale inequality.

Lemma 2. Ifz € B, then

n? —|zI> < E,[7,] < (n + 1)* — 2%

ProoF. Consider the martingale M(¢) = || X(¢)||*> — ¢. By the optional sam-
pling theorem [see (1.21) of [10] for details], E,[M(7,)] = E [M(0)], that is,

E.[I1X(r,)I?] - E.[r,] = ll2I. 0

Lemmas 1 and 2 pave the way for a key inequality in our derivation of the
lower bound (1.2). Namely, Lemma 3 says that for each z2€%,,_,), the
average value of G,(y,z) over all y € B, is bounded above by G,(0, z). The
continuous analog of this inequality holds even with ¢ = 0 and is easy to
verify. Suppose B is the Euclidean ball of radius 1 centered at 0 and let g(y, z)
be the usual Green’s function for Brownian motion killed upon leaving the
ball. Fix z € 8. Since g(y, z) is harmonic for |ly|l < |lz]l, the average value of
g(y,z) on any sphere about 0 of radius smaller than ||z|| equals g(0, 2).
" Similarly, it is easy to see that if ||z|| < r < 1, then the average value of g(y, z)
over the sphere of radius r is less than g(0, z). [In fact, the average value of
g(y, 2) on the sphere of radius r equals g(0, z) — g,(0, z), where g,(0, 2) is the
Green’s function on the ball of radius r.] Since the average value of g(y, z) on
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any sphere is less than or equal to g(0, z), the average value of g(y, z) on B is
less than or equal to g(0, 2).

LemMA 3. Fix € > 0. For n sufficiently large and z € 8, _,,,

(24) Z Gn(y’ Z) = wdndGn(o’ Z) .
yEB,

Proor. Since G, is symmetric,
(2.5) El7r,]= L Gu(2,9) = L G\(5,2).

Y€B, y€B,

By Lemma 2, this quantity is at most (n + 1)2 — [|z||°>. On the other hand, by
2.1,

n® + 0(n)

a)ndG(Oz)=2n21n—n—+oi
o [ "\l

if d = 2. So to verify (2.4) in two dimensions, it suffices to show that for all
large n,

(n+1)*-[2]> < 2n%In — + o(i n? + 0(n).

n
[=] [2]
A little arithmetic shows that this is equivalent to

(2.6) (1 + 0(%))({2—“)2 <1+ 2([[%])2111-[[:—]] + O([%]l)(ﬁz_ﬂr

By elementary calculus, the inequality
' (1+68){2<1+2(1-8)¢%In¢

holds for { € [(1 — &)1, ) if = 6(¢) is close enough to 0. It is therefore easy
to check that (2.6) holds for n large and z € B, _,,. Hence (2.4) holds for
d=2.

For d > 3, the reasoning is similar. From (2.2b), (2.5) and Lemma 2 one
obtains the following counterpart of (2.6):

(2.7) %(1 * 0(%))('[[2_11)2 str {d - 2 +O(Ei_ll)}({[%]1)d

One can check that

d(1+.8) 2(1-9)
. a-z ¢ <Mt gt
holds for { € [(1 — )71, ®), if § = 8(¢) is small. It follows that (2.7) and hence
(2.4) hold when n is large and [z] > r for a suitable r. If [2] < r, we apply
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(2.2a) instead to obtain the sufficient condition
(n +1)% = [2]? < w4n%(G(0, 2) + O(n*™?)).

If n is large enough, this last inequality holds simultaneously for all z with
[z] < r, so (2.4) holds in this case as well. O

Next, we present a rather general large deviations estimate for sums of
independent indicators (i.e., {0, 1}-valued random variables).

LeEMMA 4. Let S be a finite sum of independent indicator random variables
with mean w. For any 0 <y < 1/2, and for all sufficiently large u,

P(IS — pl = p/?*7) < 2exp{—;u*}.

ProoF. This straightforward estimate is, for example, a special case of
Lemma 4.3 in Bramson and Lebowitz [2]. We include a brief derivation for the
sake of completeness. Write

S = ilAk with P(A,) = p,.
Then 1
E[e*57W] = lf[[(l —ppe +Pke)‘(1_pk)]~
By Chebyshev’s inequality, for A > 0,
(2.8) P(S—p=u/?7)< exp{—/\ul/“y}lfl [(1 - py)e*Pr + pyer@ o).

For A small, elementary estimation shows that the bracketed quantities on the
right are at most 1 + A%p,,. So the sum of their logarithms is at most

n
XY p, =Ny
1

Hence the left side of (2.8) is at most
exp{—/\u1/2+7(1 - /\/J,l/z_")}.
For u large and A = 1u?~1/2, we therefore obtain
P(S —p = pt/2t) < exp(— 34}

Analogous estimation of E[e *5~#)] yields the same upper bound for
P(S —pu < —u/2™). O

In Part B of our main argument for the upper bound (1.3), we will want to
introduce shells #,, k =0,1,..., defined by

S ={x:k<lxll <k +1}.

Repeated use will be made of the fact that a random walk X(¢) cannot exit the
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ball %B,, & > 1, without hitting the shell .. The final lemma of this section
presents two inequalities concerning hitting probabilities for shells. Inequality
Lemma 5(a) is similar to the well-known ‘‘gambler’s ruin’ formula for one-
dimensional random walks. Our estimate is hardly surprising: In order for a
random walk starting in ./, to hit ./} before returning to .}, its radial
component, essentially a one-dimensional random walk, must travel up to a
distance of A = £ — j before returning to the origin. Inequality (b) of Lemma 5
asserts that the hitting distribution of ./, for a random walk starting from
#, is fairly spread out over /. It is easy to guess the amount of spread
heuristically: Since the radial component of X(¢) must move distance A to hit
%, we would expect the remaining components to move a distance of about A
as well. The number of points in ./, within distance constant - A of a point in
#; is of order A%~!, Hence the probability that any particular point in ./
is hlt first should be bounded above by constant - A'~?. Below, we let
T, = min{t > 1: X(¢) € #},} be the (positive) hitting time of .#,.

LEMMA 5. There exists a J = J; < © such that forj <k, A=k —j:
(@) Ifz € A, then
P(T, <T,) <JA™L.
() Ify € # and B C ./, then
h,(+#,B) < JIB|A'7°.

Proor. Part (a) follows from Proposition 1.5.10 and Exercise 1.6.8 of
reference [10]. [For d > 3, the proof applies the optional sampling theorem to
the martingale M(t) = G(X(¢)) stopped at time min{T}, T};}, where G is the

standard Green’s function on all of Z%. For d = 2 the proof is similar, using

the potential kernel instead.]
It clearly suffices to prove (b) for A sufficiently large and singletons B = {z}.

Let
p =p,,=inf{t > 1: X(¢) € A U {y}}.

Then by a last exit decomposition,

hy(S»2) = P(X(T}) = 2) = Go(3,5)P(X(p) = 2).
By the reversibility of the random walk, P,(X(p) = 2) = P,(X(p) = y). Thus,

hy(F22) = Gi(3,5)P(X(p) = y).
Let m=m, , = |k - (A/2)J If A is large enough, then y ¢ ./, and
. P(X(p) =y) = P(T, <T,)P(X(p) =yIT,, <T})
P,(T, <T) sup P,(X(p) =y).

xES,
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So, using (a),

hy(H,2) <JAT'G(y,y) sup P.(X(p) =)

xES,

=JA™! sup G,(x,y).
xeS,

(Here and throughout the remainder of this proof we use J for an absolute
constant that may change from line to line.) It therefore suffices to show that

(2.9) sup G,(x,y) < JA? 9.

xeS,
To this end, let

d A
V=V ,={weZ :||w—y||<z .

If x€.#, and A is large enough, then the function A(w) = G,(x,w) is
harmonic (with respect to the discrete Laplacian) for w — y|l < 3A/8. The
discrete Harnack inequality ([10], Theorem 1.7.2) then implies that for some
J < o,

Gu(x,y) <JG,(x,w) foralw eV, xe A,
Therefore,

sup G,(x,y) <JA™ sup } G,(x,w)

xe S, xS, weV
=JA? sup E,[Y] <JA ™ supE,[Y],
xeS, wev

where Y is the number of visits to V before leaving B,

-1
Y= Y Lxgew
ji=0
So it in turn suffices to show that
(2.10) supE_[Y] < JA®.

weV

By the central limit theorem applied to the random walk at time AZ, there
exists a 6 > 0, not depending on &, such that for all w € V and all sufficiently
large A,

Y ‘Pw(Tk < AZ) > 6.

A little thought therefore reveals our strategy in substituting (2.10) for (2.9).
Over a time interval of length A% at most A® sites in V can be visited. Each
time we restart the process at some w € V, the above bound on the exit
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probability holds. So Y/A? has a geometric tail, that is,
supP, (Y > IA%) < (1-0)', ez

wevV

This implies (2.10) and completes the proof of (b). O

3. The lower bound. Equipped with the necessary preliminary results,
we turn to Part A of the proof of Theorem 1. To deduce (1.2), it suffices to
prove that for every ¢ > 0,

(1.2) B, CA(wgn®(1 +¢)) for all sufficiently large n.
Let each (independent) constituent random walk X%(¢) of the internal DLA

cluster evolve forever, even after it has left the occupied cluster, and introduce
the random times

o' = min{¢: X'(¢) &€ A(i — 1)}
= the time it takes the ith particle to leave the occupied cluster,
v} = minft: X'(¢) = z} = the time it takes the ith walk to hit site z,
! = min{¢: X'(¢) ¢ B,} = the time it takes the ith walk to leave B ,.

Denote by E(n) the event that site z does not belong to the cluster A(n):
E,(n) ={0' <1} Y i<n} Thenif A is any set, {A ¢ A(n)} = U, ,E,(n), so
by Borel-Cantelli a sufficient condition for (1.2') is

(3.1) Y ¥ P(E’z(wdnd(l + 8))) < oo,

n z€B,q_,

Now fix n and z € B, _,,. Consider the random variables
N = Zl(f;’«r")
1

= number of particles that visit z before stopping (i.e., leaving the cluster),

M=} 1 < iy = number of walks that visit z before leaving B,
- .

L= Z ]‘(ai$1§<-r;)
12
= number of walks that visit z before leaving B, but after the particle stops,

where the sums are over i < w,n%1 + ¢). Clearly N > M — L. So for any

given a,

P(E,(0,n%(1 +¢)))=P(N=0)<P(M'<aorL>a)
<P(M<a)+P(Lza).

" The notation has been chosen to reflect our basic strategy for proving (3.1): We

will show that M includes “more’’ walks on average while L includes “fewer,”

so that the last two probabilities in (8.2) can be made quite small for a suitable
a. Our choice for a¢ will be specified shortly.

(3.2)
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The summands of M are i.i.d., with
(3.3) E[M] = lwdnd(l + S)IP(TZ <7,).

The summands of L are certainly not identically distributed, nor even inde-
pendent. Nevertheless, only indices i such that X'(¢%) € B, contribute to the
sum and for each y € B, there is at most one index i with X‘(¢’) =.y. Note
that the corresponding post-r, random walks are independent. So to avoid
dependence in L, we enlarge the index set to all of B, and let

L = Z 1%Tz<7n)’
yEB,

where the indicators 17 correspond to independent post-r, random walks.
Taking expectations gives

(3.4) E[L]= ¥ P/(r,<7,).
y€B,
Since L < L, (3.2) can be replaced by
(8.5) P(E (wgn?(1 +¢))) <P(L 2a) + P(M <a).

In Lemma 6, we compare M and L with the aid of Lemmas 3 and 4. The
main point is that for two sums of large numbers of independent random
variables, the sum with the larger expectation will typically be greater.

LEMMA 6. For fixed € > 0 and n sufficiently large,

(3.6) P(E = (1 + %)E[E]) < exp{—cyn},
P(M < (1 + %)E[IZ]) < exp{ —cyn)

for all z € B, _,, and appropriate constants c; > 0, depending on e.

The lovv'er~ bound (1.2!) follows easily from (3.5) and Lemma 6. Set a =
(1 + £/4)E[L] in (3.5) to get

P(E,(04n%(1 +¢))) < 2exp{ —c n}
for n > n,, n, appropriate. Hence

Y Y P(E(0gn%(1l+¢)))< X 204n%exp{—cyn} <,

nzngz€B,q_, n>n,

This gives us (3.1) and implies (1.2').

» PROOF OF LEMMA 6. Recall that by standard Markov chain theory,

G(y,2) G.(0,2)

(37) Py(Tz < Tn) = m andﬂ P(Tz < 'Tn) = G (z_,z) .
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Therefore, by (3.3), (3.4), (3.7) and Lemma 3, for n sufficiently large,

E[M] = |wgn?(1 + ¢)] ”E ;
(3.8)
e Gu(y,2) _ Ear 7
> (1 + E)yganm = (1 + 2)E[L]
Also, by (3.4), (3.7) and (2.5),
. E,[7,]
E[L] = G, (z,2)’
which by (2.3) and Lemma 2 is
n? — |lz|?
> .
G,,(0,0)

Applying (2.1) and (2.2), one gets
2

~ n
E[L]Zﬂ2m7 d=27

= ,Bdn2, d> 3,

for every z € 8, _,), eventually in n, for suitable constants g8; > 0 depending
on &. On account of (3.8) one has the same lower bounds for E[M].

We now observe that M and L are both independent sums to which Lemma
4 applies. With y = 1/3, it follows that

P(L > E[L] + B[L]"") < 2exp{ - 1E[L]""} < exp(—can},

P(M < E[M] - E[M]*°) < 2exp{— {E[M]*®} < exp{—c,n},

for all z€%B,,_,, once n ‘is sufficiently large, for appropriate constants
cy > 0. Applylng (3.8), the bounds in (3.6) follow. O

4. The upper bound. We now turn to Part B of the proof of Theorem 1.
To show (1.3), it suffices to verify that for each ¢ > 0,

(1.3) A(wgn®) € B, g.va, provided n is sufficiently large

for a suitable K = K, < «. The basic idea is to use (1.2) in conjunction with
Lemma 5 to show that the number of occupied sites in each shell ., outside
of B3 can only increase at a controlled rate. To ensure that the internal DLA
cluster cannot grow too quickly, we argue that on the interval I of time steps
from 0 to wyn?, the growth of A(i) outside B, 1/q, is dommated by a
multitype branchlng process that spreads out slowly on the n¢ scale. Here
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0 <& <1 is arbitrary, and n, should be chosen large enough so that, by
Part A,

P(%n(l—e) CA(wgn®)forn=ny)=1-s.

Since most of the first | w n?| particles stop to fill out B, 1- € B, with only
a small portion left over,

(4.1) P(A(wzn%) N B < Kgen? forn>ng)>1-¢

for an appropriate constant K, = K, ; < o.

Let us relabel the particles X i that exit B8, during I as Y’ and consider
the embedded growth process A(j) = A ). That is, time is now rescaled in
terms of particles that escape from %B,. Choose k,= |n(1 + ¢/?)| + 1.
Introduce Z,(j) = |A(j) N S+l and }Lk(j) = EZk(J) k > 1. The quantity
w,(j) is the average number of occupied sites in ./, ., after particles
Y! ...,Y’ have stopped. We will regulate the propagation ‘of A(j) by estimat-
ing u k( J). Clearly, u,(j) <j and u,(0) = 0. For the general case we will make
use of the following lemma.

LeEmMA 7. For each j and k,

. k
(4.2) O R EAT L

where J, = J, ; < .

Once we establish (4.2), the demonstration of (1.3') is straightforward. Let
F denote the event in (4.1). Then

P(A(wyn?) & B,0.k0a), F) <P(Z,(| Koe - n%]) = 1)
< p,n,([KOe . nd])

for n > n,, where n' = [(K — l)el/dn — 1]. (Jt] denotes the least integer
greater than or equal to ¢.) Plug j = [Kos nd] and k2 =n' into (4.2) to
conclude that

Jo\"
P(A(wgn®) & B, 4xer4), F) < nd_l(fz)

for large n and K, and a suitable J, = J, ; < ®. If K > oJ,, the right side goes
to 0 like exp{ —an} for some a > 0. So if n, is large enough,

Y P(A(wgn?) ¢ B0 k0, F) < X exp{—an} <o,

nx>n; n>n;

By Borel-Cantelli,

(4.3) P(lim sup {A(wyn?) & B xevs) O F) -

n
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Since ¢ can be chosen as close to 0 as desired, (1.3') follows from (4.1) and
(4.3).

Proor oF LEMMA 7. The crux of our argument goes as follows. The rate at
which a shell ./, ., fills with particles is restricted by the rate at which
particles escape from %, and penetrate the preceding shell .}, ., _,. Accord-
ing to Lemma 5(b), this penetration is bounded by the proportion of ./, ., _,
that is occupied. Arguing in this manner, we will obtain a recursion relation
(4.4) for u, in terms of u,_,. Iteration then yields (4.2).

We first condition on the time 7 = 7i+1 at which Y'*! exits B ,; this gives

ua(L+1) = uy(1) = E[ by A1), Aen )]

Any walk stopping in .}, ., must remain within the growth cluster while it
hits the immediately preceding shell .}, . ,_;. Therefore, this is at most

EhwmmﬂwhpanﬂsggEh*ﬁwhpﬂnﬂ

Applying the uniform upper bound of Lemma 5(b) (with j > n, k2 > ky+k — 1
and A - ky+ k —n — 1> ne'/?), we obtain

d-1
(4.4) a1+ ) = we0) < T (D (]

Note that (4.4) is, in effect, a comparison with a multitype branching process
with types 1,2,... and where the growth rate for type % is proportional to the
number of individuals of type & — 1.

Sum the last inequalities over /[ = 0,...,j — 1 to get

d-1 ;-1
w9 (7] S
k nsl/d ; k-1

=1

We claim that iteration in %, with j fixed, yields

; 1 \d-1]F ! j*
(nsl/d) Ik

To see this, recall that the £ = 1 case of (4.5) is immediate. The general case
follows by induction, using the elementary inequality

(4.5) re(J) <

Jj—1 jk
Yokl <=,
=1 k

Applying the simple estimate k!> k*e~* to (4.5), we obtain (4.2). O

5. The time scale of random walk steps. Formulation of internal DLA
dynamics in terms of the Markov chain A(n) is most expedient if one wants to
prove shape results such as Theorem 1, since we know that the growth model
contains precisely n sites at the nth step. However, a more natural time scale
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for the algorithm involves the number of individual random walk steps re-
quired to grow a ball of a given radius. This scale governs the duration of a
computer simulation, for example. Recall from Section 3 that

o' = minf¢: X'(t) & A(i — 1)} = the time it takes the ith particle to stop.
Introduce
x(t) = max{k: o' + -+ +0* < t}
= the number of stuck particles after ¢ random walk steps
and the process with time change
A(t) =A(x(t)), t=0,1,....

Of course A(t) grows like a ball because A(n) does. A simple “back of the
envelope” calculation identifies the growth rate on the new time scale. Namely,
we know from Theorem 1 that the kth particle encounters a shape that is
close to a ball of radius r = r(k) = (k/w,)'/¢. As indicated by Lemma 2, that
particle takes about r? steps to reach the edge of the ball. Thus the total
number of random walk steps taken by the w, n? particles needed to grow a
ball of radius n should be

Loan] 1\ d do
1 ~ 2 ~ | — . d\(@+2)d _ Y% g2
(5.1) k§1 r2(k) (wd) d+2(wdn ) (d+2)n )

Our next result, a modification of Theorem 1, establishes asymptotic circular
growth for the A(#) process at the growth rate prescribed by (5.1).

THEOREM 2. Let A(t) be internal DLA on the time scale of individual
random walk steps. For fixed € > 0,

B C A(t) C B, 1+s forall sufficiently large n

with probability 1, where

dwg d+2
(d+2)n )

Proor. Recall from Section 3 that
i = min{¢: X'(¢) & B,} = the time it takes the ith walk to leave B ,.

i 1/d
(OF) '

T,‘;i <o'< 7]"\,1 for all sufficiently large i (almost surely).

Set

i

;v
ni=(1*8)(“a;.) ,  Ni=(1+e)

According to Theorem 1,
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Hence, for any %, exceeding a suitably chosen random index « and any
k>k,,

™

‘]
5 -~

A
™M=
qN

IA
™
=

(5.2)

i=k, i=kg i=ky

We will estimate the leftmost and rightmost sums. For this purpose, we
need a uniform bound on the tails of 7, /n? The upper bound in Lemma 2 and
Chebyshev’s inequality imply that

sup P,1,>4n%) < 3.

n>1,2€9,

Repeated application of the Markov property at times that are multiples of 4n?
yields the needed estimate:

(5.3) Py(7, > n%) < Cie™ %"

for appropriate constants C;,C, > 0. By Lemma 2, E[r,/n%] ~ 1. This, to-
gether with (5.3) and a little estimation, implies that for any sufficiently small
A > 0 and i sufficiently large,

Trl;« - n% 2 .
Elexpi A\ ———}| <e®" fork>1,
ny
where C; does not depend on A. Hence, for large enough %,
A k
Elexp{ — ), (T,LL - nf) < CaVk—ko+1),
Nhiky
By Chebyshev’s inequality,
k .
P( L (i, = n?) = e(k — ko)ni | < exp{—A(s — CsA)(k — ko)};
i=kg
choosing A = ¢/2C, the right side is

e2(k — k)
< exp{— T}

Analogous estimates apply to the lower tails of the r,‘;; , so in fact,

Z (T,‘;L = n?) >e(k — ko)ni)

< exp{—C,e%(k — ky)}, C,> 0.
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The same reasoning also gives a bound for the rightmost sum in (5.2):

k

> (rk, - N2)

i=kg

(55) P > e(k — kO)N,f) < exp{—Cue2(k — ky)).

After straightforward approximation, it follows from (5.2), (5.4) and (5.5)
that if ¢ is small, %, is large and % > 2%,

L)

Hence, applying Borel-Cantelli and then including indices ¢ with 1 <i < k&,
we conclude that

P > eh1+%/d 4 < ko) < exp{—Cge2k), C5> 0.

& i 2/d
E-a+2/d ¥y (ai — (_) ) -0 as.ask > o,
i=1

wg

Equivalently,

k
(56) k—(1+2/d) Z a.i —
i=1

(0g) 7% as.ask — o,

d+2

Choosing £ = [wdnd] and reformulating Theorem 1 in terms of the process
A, a simple comparison shows that

k
(5.7 B 01— C A( > ai) C B, 1+, forallsufficiently large n.
- i=1

Substitute (5.6) into (5.7) to obtain the desired result. O

6. A continuous-time variant. In contrast to the ‘“‘one particle at a
time” process studied so far, consider the following ‘“simultaneous” variant
more akin to the continuous-time growth models discussed in reference [4].
Particles are dropped at the origin 0 of Z¢ in a rate 1 Poisson stream. Initially,
only 0 is occupied. Each successive particle then executes an independent rate
1 continuous time simple symmetric random walk until it lands at a site that
has not been visited previously by any other particle, at which site it stops. Let
B, denote the set of sites that are occupied at time ¢ in this process, noting

- that, several ‘““active’ particles may now occupy a site simultaneously. In this
section we will first prove a counterpart of Theorem 1 for B, provided that the
dimension is at least three and then discuss the intriguing behavior of B, in
two dimensions at the level of heuristics.
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It turns out that for d > 3, the shape result is unchanged if A(n) is
replaced by B,:

THEOREM 3. Let B, denote the continuous-time simultaneous variant of
internal DLA, as described previously. Assume d > 3. For any ¢ > 0,

By1-e C B, C B, forall sufficiently large ¢
with probability 1.

To analyze B,, it is more convenient to consider a slightly different particle
system with the same distribution for the set of occupied sites. The general
construction goes as follows. Drop particles numbered 1,2,... at successive
random times T, T,, ..., at respective sites x,, x,, ... . The particles perform
independent rate 1 random walks except that if the ith particle is at site x and
there is no other particle at x with number less than i, then that particle must
remain at x. If, later on, a particle numbered less than i reaches x, then the
ith particle is “freed” to move again. However, if no particle numbered less
than i ever arrives at x, then the ith particle stays at x forever.

Suppose we place a particle numbered 0 at the origin, let T, < T, < ‘- be
the arrival times of a Poisson stream and set x; =x, = -+ = 0. Then it is
easy to see that at every time ¢ the distribution of occupied sites in the

‘numbered particle system agrees with B,; in fact, the occupation densities of
the two systems agree. For the remainder of this section we will assume that
B, is represented in terms of the numbered model. One important feature of
this version is that the motion of the first n particles is not affected at all by
the motion of the particles numbered n + 1, n + 2,... . Hence, if we let B,(n)
be the cluster of sites occupied by the first n particles at time ¢, then

(6.1) B,(n) cB, foreacht>0,n > 1.

Also note that the sets B, and B,(n) increase as ¢ increases.

Let us now define a discrete-time growth model as follows. Let A(0) = {0}.
For each n > 0, let y, be the first site not in A(n — 1) that the nth particle
visits. Set A(n) = A(n — 1) U {y,}. By induction, one can verify that in this
model the nth particle always reaches such a new site y, and stops there
forever. In other words,

(6.2) lim B,(n) = A(n).

The choice of notation here is not coincidental: A moment’s thought will
convince the reader that A, is just a labeled version, of the basic internal DLA
model A(r) defined in Section 1. Note also that this equality does not depend
on the times T, T,, ... or the fact that the waiting times for the random walk
are exponential. The only important feature is that each particle, ‘“when it
moves,” behaves like a simple random walk independently of all that has
occurred beforehand. (We could, in fact, consider a discrete-time version of B,
and the analogous correspondence would hold.)
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This connection between B, and A(n) leads to easy proofs of some facts
about the discrete-time model. For instance, suppose that A is a finite subset
of 7% containing n points, and that x,,..., x, is a sequence of points in the
“initial cluster” A. Start random walks, one at a time, from these points. Let
each move until a new site is visited, at which time that site is added to the
cluster and the next walk starts. After the % particles have stopped, a cluster
of size n + k is formed. Rather surprisingly, the distribution of the final
cluster is independent of the ordering of points x,,...,x,. To see this, start
continuous-time random walks at x,,...,x;, and let them evolve simultane-
ously according to the original construction of B, (each particle moving until it
finds a new site). In this manner we obtain a final cluster B,. Now number the
particles in any order and consider the cluster B, obtained from the second
construction (given after Theorem 3). Essentially the same argument as given
above shows that the distribution of B, for that particular ordering agrees
with the cluster formed from the discrete-time model that drops particles one
at a time in the same order. Since the distribution of B, in the first
construction does not depend on the ordering of particles, neither can the
construction by means of numbered particles. Diaconis and Fulton [3] showed
this independence of ordering in a more general Markov chain context using a
different argument. Our construction can easily be adapted to their more
general case.

The proof of Theorem 3 uses the fact that in d dimensions it takes time of
order t¢ for the simultaneous system to accumulate the particles that are
required to fill a sphere of radius ¢. However, the time it takes each random
walk to reach the edge of 9B, is of order t2 = o(¢+?) if d > 3. Thus particles
reach the boundary of the occupied cluster immediately after being dropped at
0 on the relevant time scale. Because of this, in three or more dimensions
BJ|t]) is a good approximation to B,. Consequently, as we now show, Theo-
rem 3 is a fairly easy consequence of Theorem 1 and (6.2). In the proof to
follow, we use the second construction of B, with Poisson arrival times
T, < T, < --- of the particles. Also, we abbreviate u = u(¢,d) = w,t%

Proor oF THEOREM 3.. The upper bound. By asking whether at least
n = |(1 + &/2)u| particles enter the system by time z and letting the first n

particles evolve until they all stop if the answer is ‘“no”, we obtain the
estimate

{Bu z %t(1+£)} c {Tn =< u} U {Bu(n) (Z sBt(1+z;‘)}
(T, <u} U {A(n) € B,q.,),

_ this last inclusion by (6.2). On .account of (1.3), the last event on the right

evéntually fails with probability 1 as ¢ —» «. The same is true for the first
event on the right, by the strong law of large numbers. Hence the right hand
inclusion of Theorem 3 holds eventually in ¢ with probability 1. Note that this
proof of the upper bound applies in any dimension.
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The lower bound. Now choose n = |(1 —&/2)u]. Since B,(n) C B, by
(6.1),

{%t(l—e) z Bu} < {%t(l—e) z Bu(n)}

Comparing B,(n) with A(n), we see that the right side is contained in

(Ba @ A(n)) U {Tn > (1 - Z)u} U {Tn < (1 - %)u B,(n) %A(n)}
—i By UE, UE,.

By (1.2), event E, fails eventually in ¢ with probability 1. Another application
of the strong law shows that the same is true for event E,. Event E; is
contained in

&
(6:3) {one of n particles takes at least time 7 to exit B, +€)}

U{B, ¢ B 10}

The second event in (6.3) fails eventually on account of the already established
upper bound. Our assumption that d > 3, together with (5.3), shows that the
first event has probability at most

&
nPo(*rt(He) > Zu) < nPo(‘rt(He) > t5/2) < exp{—Cx/t_}

for some absolute constant C > 0. So another application of Borel-Cantelli
implies that the first event in (6.3) fails eventually in ¢ as well. Consequently,
the left inclusion of Theorem 3 holds eventually in ¢ with probability 1. O

Our proof of Theorem 3 breaks down in two dimensions because the final
estimate [of P(E,)] fails. The reason is simple. If d = 2, then the time a
particle needs to reach the boundary of B, is of the same order ¢ as the time
required to produce enough particles to fill B,. Consequently the occupied ball
is covered by a “cloud” of active particles as it grows, and the growth rate is
governed by a complex interaction of inflow and boundary absorption.

We have simulated the dynamics of this two-dimensional process. A sample
configuration is shown in Figure 1. The occupied cluster is shaded in gray and
then sites with one or more active particle are superimposed in black.

Our computer experiments certainly suggest circular growth. Unfortunately
we are currently unable to provide a proof of this behavior for B, in two
dimensions. Figure 1 is also suggestive of a limiting ‘“‘density profile” of active
particles within the occupied cluster. In other words, there may well be radial
limiting probabilities 7,(r), 2 > 0, 0 < r < 1, that a site x, located a propor-
tion r of the distance from 0 to the edge of the occupied cluster, has & active
particles. Presumably the densities 7 - (r) should decrease stochastically as r
‘increases.

Let us assume asymptotic circularity for d = 2, and present a heuristic
evaluation of the asymptotic growth rate of B, in terms of certain boundary
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Fic. 1.

crossing probabilities for Brownian motion. That is to say, let us suppose that
(6.4) B, = Bcy

and propose a plausible identification of the constant C. We do so by estimat-
ing E|B/l, the expected number of particles that stop by some large time T'.
According to (6.4), on the average, a particle dropped at time ¢ < T will stop if
its random walk X, hits the edge of B ;7 for some u < T — ¢. Thus, since
the Poisson stream drops particles uniformly over [0, T'],

E|B,| = det Po(IIXuII =CyVt+ u forsomeu < T — t).
0
Invoking Brownian scaling and the invariance principle, we get
(6.5) T 'E|B;| = /lds P,(IW,Il = CVs + v for some v < 1 —s),
0

where W, is a standard Wiener process. But from (6.4) we also know that
(6.6) T E|B;| = wC2.

Clearly the right side of (6.5) decreases from 1 to 0 as C increases, whereas the
right side of (6.6) increases from 0 to » as C increases. We conjecture that the
growth of B, in two dimensions is characterized by the ball with the unique C
~ for which these two expressions are equal.

Finally, let us note that the asymptotic growth of B, is even interesting in
one dimension; it cannot be deduced immediately from the equivalence of
A(n) to the Friedman urn model when d =.1. In fact, the size of the occupied
cluster is of order y/#log ¢ at time ¢ in this case and although we have not done
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so, we expect that a one-dimensional version of the heuristic just given can be
fashioned into a rigorous evaluation of the exact growth rate. O

7. Closing remarks. We conclude our paper with some brief remarks
about a couple of possible future directions for the study of internal DLA.

One natural extension of our analysis is to consider systems with several
sources of particles. Suppose particles drop at locations chosen randomly from
a finite collection of sources in the ‘“‘one-at-a-time’’ version or drop according
to independent Poisson streams in the continuous-time ‘‘simultaneous’ vari-
ant. If the sources are well separated, then each cluster grows independently,
like an expanding ball, until it collides with another. After such collisions,
however, there is more and more interaction due to particles that travel from
their original cluster into an adjacent one before they stop. The growth
dynamics during this intermediate phase are presumably quite complicated.
Once the growth cluster attains a size many times larger than the maximal
intersource distance, however, the distinct locations from which particles
originate become increasingly insignificant. In particular, Theorems 1 and 3
generalize in a straightforward manner to corresponding internal DLA dynam-
ics with any finite number of sources. Interesting problems also arise for
infinite particle systems with a countable collection of sources, for example, a
Bernoulli random field of sources with small density p.

Perhaps the most basic open problem raised by. our results concerns the
statistical deviations of A(n) from a Euclidean ball. Are the fluctuations of
order Vn, of order n® for some & € (0, 1), or even smaller? Clues for the
answer to this challenging question are provided by two recent developments.

Etheridge and Lawler (unpublished) have studied the internal DLA growth
model on a regular degree-3 tree 7 3. That more tractable graph admits an
analogous shape theorem and sharp estimates can be given for the variance.
On 93 a “ball” B(n) of radius n contains 3 - 2"~ ! — 2 points. Letting
A(n) denote the cluster at time n, they show that for suitable constants
0 < ¢; < ¢y < o, with probability 1, for all sufficiently large n.

B(n —cylogn) cA(8:2""1 ~2) cB(n +cy/n)
and
B(n —cylogn) A3 2771 ~2), A(B-2""'-2)¢B(n+cyn).

In other words, the “inner error” is of order log n while the “outer error’ is
of order Vn .

Analogies between the behavior of A(n) on 73 and Z¢ are rather dubious, -
however, since the size of the boundary shell .(n) is of the same order of
magnitude as |B(n)| on the tree, but is o(|B(n)|) on the d-dimensional
integers. More relevant is a comparison between the internal DLA rule and
Eden’s growth model [5]. As mentioned in the introduction, the latter process
adds each additional particle at a site chosen uniformly from the available
boundary locations. Eden’s model has been simulated extensively, especially in
two dimensions, and is widely believed to have subdiffusive fluctuations. More
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precisely, its deviations from the asymptotic deterministic shape are believed
to be of order n’ for an exponent & € (0, 1). There is now some experimental
and heuristic evidence that 5 = 1/3 when d = 2; see Krug and Spohn [9] for a
detailed discussion of related interface dynamics. At the beginning of the paper
we described the tendency of A(n) to eliminate irregularities. Intuitively,
successive particles should be more likely to stop at points along the boundary
that are closer to 0 and less likely to stop further away. This bias should give
rise to substantially less variation than in Eden’s model. Unfortunately the
comparison technique that leads to the lower bound of Theorem 1 seems
insufficient to establish subdiffusive fluctuations for internal DLA. But essen-
tially the same nonrigorous interface analysis described in reference [9] also
applies to an exterior smoothing dynamic known as diffusion limited erosion
(DLE), in which particles wandering in from o successively erase boundary
sites from an occupied set. In the limit of a flat interface, DLE dynamics and
internal DLA dynamics coincide. A recent report of Krug and Meakin [8] on
DLE fluctuations therefore suggests that A(n) should exhibit logarithmic
fluctuations when d = 2 and a tight boundary for d > 3.

To conclude, let us reflect a bit more on the core idea of the paper. Lemma 3
presents the fundamental inequality that is used in the proof of the lower
bound (1.2). Recall its statement: For every z € 8B, the average value of
G,(y,2) over y € B, is bounded above by G,(0, z). The proof of the analogous
fact for Brownian motions, sketched in Section 2, uses very strongly the fact
that the set is a ball centered at 0. In fact, this seems to give a way to
characterize a Euclidean ball and its center. This is the only domain ® and
specified point x € © with the property that for all other z € D, the average
value of g(y,z) over y € D is bounded above by g(x, z). We will not give a
direct proof of this fact. Rather, we ask the reader to note that if some other
set © had this property, then we could prove that © was also the limiting
shape for internal DLA.
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