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GEOMETRIC PROPERTIES OF SOME FAMILIAR
DIFFUSIONS IN R”

By CHRISTER BORELL

Chalmers University of Technology

Consider a convex domain B in R” and denote by p(¢, x, y) the transi-
tion probability density of Brownian motion in B killed at the boundary of
B. The main result in this paper, in particular, shows that the function
sIns"p(s?, x,y), (s,x,y) € R, X B2 is concave.

1. Introduction. Let B be a convex domain in R"™ and suppose V:
B — [0, + is a continuous function. Moreover, let p(¢, x,y), (¢, x,y) €
R, X B2, denote the fundamental solution of the diffusion equation

(1.1) /ot = A4 — V(x)b(t,x), (t,x) €R,XB,
with the Dirichlet boundary condition zero, that is,
(1.2) lim ¢(¢,x) =0, (¢,%0) € R, X dB.

The function (¢, x) = p(t, x, y) satisfies (1.1) and (1.2) and
lim p(¢,x,y) =8(x —y).
t—>0%

If the potential V' vanishes and the domain B equals R", the corresponding
fundamental solution is denoted by e(¢, x, y) and we have

e(t,x,y) = (27t) _n/zexp(— le — y|2/2t).

The purpose of this paper is to study various convexity properties of
appropriate functionals of p. To begin with, recall that, if the potential V is
convex, then the mapping (x, y) — In p(¢, x, y) is concave for every fixed ¢ > 0
(Brascamp and Lieb [5]). Here we will impose a much stronger condition on the
potential, namely that the function V~1/2 is concave. More precisely, this
means that either V =0 or the function V is strictly positive with V~1/2
concave.

The main result in this paper states that the mapping

(1.3) slns"p(s? x,y), (s,x,y) € R,x B?

is concave. In the spec1al case p = e the mapping 1n (1.3) is simply equal to a
constant plus —|x — y|?/2s.
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Now set
w(t,x,y) = ftp(s,x,y) ds, (¢,x,y) € R, X B2,
0

If y € B is fixed, the function v(¢, x) = w(¢, x, y) solves the equation
v /ot = 3Av — V(x)v + 8(x — y)

and v approaches zero at the boundary points (3R X B)) \ {(0, y)}. By exploit-
ing the concavity of the map in (1.3), we show that all the level sets {(¢, x, y) €
R, X B% w(¢, x,y) > r}, r = 0, are convex for any n > 2. Moreover, if n > 3,
the function w~1/("~? is convex. Similar properties are proved for the Green
function w(+x, x, y) in the author’s paper [3]. Note that, if p = e and n > 3,
then w(+, x, y) equals a positive constant times |x — y| ="~ 2.

Finally set

m(t,x,y) = sup p(s,x,5), (t%,5)€R,xB.
O0<s<t
By using the fact that the function w~1/"~2 is convex for n > 3, it follows
that m~1/" is convex for every n > 1. If p = e, m(+x, x,y) equals a positive
constant times |x — y| ",

The method of proof in this paper is based on Brunn—-Minkowski theory and
functional integration as in [5] (cf. also Borell [1]). In the time-stationary case,
the author’s works [3] and [4] treat properties closely related to those discussed
above using two different differential methods. Interestingly enough, even here
the condition that V=172 is concave enters in a natural way.

2. An inequality of the Brunn-Minkowski type. The investigations
" below strongly depend on an inequality of the Brunn-Minkowski type, which
we describe next.

In what follows, A = (A, A;) stands for an arbitrary but fixed vector with
strictly positive components and such that A, + A; = 1. If x,, x, € R", let
X, = AgXo + Ayx; and, if Ay, A, CR™, let A, ={x,: x, € A, and x; € A}}.

THEOREM 2.1. Suppose V¥: [0, +[%2 — [0, + [ is a continuous, positively
homogenous function of degree one, increasing in each variable separately,
and such that V(&) =0, if £ =0 or 7 = 0. Moreover, let Q,,Q; C R" be
open and suppose f;: Q; = [0, + oo, j = 0,1, A, are continuous functions.

The following assertions are equivalent:

(i) fAAf)\(x) dx > qf(onfO(x) dx,fAlfl(x) dx)
for.all open A; € Q;,1=0,1;

@) A [Ta® = q,( Fo(xo) T1a®, fi(x) T1 a&k))
E=1 k=1 k=1
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for all x4 € Q, x; € Q; and all vectors

ao = (a9,...,a”), a;=(a’,...,a{”) eR"
with nonnegative components.

For a proof of Theorem 2.1, see the author’s paper [2]. Here, in order to
make the paper more self-contained, we will repeat a proof of Theorem 2.1
(cf. [2], Remark, page 119).

LEmma 2.1, Let f;: R > [0, +[, j = 0,1, A, be continuous functions with
compact supports and suppose V is as in Theorem 2.1. If

fi(x)a, = ¥(fo(xo)ag, fi(x)a,)

for all xy, x; € R and all ay,a; = 0, then
[ £y i = ([ ol dv, [ (o) )
R R R

PrROOF. Since ¥ vanishes on the boundary of [0, +<[% we may assume
that f, # 0 and f; # 0. In what follows, suppose i = O or 1 and let B; c {f; >
0} be a nonempty, finite union of nonempty open intervals. It is enough to
prove that

fnf)‘(x) dx > ‘If(fB fo(x) dx,fB f(x) dx).

Furthermore, by rescaling ¥(¢, n) in each variable, if necessary, there is no
restriction in assuming

[ fi(x)dx = 1.
B;
Now we introduce the distribution function

F(x) = [ 1,0 fndy, xeR

Moreover, we denote by G; the inverse of the function F; restricted to the set
B,. Then (f;°G,)G; = 1 and if D, stands for the domain of definition of G,,

F(AeGo(3) + 11G1(8))(2oGo(s) + 1Gi(s)) = ¥(1,1), s€D,ND;.
By integrating this inequality over the set D, N D;, it follows that
[ fi(x) dz = ¥(1,1)
R

since the set 10, 1[\(D, N D,) is finite. This completes the proof of Lemma 2.1.
) O
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Proor or THEOREM 2.1. (i) = (ii): Suppose first that the a{®, i = 0, 1, are
positive and put

n
1 1
A=x e T [~ 1a®,2a®], o> 0.
k=1

We now multiply the inequality in (i) by ¢~ and let ¢ tend to zero to obtain
the inequality in (ii). The latter inequality is trivial if some of the a(® vanish.

(ii) = (): First suppose that (; = A, = R" and that f;: R" — [0, + [ has
compact support for every j = 0, 1, A. If the inequality in (ii) is true, we get the
inequality in (i) by using Lemma 2.1 and the principle of mathematical
induction on n. Clearly, the general case is an immediate consequence of this
special case.

This, finally, ends our proof of Theorem 2.1. O
3. The main result. Given an open subset A of B, we define

u(t,x;4) = [ p(t,%,y)dy,  (£%) €R,XB.
A

TueoreM 3.1. Suppose V~1/% is concave. If Ay, A, C B are open and
Sg, 81 > 0, x4, x; € B, then

u(sg, xy; A,) = uto*o(sg, x5 Ag)ut*(st, 215 Ay).
The proof of Theorem 3.1 depends on two simple lemmas.
LeEmMa 3.1. For any a > 0, the function x®*1/t% t > 0, x > 0, is convex.
LEmMmA 3.2. The function t In(x/t), t > 0, x > 0, is concave.

The proofs of Lemmas 3.1 and 3.2 are straightforward and they are omitted
here.

Proor oF THEOREM 3.1. Let (X(¢)),., be Brownian motion in R" and

denote by Ty = inf{¢ > 0; X(¢) & B} its first exit time of B. Then, by the
Feynman-Kac formula,

u(t,x; A) = Ex[exp(—fotV(X(s)) ds); T, > ¢, X(t) € A].

In what follows, N stands for an integer greater than or equal to two and we
define

un(t,x; A) = Ex[exp(—%kg:lV(X(%t)); X(%t) € B,

E=1,...,N—1, X(¢) eA].
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Noting that the boundary of B is regular,

u(t,x;A) = Nlim un(t,x; A).
— +

Accordingly, from this, it is enough to show that

(si %05 A,) = ule*o(sg, x; Ag)ulr(s?, xy; Ay)

(3.1) u) M

N

for every fixed N. To this end, we introduce

2t

—n/2 N t
an(t, x,y) = (—N—) exp(—gly - xf? - NV (4 xy) €R.X B?,

so that, by the Markov property of Brownian motion,

uy(t,x; A) =j

N1 qN(t’x’ gl)qN(t’ flafz)
B XA
s gt En_,y)dEL o - dEy_q dy.

In order to simplify notation, let

QN(tyxaé) = qN(tax’ fl)qN(t7§1,§2) ot qN(t’gN—lagN)
for every t > 0, x € B, and £ = (&11€5) -+ 1€x) € BN, Then

N-1

uN(tax;A)=fB XAQN(tax’é)dé-

Now consider the function

ry(t,x,y) =t"2qn(t, x,y), (¢, x,y) € R,x B2

From the definitions we have

. (217 sz N| 2 33V 0
S = | — _— — - — > 0.
ri(s% x,) N) exp| —o-ly —x N )|, s

Here, by Lemma 3.1, the function |y — x|®/2s, (s, x,y) € R, X B is convex.
Further, since V=172 is concave, Lemma 3.1 implies that the function s3V(y),
(s,y) € R, X B, is convex. Thus, given y,,y, € B, it follows that

r‘:}(sf, x,ny)\) = r}/\\]oSo(sg, Xo5 yo)rﬁsl(s%, X1,91)-

Moreover, if the vectors a, = (a’,...,a{), a; = (a{,...,a{”) € R" have
nonnegative components, Lemma 3.2 gives

s Ags Ags
a(,\k) A a(({e) 0So a(lk) 151
— = |— — , k=1,...,n.
Sa So St -
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Consequently,

n Sa
(w5t z00) [Tat?)

n A181

n AoSo
= (qN(sg’xO’yO)knla(Ok)) (qN(S%’xl’yl)k]:IIa(lk)

Therefore, for any b, = (6", ..., b)), b, = (b, ..., 6" V) € [0, +oo[?, we
have
nN

QN(S)%’ Xas é/\) I_I bg\k)

k=1

nN nN ) A181/8)

AoSo/Sx
= (st o) 107 [@u(tmn ) [To

The inequality (3.1) now follows at once from Theorem 2.1, which completes
the proof of Theorem 3.1. O

CoroLLARY 3.1. Suppose V™12 is concave. Then the mapping
sln s"p(s? x,y), (s,x,y) € R, X B2, is concave. Equivalently, if sy, s, > 0,
%o, Yor X1, Y1 € Band a®,a{® > 0, k = 1,...,n, then

n Sa
(st 50 [ 1)
(3.2) -

A181

n Aoso n
> p(sh0070) 1] (p(st ) TTah

Proor. By Theorem 2.1 the inequality (3.2) is equivalent to the inequality
in Theorem 3.1. Furthermore, in view of Lemma 3.2, the inequality (3.2) just
means that the mapping s1n s"p(s? x,y) € R, X B? is concave. This com-
pletes the proof of Corollary 3.1. O

4. An application.

THEOREM 4.1. Suppose V~1/2 is concave and set
w(t,x,y) =/tp(s,x,y) ds, (¢,x,y) € R, X B2
0

If n. > 2, the function w is quasiconcave, that is, the level sets {w > r}, r > 0,
are convex. Moreover if n > 38 the function w™Y"~? js convex.

We do not know if the function w in Theorem 4.1 is quasiconcave for n = 1.
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Proor oF THEOREM 4.1. Setting a/” =s;, j =0,1,4, in (3.2), it follows
easily that

n—1 n—1 n—1
sap(s80,) TT e 2 mins0p(53,50.30) T 500(s%, ,90) TL ).

Therefore, if n > 2, Theorem 2.1 implies that, for any #,,¢; > 0,
n—2

o (hatlf? + 1t/ 50,3) T )

n—2 n—2
= min(w(to, %95 ¥0) kl—]la(ok)’ w(ty, X1, ¥1) kl—]la(lk))-

Moreover, since w, > 0 and
2
(Aotd”? + Mit17?)” <y,

we have
n—2 n—2 n—2
(209 TP = min (200 30) TT 06,0 T )

Now, if n = 2, clearly, the function w is quasiconcave. Further, if n > 3, we
put
a® =¢ + (w(t, xi,yi))_l/("_z), i =0,1(e> 0small)

and it follows at once that the function w~1/*~? is convex. This completes
the proof of Theorem 4.1. O

ExampLE 4.1. Suppose n = 3 and denote by u the linear measure of a line
segment S contained in B. The function

v(t, x) = fsw(t,x,y) du(y)

solves the equation
v/t = 3Av — V(x)v +

and approaches zero at the boundary points (d(R, X B))\ (R, % S). By Theo-
rem 2.1, the function v is quasiconcave.

ExampLE 4.2. Let 2 € N,. The fundamental solution of the equation
/ot = 5(A, + o A = (V(x) + o +V(x))¥

in R, X B* with the Dirichlet boundary condition zero equals p(¢,x,y,)
-+« p(t, 24, y,). Since the function (V(x;) + -+ +V(x,))~'/? is concave, The-
orem 4.1 applies. In particular, if nk > 3, the function

) -1/(nk—2)

([[7 (s, ds . (Lxy) S RXB
0
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is convex. Letting & — +, we conclude that the function m~1/" is convex,
where
m(t,x,y) = sup p(s,x,y), (t,x,y) € R, X B2
O0<s<t
Alternatively, these properties may be derived more directly from Corollary
3.1. :

5. Discussion. There are several Brunn-Minkowski inequalities for
Brownian motion, which, so far, only have been possible to prove for convex
sets. Some of them are rather close to the inequalities considered above. For
example, if n > 3 and if 74 = Tn, 4 denotes the first hitting time of A ¢ R",

P [74, < +] = min(Pxo[TA0 < +2], P, [y, < +oo])

for all open convex sets A,, A; € R"*[3]. It is unknown whether this inequality
remains true for arbitrary open sets. The same remark applies to the capaci-
tary inequality

/DAy + A)) = cl/PTD(AY) + /DAY, n =3,

where ¢, is Newtonian capacity in R™[3].
We believe that a better understanding of this context would be of great
interest, also in relation to the inequalities in Sections 1-4.
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