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DECOUPLING AND KHINTCHINE’S INEQUALITIES FOR
U-STATISTICS

By Victor H. DE 1A PERA

Columbia University

In this paper we introduce a fairly general decoupling inequality for
U-statistics. Let {X;} be a sequence of independent random variables in a
measurable space (S, /), and let {X;} be an independent copy of {X,}. Let
®(x) be any convex increasing function for x > 0. Let II;; be families of
functions of two variables taking (S X S) into a Banach space (D, || - |)). If
the f;; € I1;; are Bochner integrable and

max Ed>( sup "fij(Xi)Xj)”)<°°’

l<i#j<n f.,€n,,
then, under measurability conditions,

Y (X X))

1<i#j<n

Y (X X))

l<i#j<n

|

where f = (f;;, 1<i#j<n)and I=(1,;, 1<i#j<n). In the case
where II is a family of functions of two variables satisfying f,, = f,; and
fifX;, X;) = f; (X}, X;), the reverse inequality holds (with a different
constant). As a corollary, we extend Khintchine’s inequality for quadratic
forms to the case of degenerate U-statistics. A new maximal inequality for
degenerate U-statistics is also obtained. The multivariate extension is
provided.

) < ECIJ(S sup
fell

E<I>( sup
fell

1. Introduction. Let {X;} be a sequence of independent random variables
in a measurable space (S, 7). Let II,; be families of Bochner integrable
functions of two variables taking (S X S) into D, where (D, |- |) is again a
Banach space.

Let f=(f;, 1<i#j<n)and M=(l,;, 1<i#j<n) Let ® be an
arbitrary convex increasing function for x > 0. Set

Un = Z fij(Xi’Xj)

1<i#j<n
and
Un(H) = sup Z fij(Xi’Xj)
fell "1<i#j<n

[the usual U-statistics can be obtained by letting f;; = f/ ( 5 )]. In this paper we
introduce new decoupling inequalities (to be defined later) for E®(U, (II)) and
hence for E®(||U,[). These inequalities make the problem of approximating
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1878 V. H. DE LA PENA

the preceding expectations easier. Beginning with McConnell and Taqqu (1986),
a new and rich area of probability has been evolving. This is the area of
so-called decoupling inequalities. In the context of our study, a decoupled
version of U, is
Uul=_ Y fi(X. %),
l<i#j<n
where { X} is an independent copy of {X.}. A decoupling inequality consists in
comparing E®(|U,[) to E®(|UP|), with the idea that E®(|UP|) should be
easier to compute than E®(||U, [). The special case where {X;} is a sequence of
independent symmetric random variables and convex increasing functions @,
and U, = Li_;,;,0;;X;X;, with {a,;} a sequence of constants, is the one
treated in McConnell and Taqqu (1986). Their interest in decoupling inequali-
ties was motivated by the study of double stochastic integrals. In an unpub-
lished work, de la Pefia and Klass (1990) extend their results to include all
mean-zero random variables and convex increasing functions ®, based in part
on Kwapiefi (1987), Bourgain and Tzafriri (1987) and unpublished work of
Zinn (1989).
Zinn (1985) studied the modified version
E fij(Xi: Xj)gigj’
l<i<j<n

where the f;; have values in R', {¢,} is an independent sequence of Bernoulli
random variables, P(e; = 1) = P(¢; = —1) = 3 and {£,} is an independent copy
of {¢,}. In that paper he proved

= E

a

a

x fij(X,-,X,-)siéj, 0<a<2.

l<i<j<n

E X (X, X;)z.¢,
l<i<j<n
McConnell and Taqqu (1987) extended Zinn’s result to the case where f;;:
[0,1] X [0,1] = E are Bochner integrable and the X,’s are i.i.d. uniform on
[0, 1]. They deal with convex functions instead of powers. The preceding may
also be generalized to nonnegative or degenerate f; ; for a > 1 (without the
need for randomizing with {¢,}) by using the results of Hitczenko (1988).
Nolan and Pollard (1987, 1988) introduced the U-process U, (f) =
Ticisj<n (X, X)) for {X;} iid. and f € &, where & is a class of real-val-
ued, symmetric functions on S X S with a nonnegative envelope F:

F(,) 2| f(, )] if fe 7.

Define

U,(¥) = sup

fe

Y (X, X))
l<i#j<n
In Lemma 1 of their first paper, they present an upper bound on E®(U/(F))
and used it to obtain uniform (for f € &) almost sure convergence results for
the original U-process. Their bound is related to our decoupling inequality,
which is more general. '
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Our decoupling inequality includes as special cases a generalization of the
result in McConnell and Taqqu (1986, 1987), the application of Hitczenko’s
work to the problem at hand and, in some sense, the related result of Nolan
and Pollard (1987). The main results are proved by using conditioning argu-
ments, in particular, conditional Jensen’s inequality. Throughout, we will
assume all mathematical objects of interest are measurable. The Appendix
contains a set of measurability conditions that would be sufficient for the
proofs to be valid. Following Nolan and Pollard (1987), we refer the reader to
Chapter 10 of Dudley (1984) for further technical points on measurability.

This paper is divided into five sections. In Section 2, we present the main
result (in more generality than in the introduction) and a proof of the upper
bound. In Section 3 we present a multivariate extension. The upper bound in
the general case is proved by induction and a direct proof for the lower bound
is given. In Section 4 we present several applications. The first shows that the
results of McConnell and Taqqu (1987) are a special case of ours. In the special
case of degenerate U-statistics, we introduce a generalization of Khintchine’s
inequality for quadratic forms and a new maximal inequality. The fifth section
is an appendix.

Throughout this paper we will use the following notation:

E,Y=E[Y|o],

where Y is a random variable and o denotes a sigma field.
2. Main result.

TueEOREM 1. Let X, X,,..., X, be a sequence of independent random
variables in a measurable space (S,.”) and suppose that (X}, is an
independent copy of {X;}]_,. Let 117 be families of Bochner integrable func-
tions f;* such that f;* € I maps S X S = D with (D, | - ) a Banach space.
Let N,, be an arbitrary subset of {1,2,...,n}. For x > 0, let ®(x) be any convex
increasing function such that

) m
 max Eq>(,331€a5n up 115X x)|) <=

Then, for £ = (f7,1<i#j<n), O™ =1}, 1<i#j<m),

.)
|

L (X, X;)

1<i#j<m

E@( max sup

mENn freqnm

X (X X))

l<i#j<m

sE<I>(8 max sup

meEN,  gmeqm

If f7 € 117} satisfy the symmetry conditions

(1) P=fp and f7(X,X) = (X, X)),

ij Ji
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then the reverse bound holds:

Z iT(Xi’Xj)

1<i#j<m

|

L (X X))

l<i#j<m

Ed)(i max sup

meN, gmcym

|

ProoF. To make the proof easier to follow, we will restrict attention to the
special case f;7 = f;;, for all m, and N, = {n}. The proof requires the follow-
ing result.

< E<I>( max sup

meN, gmeqm

LEmmA 1. Let
(2) P=0(Z;,,i=1,2,...,n),
where {Z;} is a sequence of independent random vectors with Z; = (X;, X)
with probability 5 and Z; = (X;, X;) with probability . More formally,

(1+5,) 5 (1-25;)
Zi= =g (X X))+ —5—

where the b; are symmetric Bernoulli random variables independent of each
other and of {X,}, {X,}. Then,

Eyf(Xi, X;) = Eo fi5( Xi, X))
1 .
(3) = Z{fij(Xi’ X;) + fij(Xi’ Xj)
+£,( X X;) + £5( X, X'J)}
Proor. The first line in (3) holds since the conditional distributions of

fi{(X;, X;) and f; (X, X'J-) given & are the same. The second line follows by
noticing that the sum of those four terms is measurable with respect to £. O

(Xi: Xi)’

The preceding constitutes a variation on a result of Kwapieri (1987). Now,
we give the proof of the upper bound. The proof of the lower bound will be
given in Section 3.

PROOF OF THE UPPER BOUND OF THEOREM 1. We use the following identity:

Y (X, X))

1<i#j<n

= X E {EQ”fij(Xi’ X;) + EQ’fij(Xi’ Xj)

<i#j<n
] +Eq £t X, X;) + Eo £y X, XJ)}
" )y {E.Q”fij(Xi: Xj) + E.?Z”fij()zi’ Xj) + EQ”fij(Xi’ Xj)}’

<t#J<n .

where 2'= o(X,,..., X,). In what follows, we let sup denote sup; ..
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From the preceding and the convexity of ®, it follows that

|

Z E.Q”{ fij(Xi’ Xj) + fij(Xi’ XJ’)

l1<i#j<n

Z fij(Xi’Xj)

l<i+#j<n

E@(sup

<

N =

E<I>(2sup
(R0 X)) + £y X ;zj)}”)

1
+ EE(I)(Z sup

> ESZ”{fij(Xi’ Xj) + fij(Xi’ Xj) + fij(Xi’ XJ)}

1<i#j<n

})

[by using conditional Jensen’s inequality on the first term]

Y (X0 X)) +£y(X, X))

l<i#j<n

1
< §E<I>(2 sup

+.(Xi X)) + £,( X0, X))

|

)y EQ’{ fij(Xi’ Xj)

1<i#j<n

1
+ EEQ)(Z sup

+fij(Xi7Xj) +ﬁj(Xi’XJ')}

|

l)

[by (3) and the convexity of ®]

Y E,f,(X,X)

1
< §E<I>(8 sup

l<i#j<n
1 -
+—={E® 6 sup Z Egﬂﬁj(Xinj)
6 l<i#j<n
+Ed|6sup|| X ngij()zi,xj))
l<i#j<n
+®| 6 sup Y Efij()fi,)fj)
l<i#j<n ‘
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by conditional Jensen’s inequality and the identity Ef; ( ) Ef, ( ' J)]

|

1 3
< §E<I>(8sup h fij(Xi’Xj)

l1<i#j<n

2 ~
+—Ed>(6sup h fij(Xi’Xj) )

6 l<i#j<n

1 o~
+—Ed>(6sup Y Efij(Xi’Xj) )

6 1<i#j<n

[by regular Jensen’s inequality on the last term and regrouping]
Z fij(Xi’Xj) Z fiJ'(Xi’XJ') )

1<i#j<n l<i#j<n
[since ® is convex increasing]

1 1
< §E®(8sup ) + §E®(6sup

The proof of the lower bound is presented in Section 3 in its multivariate
form. O

< ECD(S sup

Y (X, X))

1<i#j<n

ReMARKs. The fact that the lower bound does not hold for general f;;
follows trivially by using

fij(Xi’ X') =f(Xi’Xj) =Xj _Xia

because then, L, _; . ; ., f(X;, X;) = 0. If the kernels are not symmetric, one
may still obtain a lower bound by using the symmetrized kernels f
X)) =(f; (X, X)) + (X, X,))/2, forz<j,andlett1ngf f”

Regarding the upper bound the range of summation can be replaced by any
subset of {1,2,...,n}? as long as i #j. The set {1 <i <j <n} is such an
example.

3. Multivariate extension. The following result is a generalization of

Theorem 1. Here and in the sequel, the expression i, # i, # -+ # i, is used
to mean that all of i},i,,...,i,, are different from each other.

THEOREM 2. Let X;, X,,..., X, be a sequence of independent random
variables in a measurable space (S, ), and suppose that {X{,..., X} }k L are

independent copies of {X}\_ ;. Let TI" i, be families of Bochner mtegrable
functions fi" ;, such that f" ; € l'[Zn ;i maps S X 8§ X +-+ X S = D with

LS TRRES

(D, |- 1D a Banach space. Let Nn be an arbitrary subset of {1,2,...,n}. For
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x > 0, let ®(x) be any convex increasing function such that

. max EdJ( max sup ” tiy (X - ,Xik)”) < o,
1<iy#ig# -+ #i<n meN, fiy..mel, .m
Then for £™ =(f, ...7, 1<iy#iy# -+ #1i,<n), Hm=(H T

hij# - #i,<n),meN,,

M fip- 2 Xip- s X))

1<i,#ip# - #i<m

|

Y foo (X, X2)

1<iy#ig# -+ #ip<m

E<I>( max sup

meN, gmcqm

with C, = 2¥(k* — 1)(k — D*¥"! — 1) X -+ X 8. In case the kernels satisfy

the degeneracy property
Eg'lﬂ1~ (lely . :Xili) =

<E<I>(Ck max sup

meN, gmeym

where 27" = o(X},..., X}), then the constant C, can be taken to be k*.
Iff;, .5, €1l .’fk satisfy the symmetry conditions
(4)
fil...’?k = isl”.'?sk and f‘il...’?k(Xil,...,Xik) fll“'lk( lsl"."Xisk)’
for all permutations (i spreesls) Of (iy,...,1,), then the reverse bound for
k > 2 holds:
E®| ——————— max sup Y fi..m(Xxt ..., Xk )
(2(2k 2)(k - 1)! meN, gmeqm 1<iy#ig# - #i<m ' k( ' k)

Y fiy- B X X2

1<iy#ig# - #ip<m

|

Proor. We will treat the upper and lower bounds separately. The upper
bound is proved by induction on k. For the lower bound, a direct proof is
given. The proof of the lower bound presents new 1nterest1ng technical diffi-
culties.

< E<I>( max sup

meNn frelqm

PROOF OF THE UPPER BOUND IN THE MULTIVARIATE CASE. Instead of
Yicijtige = »iy<n We will use L. Instead of f; ...,7, we will use just f.
Instead of max, .y Supgmep~ we will use just sup. Recall that
X!, XL X2 ...,X2,..., X}, ..., X" are independent copies of X,,..., X,,.
We will use induction over k. For & = 2 see Theorem 1. Assume that the upper
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bound is valid for 2,...,k — 1. Let u = u, ..., = Ef(X{},..., X/*). We have

E(sup| L F(X2, X2, ..., XL))

N =

<

E®|2sup Z{f(Xiﬁ,X}z,.--,Xi)

+ X Emf(Xi’},X{f,m,X{}f)}+(k—1)u
not all
J’s equal

1 . . .
+—E®|2sup Z{ > Eglf(X{;,X{;,.-.,X{:)} +(k-1u
2 ‘not all
J’s equal

[because of Jensen’s inequality and convexity]

|

YT (X X))

1<jy,.--s Jr<k

1
< §E<I>(2 sup

1 ‘ '
+ 2(kk—_1) nc§311 E¢(2(kk _ l)Sup”Zf(Xi’ll".‘,Xz]:)”)
J’s equal
gy PO{a0  Dsup] T (KL X))
2(kk - ].) ( )Sup ( [ 2R ik) .

Conditioning on 2V = o(Xj, ..., X?) for appropriate j’s, we can bound all the
summands in the second term by the summands involving f(X},..., X}),
using the induction hypothesis. For example, in case £ = 3 we have

i x|
X2,..., X,%},

1<iy#ip,#izg<n

g(Xill’ X112) = Z f:(Xilp Xi127 Xzz)

i<i<n
1#1y,1g

Ecp(52 sup Y f(xk X X2

1<i;#ip,#iz<n

Xf,...,xf}

=FEE <I>(52 sup

Z g(lel7 Xi12)

1<i,#iy<n

=EE <I>(52 sup

9
where
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Hence, using the result for £ = 2,
E®(52sup| ¥ F( X}, X1, X2)|) < Eo(52K sup| ¥ £( X%, X2, X2)|)
= ECD(52K sup| X F( X}, X2, X2)]),

11?

where K is the upper bound constant in case 2 = 2. Because of the exponen-
tial nature of the bounding constants, it’s easy to see that the largest constant
is used to bound the terms involving f(X},...,X} ,X!) (e, all but
one observation are from the copy of the same klnd) and that constant is
2 (k- 1)*71 — 1X(k — 2)%*72 - 1) X - -+ X 3 (obtained by the conditioning
argument in the preceding example, using the induction hypothesis). Hence,
from the multivariate analogue of relation (3) in the proof of Theorem 1 we
obtain the upper bound by using conditional Jensen’s inequality applied to the

expression

1E®(2k* sup| ¥ By, f( xt)|) + 2E®(C, sup| L F(X2,..., X2)])
=< E(I)(Ck sup” Zf 11’ t ik ”)’
where 9, is the analogue of the o-algebra in (2),
(5) Pp=0(Z;,i=1,...,n),
where {Z;} are independent random vectors with Z;, = (X7, X7z, ..., X/*) with

probability 1/k! for each permutation (j, jg, ..., j,) of (1,2,..., k) and where
C, =28k — Dk —DF1-1)x - x3.

In the case where the kernels are degenerate, the constant C, = k* is
obtained by the following argument.

By the degeneracy property,

Eo(sup| T (X2, X2, x1)|)

— E®|sup Z{f(X}l,Xl L XE)

bOY B f(XL X z;)+<k—1>n}
not all
J’s equal

[because of conditional Jensen’s inequality and convexity]
L X (b x))
1<jise--s Jr<k ’
[by the multivariate version of (3)]

= E9(k* sup| T B, (X3, XE)|)
[by conditional Jensen’s inequality]

< Bo(k* sup| LA(X4,..., X4)).

< E@(sup
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PROOF OF THE LOWER BOUND: MULTIVARIATE CASE. Suppose the symmetry
assumptions (4) on {f; ..., } hold. Under (4)

(6) ) fiyoa XL, XE) = Zf,l (X, ka)

1<iy#ig# -+ #ip<n
where the right-hand side summation is over (j,,..., j,) € {all permutations
of(1,...,k)}and 1 <i, #i,# -+ # i, <n. Instead of
Y [ FRRRUN O: L. €/
{iseees Jed

1<iy#iys# - #ip<n
we use XZ{ji,...,J; € J}. Then the lower bound part of the theorem can be
written as

E(sup| (s = 1, s = B}
< E®(2%%(k - 1)lsup| L (i = -+ =j, = 1}])-
Now, by (6) and convexity,
E<I>(sup” Z{jl =1,...,j,= k}”)

_Eq,(isup”z Uty evvsdy € {1,...,k}}”)

2
+ = E<I>(—sup”2 {Ji--sdne{1,... k), <kj’sdifferent}”).

Since for 2, as in (5) the following analog of (3) is valid:

(7 Y {ueodr€ (L. O} =1Ey fi ..., (X2, ..., X)),
Tiyenny i, fixed
for I = 2,..., k, we can use Jensen’s inequality to bound the first term by
1 2
S Bkt s T = - =5 - 1))

which is what we want. The second term is less than or equal to
1 2(k - 1) ‘ ' )
2(k_1)E<D( o sup”Z{h,...,Jke{1,...,k},all] sequal}”)
1 E(I)( 2(k —1)
+
2(k—-1) k!

Sup”Z{jlwﬂ;.jkE{la-“ak},

exactly 2 J’s different} ||) +

, 1 @(2(/@—' 1)

T2k - 1) 5| i e € {1, R),

exactly k — 1j’s different}”).
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The last term of this is also less than or equal to

1 2(k -1
2(k_1)E‘D( (k! )(kfl)sup”Z{jl,...,jke{1,...,k—1},

exactly £ — 1 j’s different} ” )

1

aPTOEEY)
1

APTEREY

4
Ecp( (k= Dksup| X {jy,...,Jn€{1,..., k- 1}}”)
E(I)(K(k— Dk sup|| ¥ {j1,---,je € {1,..., &k — 1},

<k-1j’s different}”).

The first term can again be bounded using (7) with [ = 2 — 1. We deal with
the second term exactly as before, when we had ‘““‘less than % j’s different.”
Proceeding inductively in the same way, we finally get that the ‘“last” last
term is bounded by

1 .
FE®(2k_3(k - 1)!sup”2{j1,...,jk € {1, 2}, exactly two j’s different}”)
3

< WE@(zk—Z(k — Dtsup|| X {js, .-, jx € {1,2}}])
' 55‘ E®(2**(k — 1)1sup| T {j1, .. js € {1,2), all j’s equal)|)
< Eé—-}fzcb(zzk-z(k — Dlsup| X {ji= -+ =jp =1}
+2—C--E<b(2k—1(k ~Dlsup| L {ji= - =js = 1}]),

where C,, is a constant we do not have to worry about since it came from the
convexity argument, so that when we add up all of the terms the outside
constants 1/2C, will add up to 1. Applying the preceding procedure to all
other terms we missed, it is easy to see that it really is always the last term
that carries the largest (inside) constant, so that all of them will be bounded by

E1«:<1>(22k—2(k — Dtsup| X {js = - =jp = 1}))-

This completes the proof. O
4, Applications. The first application generalizes the results of Zinn
(1985) and McConnell and Taqqu (1987). Moreover, the constants we get are
better.
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CoOROLLARY 1. In the notation of Theorem 2, assume that the g’s satisfy the
symmetry conditions (4), and suppose {e}" ,{e3}" 1,...,{e®}" | are indepen-
dent copies of a sequence of independent Bernoulli random variables, {¢;} with
P(g; = 1) = P(¢; = —1) = %, where the ¢’s are taken to be independent of the

X’s. Then,

R — o (x: B)gl ... gk
zo| gy eiroig iy Ko Kol el )
1 1 1 ... .1
sECD( X g (X X )e sik)
1<iy#ig# -+ #ip<m
sE(I)(kk > gi i Xh o XE)el o ek )
1<iy#ig# - #ip<m

ProOF. The result follows directly from Theorem 2 by letting Y/ = (X7, &/)
and ta.king fil .o ";Lk(Yil’ ceey Ylk) = gil" . ey ik(Xil’ ceey Xik)8i1 et sik' a

In Corollaries 2 and 3, we will make the assumption that the kernels f;; are
symmetric (as defined in Theorem 1) and degenerate, that is, we require that

E(f,(X., X;)1X,) = E(f,;(X,, X;)|1X,) = 0.

A special case of Corollaries 2 and 3 involving quadratic forms was introduced

in de la Pefia and Klass (1990).
The following is an extension of Lévy’s inequality.

COROLLARY 2. In the notation of Theorem 1,

L fiy(X: X))

1<i#j<m

L (X X))

1<i#j<n

|

) < 2E<I>(32

l<m<n

ECD( max

Proor. From Theorem 1 and Theorem 2 it follows that

ECD( max Y (X, X)) )
I<smsnlli<iztj<m

SE¢(4 max Yy fij(Xi,)Zj) )

lsms<nll1cizj<m
[by conditioning on Xj,..., X, and using Lemma A2]

s2E<I>(8 Y ~f,~j(Xi,X'j) ) [by Theorems 1 and 2 again]
! l<i#j<n

< 2E<D(32 Y (X X)) )

1<i#j<n
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REMARK. The case ®(x) = |x| is of special interest, since the preceeding
result is a strict improvement over the use of Doob’s inequality to bound the
L! norm of the maximum of a martingale when applied to this problem.

CoroLLARY 3 (Khintchine’s inequality for degenerate U-statistics). Let
{X;} be a sequence of independent random variables, {f;;} a sequence of
real-valued functions such that f;; = f;; and f, (X,, X;) = f; (X, X,). Let ®(x)
be any convex increasing function for x > 0 such that <D(2x$ < 2°®(x) for
some a > 1. If E(f,(X;, X)) | X;) = E(f; (X;, X;) | X;) = O, then

ClaECD( Y (ﬁj(Xi,Xj))z)sm( Y (X, X))
SCzaE‘I’( > (fij(Xi’Xj))z)’

1<i#j<n l<i#j<n
l1<i#j<n

where 0 < C,,,C,, < © depend only on a.

ProoF. We will use the symbol A, =, B, to denote that the ratio of
adjacent quantities is bounded away from zero and infinity by positive con-
stants depending on « only.

By Theorem 1,

E(D( Yy fi,(X:, X;) )
1<i#j<n
= E® by fij(Xi, Xj) ) [Lemma A1 applied twice]
1<i#j<n

o« EP )y fij(Xi, X~j)8i§j [by Corollary 1]

1<i#j<n

I

I

a E(p Z flJ(Xl’Xj)slej

1<i#j<n

I

« E® )y fij(Xi’ Xj)gigj

1<i#j<n

[by Theorem 1, conditioning on X, ..., X, ]

=, E(I)( Y fAXLX) |-

l<i#j<n

The last line follows by conditioning on (X, ..., X,) and using the regular
Khintchine’s inequality. [See McConnell and Taqqu (1986) for a very nice
proof of the version of Khintchine’s inequality we are using.] O

To make the paper more complete, we }iresent the following results.
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APPENDIX
Symmetrization lemma.

Lemma Al. Let X,,..., X, be a sequence of independent random elements
taking values in a Banach space (B, || - |)) with EX; = 0 for all i. Let-{¢;} be a
sequence of independent Bernoulli r.v’s independent of {X,}. Then, for any

convex increasing function P,
n
5 X, ) < m(z X, )

1 n
cp(_ - )sm( »
2 i=1 i=1

Proor. This follows easily from known symmetrization results. See, for
example, Araujo and Giné [(1980), Lemma 2.13]. O

The following is an easy consequence of Lévy’s inequality.

LEmMA A2. Let X,,..., X, be independent mean-zero random elements in
a Banach space (B, |- |). Let ®(x), x > 0, be a convex increasing function.
Then
J n
E@(max Y X, ) < 2E<I>(2 Y Xi”).
J=<n i=1 -

Proor. Let {X,} be an independent copy of {X,}. Then {X; — X} is a
sequence of independent symmetric random elements, and, by Jensen’s in-

equality,
J J .
ECD(max ZX,»)SECD( Y (X X))
J=n ;-1 J<n i=1
< 2E<I>( Z ” [by Lévy’s inequality]
<ol £ )+ = L))
= 2E9( iy

Measurability conditions. In what follows we provide the measurability
conditions under which Theorems 1 and 2 of this paper hold, mainly summa-
rizing D. Pollard’s ideas in the subject [Pollard (1991)]. We are thankful to him
for allowing us to include this summary that makes this paper self-contained.

In addition to the conditions of Theorem 1, assume that for each i, X;, X,
are the coordinates of the product measure space (II7_,S; X II7_, S;, II7_ 1P X
I]17_,P,) (the usual assumption in empirical process theory). For s1mphc1ty, let

= {n} and consider Bochner integrable functions { f; j} with

max E*CI)( sup “fU(Xz’XJ)“) <®

1<i#j<n fijenij
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where E* stands for outer expectations. Then Theorem 1 can be restated as
(x|

1<i#j<n
We recall that E*f = Ef*, where f* is the measurable support of f [see e.g.,
Dudley and Philipp (1983)]. To show this, one modifies Lemma 1 as follows: If
{r,}"_, is a Rademacher sequence [i.e., the r; are independent and P(r; = 1) =
P(r; = —1) = 1]independent of {X;} and {X,}, with all the variables defined as
coordinates in a product probability space, and if we let X = X, if r, = 1 and
X/ =X, if =-1, for i=1,...,m, and likewise for X/, then for 9=

12

o(Xy,..., X; X,,..., X)),
E,f,,(X!, X]) = Eo f,,( X!, X])
= %{fij(Xi» X;) + fij(Xi’ Xj)
+£,,( X, X;) +f,.j(X',.,Xj)}.

Then one uses this fact in the proof of Theorem 1 with only formal changes,
using the following simple facts about outer expectations:

X fii(X, X))

l<i#j<n

) < E*CD(S sup
fell

E*d)( sup
fell

1. Fubini’s inequality: If X, and X, are independent S; variables and H:
S; XS, = R, then EfEfH(X,, X,) < (E X E)*H(X,, X,), and
2. Jensen’s inequality for E*:

CD(supHE Y fij(Xi,Xj)Il)SE*‘D(SuP” P ﬂ'j(Xi»Xj)”)'

fell 1<i#j<n fell 1<i+j<n

(The first use of Jensen’s inequality is obvious, and so is the second if one
expresses the convex increasing function ® as the sup of its supporting lines.)
The same approach can be applied in the general case treated in Section 3.

REMARK. Even though Theorems 1 and 2 are already very general, it may
be possible to extend them (using basically the same approach) by replacing
the Banach space D by more general topological vector spaces. One may also
want to let @ be a function of the norm. Along this line of thought, Pisier
(1990) has pointed out that our results can be viewed as decoupling results for
point processes.

HisToricaL NOTE. We are thankful to D. L. Burkholder for pointing us to
an early decoupling result of D. L. Burkholder and T. R. McConnell [see
Lemma 1 of Burkholder (1983)] dealing with problems involving martingale
transforms of a Rademacher sequence. This result has been important in the

* study of integral operators on Lebesgue-Bochner spaces.
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tion of a special case of Theorem 1. We are also thankful to M. J. Klass,
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J. Winniki, D. Alemayehu and the referee for helpful comments and sugges-
tions, and to J. Cvitanic for his help in obtaining the constants in the
multivariate case.
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