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RECURRENT PERTURBATIONS OF CERTAIN TRANSIENT
RADIALLY SYMMETRIC DIFFUSIONS

By D. Iorre
University of California, Davis

If L generates a transient diffusion, then the corresponding exterior
Dirichlet problem (EP) has in general many bounded solutions. We consider
perturbations of L by a first-order term and assume that EP can be solved
uniquely for each perturbed operator. Then as the perturbation tends to 0,
the sequence of perturbed solutions may converge to a solution of the
original EP. Using a skew-product representation of diffusions, we give an
integral criterion for the uniqueness of this limit and show that it takes
place iff the Kuramochi boundary of L at « is a singleton. In the case when
uniqueness fails, we provide a description of a subclass of limiting solutions
in terms of boundary conditions for the original process in the natural
scale.

1. Introduction. Let L be a differential operator on R of the form:

7 i V(p)

(11) L=§apﬁ+b(p)5;+—As,

2

where A, denotes the Laplace—Beltrami operator on S¢~1. We will follow [1]
and say that L belongs to .Z(R?) if it is locally uniformly elliptic and the
coefficients b and V are locally Hélder [6]:

(A) L € Z(R?).

The main import of (A) is the use of Schauder a priori estimates and the
validity of probabilistic representations of solutions, which we will use from
now on without further comment.

Assume that L generates a transient diffusion. As it well known, this is
equivalent to

(1.2) fmexp[—2fpb(z) dz] dp < .

Consider now the exterior Dirichlet problem
Lu =0 in D, u isbounded,
ulsp=¢, ¢ €C(dD),

where D is an exterior domain (D¢ is compact and contains some neighbor-
hood of the origin) with smooth boundary dD. Since L generates a transient
diffusion, in order to obtain a unique solution to (EP);, one has to specify

(EP)L

Received December 1990; revised October 1991.
AMS 1991 subject classifications. Primary 60J60; secondary 35J25.
Key words and phrases. Diffusion process, exterior Dirichlet problem.

1124

Institute of Mathematical Statistics is collaborating with JSTOR to digitize, preserve, and extend access to
The Annals of Probability.

®
WWww.jstor.org



PERTURBATIONS OF DIFFUSIONS 1125

some additional conditions at « such as, for example,
(1.3) lim u(x) = u, = const.
lx] o0

Although (EP); and (1.3) yield a unique bounded solution for each «, there
can be bounded solutions to (EP), which do not satisfy condition (1.3). We note
that no general condition at « is known that can be used to define every
bounded solution to (EP), in a unique way.

Suppose now that {L,} is a sequence of first-order perturbations of L, that
is, L, € -Z(R?), and is given by

62
3 " — +b(p)—— + (B,(x),V) + ﬁA

where B, converges to 0 uniformly on compacts of R?. Assume that each L,
generates a recurrent diffusion. We will call such a sequence a perturbation of
L. Because L, is recurrent, the problem

L,u=0 in D, u isbounded,

ulp=4¢, ¢ <C(dD)
yields a unique bounded solution u? [9]. We will call {L,} a ¢-admissible

perturbation if it is a perturbation and u""‘djlimn_mo u® exists. By the De
Giorgi-Nash theorem (see [6]), it follows that the convergence above is locally
uniform. Furthermore, the results of [15], Chapter 11, and condition (A) imply
that u? solves (EP),. We will refer to u® as an admissible solution to (EP),.
Now for any perturbation {L,}, the sequence {u?} is bounded. Using once
more the De Giorgi-Nash result, we obtain that {L,} contains some ¢-admis-
sible subsequence. By the separability of C(dD), one can apply a diagonaliza-
tion argument to extract a subsequence {L, } which is ¢-admissible for each
¢ € C(AD). A sequence {L,} which is ¢- -admissible for every ¢ € C(dD) will be
called an admissible perturbation. Finally, we will say that two admissible
perturbations {L,} and {L,} are equivalent if lim, _, u? =lim, 4% for
each ¢ € C(4D).

(1.1, L, =

(EP),

DEFINITION 1.4. The exterior Dirichlet problem (EP), is said to be stable if
there is a unique admissible solution for each ¢ € C(dD).

Our goal in this paper is to investigate stability properties of (EP); and to
describe the class of admissible solutions. Let us point out for further conve-
nience that the following are equivalent:

(1) (EP), is stable.
(ii) Every perturbation is an admissible one.
(iii) All admissible perturbations are equivalent.

"To understand better the motivation and the questions we should pose, let
us briefly survey the work of Pinsky in [11], where (EP), ,,, was studied. First
of all, it was shown that (EP), /5, is stable.



1126 D. IOFFE

In the case of the operator L given by (1.1) we will prove the following
theorem.

THEOREM 1.5. (EP), is stable iff [“V(pXexpl2[°b(z)dz])dp = .

REMARK. It is interesting to note that (EP), can be stable even if the
Martin boundary at « for L is isomorphic to S¢~!. Indeed, by the results of
[12], the latter happens iff

me(p){exp[2fpb(z) dz]}{f:exp[—zfzb(s) ds] dz} dp < o.

Thus the diffusions for which (EP), is unstable have to be ‘‘moderately
transient” with respect to V in the sense that the drift () has to be large
enough to ensure the transience condition (1.2) but small enough so that the
integral in Theorem 1.5 is finite. In fact, (EP), is stable iff the so-called
Kuramochi boundary at « for L is a singleton (cf. [8] and Theorem 1.9).

If (EP),, is stable, then there is a unique admissible solution z?¢ to (EP),, for
each ¢ € C(dD). In the case of L = 1/2A, Pinsky [11] gives two different ways
to characterize u?.

Consider first the following variational problem:

ProBLEM 1.6. Solve
inf [ [Vul?,
f)
u € Wli*c"’(D), u is bdd,

where W1.#(D) denotes the set of functions with one locally integrable gener-
alized derivative and trace ¢ on 4D.

Pinsky’s result [11] states that %? is the unique solution to Problem 1.6 for
each ¢ € C(4D).

The second way to describe %? is a little bit more involved and is based on
the notion of the harmonic measure boundary at o, introduced in [12].
Namely, let A(x) denote the unique solution of (EP), (with L = 1/2A) and
(1.3) in the special case of ¢ =1 and u, = 0. Of course, h(x) = P{r, < x}.
Following Doob [4], Brownian motion in the exterior domain D, conditioned on
{rp < =}, may be realized as a Markov diffusion process on D with generator
1/2A", where A" is defined by A"f = 1/hA(hf). Letting X" denote the
conditioned process, set w'(dz) = P{X"(r,) € dz} for each x € D. Then
/.u’;(dz) is, of course, a probability measure on dD. Pinsky [11] showed that
ut = w — limpw -~ u? exists and that the unique admissible solution %* of
(EP)¢ satisfies (and therefore is umquely defined by) condition (1.3) with

= [,pP(2Dul(dz).
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Returning to the case of a general radially symmetric operator given by
(1.1), in view of Theorem 1.5 and the results of [11] cited above, it is natural to
pose the following questions:

Q1. If (EP), is stable, then what is the unique admissible solution z*?
Q2. If (EP),, is unstable, then how can one characterize the class of admissible
solutions for (EP),? ' :

To answer Q1, we start by adjusting the variational problem (Problem 1.6)
to the case of L given by (1.1). Set H(r) = exp[2 ["b(s) ds] and define the
functional J by

(1.7) J(u) = [ H(M)[(w,)? + V(r)IVul?] drdo,
D
where V, denotes the gradient in the angular variables.

ProBLEM 1.8. Solve
inf J(u),
u € Wi*(D).

ReEmARK. Note that unlike in Problem 1.6, we do not restrict our attention
to the case of bounded u«.

THEOREM 1.9. There exists a unique solution u® to Problem 1.8 for each
¢ € C(6D) N WX D). Moreover,

(a) u® is an admissible solution.
(b) u, satisfies (1.3) for each ¢ € C*(dD) and some u , depending on ¢ iff

me(p)(exp[prb(z) dz]) dp = .

Theorem 1.9 identifies one specific admissible solution u% to (EP)? for each
function ¢ € C(0D) N WX(D) via a variational problem. Utilizing a result in
[12], we have another way to identify a specific admissible solution z# to (EP),
for all ¢ € C(D). Namely, let ~ and u” be as defined above with respect to
the operator L given by (1.1) rather than 1/2A. Then, by results of [12],

def )
ph o(dz) =w — lim uh o(dz) exists V 6 € ST
p—)w .

LEMMA 1.10. There exists exactly one admissible solution uz? to (EP),,
which satisfies (1.3). For this solution,

(1.11) uy=cp(¢) = [¢(z)fsd_13,(e),bg,o(dz)Z(do),
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where
B(-) = lim h(p, -)/f _h(p,0)I(d6)
p—® Sd-1
in C(S?™1) and 1 is a normalized Lebesgue measure on S@~1.

As we will see below, u% and @? are in a sense critical cases of admissible
solutions—they are respectively the least and the most ergodized ones. Note,
by the way, that u% = 7% V ¢ € C(6D) n WD) iff (EP),, is stable.

The best we can do in answering Q2 is to give a complete description of the
set of all radially admissible solutions, that is, solutions which correspond to
radially symmetric perturbations of the following form:

1.12 L o +b i V(p)A
( . )n n_Eapz n(p)£+T s

where b, — b uniformly on the compacts of R. Assume that B(0;8) c D¢. To
state the results, we have to switch to the natural scale given by the following
change of radial variable:

r=T(p) =1+ f:exp{—Z[:b(s)ds} dz,

(1.13) R = T () < by transience,

y(r) = V(T‘l(r))exp{4j:1‘;’lb(s) ds}.

Then T maps D into the annulus (1, R) X S¢~ . Let I denote the external
boundary of this annulus: I' = {R} x S¢~1,

THEOREM 1.14. Let u? be a radially admissible solution to (EP), and set
v® to be its counterpart under the transformation T, v®eT = u®. Then v®
satisfies the following boundary condition on T':

a

) = ¢ —p?

P (R,0) =v.p. j:gd_l[v (R,¢) —v (R,a)]k(o-,f)l(dg),
with some kernel k which depends only on the geodesic distance d(o, £).

The rest of the paper is organized as follows: Everywhere except for Section
6 we assume that D¢ = B(0; §), the ball of radius & centered at 0. Section 2 is
devoted to the study of the radial stability of (EP),, that is, stability under
radially symmetric perturbations (1.12),. In Section 3 we make use of the
transformation of drift formula and John-Nirenberg-type estimates to show
that in fact (EP),, is stable if and only if it is radially stable, which gives us the
claim of Theorem 1.5. The variational connection which becomes apparent in
the statement of Theorem 1.9 is discussed in Section 4. In Section 5 we
investigate the properties of admissible solutions and prove Theorem 1.14.
Section 6 is devoted to the generalization of the above results to the case of
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general smooth exterior domains. Finally, in Section 7 we show how one can
extend the results to the case of general radially symmetric diffusions on the
plane.

2. Stability under radially symmetric perturbations. In this section
we assume that D is the exterior of a ball, that is, D¢ = B(0:8), and consider
only perturbations {L,}, given by (1.12),. First, we rewrite everything in the
natural scale given by (1.13). In the new coordinates,

1 92 r -
=c73 * ﬂ—)As
2 0r 2
In the same fashion we transform L, according to the scale

r=T/(p) =1+ j:exp{—2j:b(s) ds} dz,

(2.1), T,(») = » by recurrence,

Y(r) = V(Tn*(r))exp{“LT"_“r)bn(s) dS},

and obtain

a (r)
+ y,——A
yn 2 S

L1
" 9 9r2

respectively.
Recall that T(D) = (1, R) X S¢~! and T(dD) = {||x|| = 1}. We preserve the
notation D and 4D for T(D) and T(dD) respectively; it will cause no confu-
sion as long as we remember what is the current scale. Then instead of
considering admissible solutions to (EP),, one can investigate the class of
bounded solutions to the equation in the natural scale,
2
Lo 0 s)u¢>=o in D,
(EP).

U¢|aD = d)’
which can be obtained as a limit of solutions to the recurrent problems

¢=(1 @ w(r)

[ — ¢ — 3 d-1
26r2+ 2 As)un 0 in(1,o) XS4,

(EP),
u?ﬂaD = d’,

where {L,} is a perturbation of L, that is, y, — y uniformly on the compacts
of [1, R). It will be convenient to relax slightly the definition of a radially
symmetric perturbation {L,} (or equivalently {y,}) by demanding only that

(2.2) v, =7 in Li([1, R)),

and that there are mutual bounds on the ellipticity constant; that is, one can
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find two continuous curves A, A: [1, R) — R such that for any n € N,

(2.3) 0 <A(r) <vy,(r)<A(r).

Let us say that u? is a radially admissible solution to (EP), if u?® =
lim, . u?, where u? solves (EP), with {L,} being some ¢-admissible radially
symmetric perturbation. Similarly we will say that (EP), is radially stable if
there is a unique radially admissible solution for each ¢ € C(3D). -

Let B denote the one-dimensional Wiener process and 3 the Brownian
motion on S¢ ! Then if X and X" are diffusions generated by the operators
L and L, respectively (in the natural scale), the following skew-product
representations are valid:

X, = [Bt,@), = 2([03(33) ds)]
and
Xy = [B,,@,ﬂ - 2([0':7"(33) ds)].

Let 7, be the first hitting time of {1} by B,. Then u%, the solution of (2.2),,
may be represented as

uﬁ(", 0) = Er,9¢(@:1)~

LEmMA 2.4. Set f(r) = |lulr,: )||2L2, g.(r) =IIVu (r, )II2L2 and g =
92w (r, - N3, where |- ||z, denotes the norm in Ly(S?™Y), the subscript s
indicates the derivatives in the angular variables and a is any multi-index.
Then f,, g, and g are convex nonincreasing functions on (1,%).

Proor. u%(B,,0;) is a local martingale. Then for a point r = Aq +
(1-Mp,0<A<1,and 7?7, the first exit time for the interval [q, p], one
obtains

(2.5) lus(r,0)|" < E, o wl( B ar, O%s) |-

Integration of (2.5) over S¢~! gives f(r) <E, f(B,q,r) =1 - Nf(p)+
A f.(q), which is the desired convexity. Convexity of g7 follows by the same
argument and the observation that d*u? solves L, d*u? = 0 inside (1, ) X
§d-1,

To prove that f,, g, and g2 are nonincreasing, it suffices therefore to show
that they are bounded for r large enough. There is nothing to prove for f,
since by 2the submartingale property of {#4(B,, ®)}?, one readily obtains that
f n < ”¢”L .

Let us 2prove the boundedness of g2 Suppose first that ¢ is in C*(S¢™1)
and let 7, be the first exit time from [1, N]. Then for r € (1, N),

ul(r,0) = E, o[$(0~); 7y = 1]

(2.6)
#E [N, 08)s e = N] = utthy + uth
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Now by uniqueness,
oudy(r,0) = E, o[056(07,); Ty = 1].

On the other hand, from Schauder interior estimates [6] and the fact that
u,(r,-) is C*(S%Y) for each r> 1, it follows that for r fixed and N

sufficiently large,
(2.7) losut R (r, )l < Callut o = O(1/N),
with || - [|sup denoting the norm in C(S @-1) By letting N tend to o, we finally
obtain from (2.6) and (2.7) that
(2.8) aulb(r,0) =E, ,0:4(0).

For general ¢ € C(S¢~1), pick some 7 > 1 and observe that with 7 instead
of 1, (2.8) implies that g2(#) > g2(r) for any r > #. Moreover, by condition

(2.3) the family {g2(-)} is uniformly bounded on any of the intervals [#, ©) with
F>1.0

CONSEQUENC@ 2.9. Let u® be a radially admissible solution to (2.2)*. Set
f(r) = lu?(r, N1, g(r) = 1Vu?(r, i, and g(r) = 02u(r, - |1, Then f,
g and g* are convex nonincreasing functions on (1, R).

PrOOF. By definition, u? = lim, ., u® for some sequence {u‘fl} of solutions
to (EP),. Since by Lemma 2.4 the sequence {z%(r, - )} is bounded in W*2(S?~1)
for r € (1, R) and any multi-index «, the convergence holds in fact in C* with
respect to the angular variables; hence the conclusion. O

We are now in a position to prove the main result of the section.

LemMmA 2.10. (EP), is radially stable iff y & L1, R).

REMARK. Note that y & L,(1, R) is exactly the integral condition of Theo-
rem 1.5 written in the natural scale.

To prove the lemma above, we treat separately the cases y & L,(1, R) and
Y € Ll(]', R )

LEmMA 2.11.  Assume that y & L1, R). Then there is a unique admissible
solution u® for each ¢ € C(dD). Moreover, u® satisfies

def —
(2.12) ut(R,-) = limu?(r,) = [ ¢(0)l(do) = .
roR Sd~1 N
Proor. It turns out that for any radially admissible u?,
(2.13) lim g(r) = 0.

Now (2.13) and the Poincaré inequality imply that lim,_ , u®(r,-) = ¢ in
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L,(S971). Therefore, it remains to verify (2.13). To this end, multiply L,u% = 0
by u? and integrate over S¢~! by parts to obtain

1 d? d
(2.14) v, (r)8.(r) = 53312(") —H;u‘fl(r, 9)

21 q2

LZS _Z—Eﬁfn(r)‘

Now pick a point 1 < r < R and integrate (2.14) twice to obtain
R R . 9
[7dz ["r(s)8u(s) ds < (1) = [(R) + [1(R) < fu(r) <IIBIIZ,.
On the other hand, for any p <r,

[ “dz ["y.(s)en(s) ds = [ 2= p)va(2)8n(2) ds

>(r-p)f yn(2)8(2) dz.

Therefore,

/rRyn(z)gn(z) dz <|ll$ll,/(r — p).

Since by (2.2), v, — v in L}, and by assumption, y & L', we conclude that
lim lim g,(r) =0,

r>R n—oo
which is equivalent to (2.13).

To prove the “only if” part of Lemma 2.10, we have to show that if y
belongs to L,(1, R), then there are two different admissible solutions to (EP),
for some & € C(dD).

To this end define 9 as

(2.15)  ¥(o) = max{(1 — d(o,¢));0} — max{(1 —d(o,{));0},
with d(¢,¢) = 7 and let {y,},{3,} be two different perturbations which satisfy

(C1) ly, — lelLl(l,w) -0 asn,m—>
and
(C2) 16,0, ry > ® asn — «forany R’ > R

respectively. Let u? and v? denote solutions to (EP), with vy, and §, respec-
tively. We may assume that {y,},{5,} are U-admissible (in fact, they are
admissible) and set u? and v? to be the corresponding admissible solutions.
Then u? # v°. Indeed set f(t) = [ga-19(¢, & ) (0)l(d o), where q(-, -, ) is
the heat kernel on S?~!. Then f is a positive decreasing function with
lim, ., f(¢) = 0. Set, further; n, = [§v,(B,)ds and v, = [75,(B,) ds. Then

(2.16) un(r,€) =E.f(m,), vi(r,é) =E f(v,).

The desired inequality follows now from-the following lemma.
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LemMa 2.17. () inf(E, f(n,); r € (1, R), n € N} > 0. In particular,

limi}Ie‘lf u’(r, &) > 0;
(b) lirr}leva(r,g) =0.

Proor. (a) follows from the fact that the mass of the distribution of 7, is

not swept out to «. To make this precise, set
wn(r) = Er eXP(_’ﬂn)-

Note that w, satisfies (w,),, = v,(rw,, w,(1) =1 and w, is a positive
nonincreasing function on [1, ). In fact, we have to show that
liminf, _, w,(R) > 0. To this end pick some ¢ > R and set
J# exp{—(q — 1) [{7a(¢) dt} ds
J{ exp{—(q — 1) [{7,(¢) dt}ds”
Since 1y, is positive, w? is subharmonic. Moreover, wi(1) = 1 and wi(q) = 0.
So w,(r) > wi(r) on[1, ql. But

-R
wi(R) > % exp(—qlly,llzia, )

wi(r) =

By condition (C1), the last expression is bounded away from 0 uniformly in n.
Therefore, {w,(R)} is also bounded away from 0 uniformly in n; hence the
conclusion. To prove part (b) of the lemma, note that lim , ,_ v’(R’,-) = 0 in
C(89~1) will follow from

(2.18) lim Py{v, <N} =0

for any N arbitrary large. Then we have
v?(r,+) = lim {E, [8(0%r); 08 =1]

+E,,.[v,’f(R, @)1'_‘1,,?,); Tl,R' _ R’]}

lim E, [§(®Mhr); % =1],
where 70F is a first exit time from [1, R’]. Therefore, [[v®(r, )l <

P{r"® =1} = (R' — r)/(R’' — 1). Thus it remains to verify (2.18). Let w, be
as in (2.18) but with §,, in place of y,. Then (2.18) is equivalent to

(2.19) lim w,(R') =0 forany R' > R.
n—o
But -

w,(r) =w,(1) + flwnvn dz = —[oorwnvn dz < —w,( R')[I;vn dz,
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and therefore,
w,(r)y<(r—-1) - wn(R’)frfR'vn dz < (r - 1)[1 - wn(R’)levn dz],
172z r

w,(1) = 1 and w, is positive. Thus, since w, has to be nonnegative, (2.19)
follows from (C2) and this concludes the proof of the lemma. O

3. Perturbations of the general form. If {L,=L + (b,,V)} is an
admissible perturbation, then its properties are characterized by the behavior
of {b,} near «. We state this intuitively obvious fact as follows.

LEmMa 3.1. Assume that {L,} is an admissible perturbation. Let x be a
smooth cutoff function, such that x =0 on the ball B(0;p) and y =1 on
B°(0;q) for some 1 <p < q < », Set

M, =L+ x{b,,V) =L, — (1 —x){b,,V).

Then {M.,} is also admissible. Moreover, {M,} and {L,} are equivalent.

Proor. Suppose that W is a d-dimensional Wiener process on a probabil-
ity space (Q, #, &, P,) and let X,,,Y, denote the diffusions on (Q, &, %, P,)
generated by L, and M, respectively. Let o denote the diffusion matrix of L
in Euclidean coordinates and define a, = (1 — x)o~'b,. Then supp(a,) C
B(0; q). Set

A (t) =
(8 = [
If u? and v? are the solutions to (EP), for L, and M, respectively, then by
the transformation of drift formula,

vu(x) = E.d(X,(71)) exp{A,(71)}.

tATy

1 tAT] o
a,(X,(s))dW(s) — 5];) a’?(X,(s))ds.

Therefore,
1/2

|v;f(x) - u?z(x)| < llpllsup( E, exp{24,(7,)} — 177,

where || - [|lsup denotes the norm in C(dD). Now for any two stopping times T
and S, T > S,

(3.2) E|JA (T A7) —A,(SAT)|<cPf{S <71},

where
T 1/2 1 T
_ 1 9 - (2
c= mxax(Ex/0 a?(X,(s)) ds) + 3 mfx(Exj;) an(Xn(s))ds).

By virtue of the John-Nirenberg inequalities ([2] and [5]), (3.2) implies that
E, exp(24,(7))} < 1/(1 - de),

with d being a universal constant. On the other hand, it is easy to see that
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¢ = O(max la,|). Patching all this together, we obtain
lug(x) — uh(2)] < ldllowp® (max|x(2)b,(2)]),

which gives us the claim of the lemma. O

We turn now to the proof of our stability result, Theorem 1.5. In view of
Lemma 2.10, the only thing we need to verify is that the radial stability of
(EP), implies its stability. To do so, we proceed by working in the natural scale
and adopt the convention to denote D = T(D) = (1, R) X S¢~1. The first step
is to rewrite an arbitrary perturbation {M,} as

1 9% y,(r)
. M, =-— =
(3 3)n n 29 r2 2
where B, — 0 uniformly on the compact sets of D U dD and {y,} satisfies (2.2)
and (2.3). As above, let X, denote the diffusion generated by L, and set o, to
be the square root of the diffusion matrix of L, in Euclidean coordinates.
Define «,(x) = o, '(x)B,(x). Next, as in the proof of Lemma 3.1, set

Ay +(Bn(x),V) = L, +(B,,V),

tAT, 1 tATy
A() = [Tan(X,(5)) dW(s) = 5 [ Tak(X,(5)) ds

and let N,(#) denote the exponential martingale, N, (¢) = exp{A,(#)}. Then, if
u? and v? solve (EP), for L, and M, respectively, we can use the transfor-
mation of drift formula once more to obtain

(34) ve(x) = E,¢(X,(71))N,(71)-

Let E“ denote the expectation with respect to the process conditioned to hit
dD at (1,0), that is, E»’[-]1=E,[- /X, (7)) = (1, 0)]. Then, for each x € D,
the following inequality holds:

(3.5) Iui(x) - U;?(‘”)' =< ||¢||sup" E} 'N,(7q) — lusup‘

Recall that we are going to prove that (EP), is stable. Thus there is no loss of
generality in assuming that {M,} is admissible. In fact, we need to show that
for any x € D,

(3.6) lim |E»°N,(r;) — 1] = 0,
n— o

uniformly in o. Since (3.5) is valid for any perturbation of the form (3.3),, it
suffices to prove the following lemma.

LemmA 3.7. For every x € D and & > 0, it is possible to modify {M,}
modulo the equivalence relation in a such a way that, uniformly in o,

(3.8) lim | EMoN,(7,) — 1] < 8.

Proor. Let k,(x,o) denote the density of the exit distribution of X,
starting at x. Then P is in fact the h-transform of P with h(-) = k,(-, o).
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That is, for any stopping time S <7, and A € &,

1

PI7(4) = s B (XM () xa
Now pick two points p,q: 1 <p < g <R and let T and S denote the exit
times from the intervals [1, g] and [ p, ) respectively. If |x| = p and |y| = ¢ are
close to R, then k,(x,0) =1/w,;, and N,(¢ A S) therefore behaves under
PJ? much like a martingale. On the other hand, by virtue of Lemma 3.1
we may assume that «, = 0 on B(0;¢g) which, of course, implies that
E»°N,(T) = 1. To make things rigorous, define in the standard way two

sequences of stopping times {7} and {S,} by
T,=T,

Sy =T, + 078 if T, <7, and + otherwise,
Tpi1=8,+6,T,

Then
(39) EZN(r2) = T B IN,(T)5m = T
Keeping in mind that
(3.10) i Pro[r, =T, =1,
k=1

we pick the kth term of the series (3.9) and play with it until it fits into (3.10).
To this end set a,(p) = infix|=p P ?{r; = T} and A,(p) = supjxj=p P> {7, =
T}. Note that there exists a constant ¢, such that

(3.11) 1/c- (g —p) <a,(p) <A,(p)=<c-(q—p)

for all p close enough to R. The necessary adjustment of E’[N,(T,);
7, = T, ] rests on the following lemma.

Lemma 3.12. V >0, 3 p;, 1 <ps; <R, such that ¥ p € (ps, R) and
qg=(p+R)/2,

(3.13) sup |E)»°N,(S) — 1] < 8A,(P),

lyl=¢q
provided that n is large enough.

Proor. It is readily seen from the results of the previous section that

lim &, (x,0) = 1/ay,
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uniformly in |x| > R and o € S?~. Moreover, as will become apparent in
Section 5 (see the proof of Lemma 5.12), we also have that uniformly in o,

lim lim a—n(x,o-) =0.
lx| > R n—® r
Thus for any 6 > 0 there exists a p; such that for n sufficiently large,
l/w; —86(R —p)/4 <limk, (x,0) <1l/w;+ (R —p)/4,
uniformly on |x| = p, p € (ps, R). Therefore,

1
|E}°N,(S) — 1] = mExkn(X (S))N(S) -1
< sup k,(x,0)/k,(y,0) —1<86(R—-p)/2.
lxl=p, lyl=q

Since R — p = 2(q — p), by the choice of g and in view of (3.11), this implies
the claim of the lemma. O
To conclude the proof of Lemma 3.7, note first that for |x| = p,
E}o[N,(7); 7 =Ty] = E:'U[Tl > T; Ef(’Ta)Nn(S)(Ea?(’sa)Nn(Tl); T1 = Tk—l)]‘
Therefore, by (3.13),
k- n,o n,o
(1 _5An(p)) IPx’ {71=Tk} SEx’ [Nn(Tl);Tl=Tk]
< (1 + 6An(p))k_1Pxn’a{Tl = Tk}
for sufficiently large n. Thus

o

(1-84,(p)) "Pro{r, = T})

k=1
(3.14) <EM°N,(7,)
= kgl(l + 5An(P))k_1Pxn’0{71 = Tk}-
But
(3.15) Pro(r =T} < (1-a,(p)" 'Ap).

Consequently, (3.14) and (3.15) yield that for any number N € N,
(1-84,(p)"(1-(1-a.(r)")
(3.16) < E*°N,(7,)
<1+ (1+8A,(p) (1 ~-ayp)”,

provided only that n is sufficiently large. Therefore, if we pick p close enough
to .R such that A (p) < 1 and set N =[1/(/86A,)], then

e (1 — e V/B) <EMON, (1)) <1+ e 1/,
Thus (3.8) follows and the proof of Lemma’ 3.7 is complete. O
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4. Variational connection. We continue to restrict ourselves to the case
of D being the exterior of the ball B(0;5). The first step is to restate Problem
1.8 in the natural scale. In the notation of the previous section, set

F(u)= [ 112 + y(r)IV,ul? drdo.
(1, R)x8¢4-1

Then for any ¢ € WD) n C(3D), Problem 1.8 in the natural scale takes the

following form.

ProBLEM 4.1. Solve

inf  F(u),
ueWbh (D)
where we continue to preserve the notation D and dD for the images of those
sets under (3.11), that is, for ¢~ x (1, R) and S¢~! x {1} respectively.

LeEmMA 4.2.  Problem 4. 1 is uniquely solvable for any ¢ € C(D) n W(D).
The appropriate solution u®. possesses the following properties:

(a) u solves (EP); inside D.
(b) u? satisfies the volume-preserving property (2.12).

(© Set X, = [B,,0,], where B, is a Brownian motion on the line, reflected in
R and O, = 3(J¢y(B,). Then

(4.3) ul(x) = E,$(X,).

Proor. Let # € Dom(F) N W,..?. Define F(v) = F(v + @). Then F is a
proper strictly convex lower-semicontinuous coercive functional on the Hilbert
space Wol, y(D) = {ulF(u) < © and ul;p = 0}. Therefore, it possesses a unique
minimizer v,. Thus, u% = & + v, is what we need.

Now condition (a) is just an Euler equation for the minimizer. Likewise, (b)
is a very weak form of the transversality condition. Just choose a smooth
function v,(r), p € (1, R), such that v,(1) = 0 and v,(r) = 1 for r > p. Then

d
- u (r, o) di(o)

d
0= —F(u"?k + tvp) Bl

dt

=%[j:gd_lu*(r,0')dl(a)]

We turn now to the proof of (¢). Note first that if y is continuously extended
to the interval [1, R], the claim is nothing but the usual Neuman condition for
the minimizer. Otherwise, let r, = R from the left and set

yi(r) = {y(r) ifr<r,

, otherwise.

r=p

Define F™(u) = [pl(&,)? + y"(M)IVul?ldrdo and let u%" be the (unique)
minimizer of F” on W.?. Then u%” = E ¢(X"), where X" =[B,, 0 =
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3(Jiy™(B,))]. Using the technique of Section 2, it is not difficult to show that
u,, given by (4.3), is in fact the uniform limit of the sequence {u%:"}. Thus for
any u in WL?,

F(u%) = lim F*(u%) < lim lim F"(u%"™)
< lim F™(z%™) < lim F™(u) = F(u)

and (c) follows. O

ProorF OoF THEOREM 1.9. Assume that y & L,(1, R). Then, for any ¢ €
C(6D) N WD), conditions (a)—(c) of the above lemma uniquely determine the
only radially admissible solution z? to (EP),. Indeed, since F(u%) < =, one
readily obtains that lim, _, pllV,u%(r, - )z, = 0. Proceeding as in the proof of
Lemma 2.11, we conclude that lim, _,  u%(r, - ) = ¢, which means that ué is
radially admissible.

To prove the theorem in the case of y € L1, R}, pick an admissible
perturbation {y,}, which satisfies condition (C1) and the following additional
condition:

(C3) lim ||y, Iz &,= = 0.
n—o
Let @¢ denote the appropriate radially admissible solution to (EP),. We
claim that z¢ satisfies (4.3) and thereby solves Problem 4.1 for ¢ € C(dD).
Indeed, for any x € D, the mapping ¢ — %%(x) defines a continuous linear

functional on the space C(dD) or, equivalently, it defines some probability
measure ,. We want to prove that

A.(d2) = P,(X, € d2) S wi(d2).

By the radial symmetry we can confine ourselves to some distinguished
point (pole) £ € S¢~! and prove that ¥V r € (1, R),

P, (0, € do) = ui(do) = B, (do)

(44) . def _,
= lim p?(do) = lim P, (O €do).

Let X* and A} be the distributions of n* = /g y(B,)ds and 7, = [§v,(B,)ds
respectively, with B and B both starting from r. Then

Wi(do) = [ Xi(dt)a(t & o)l(da)
and
wi(do) = [ N(dt)a(t, €, 0)l(do).

Since by condition (C2), E,|n, — 1,,| = 0 as m,n — o for any r > 1 fixed,
the limit 7 = limn, exists in L,. Therefore, the sequence {A7} converges
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weak1y to some limiting measure A, and
B.(do) = [ X(dt)g(t & 0)i(do).
R+

Thus it remains to check that A, = A*. To this end, for any g € R, set
w;‘(r) = E, exp{—qn*}, wg(r) = E, exp{—¢mn,} and wq(r) = E, exp{—qmn}.
Note that w, = lim w;. On the other hand, w} solves the equation

2

(4.5) Zzw(r) = ay(r)w(r),
with boundary conditions

d
(4.6) w(l) =1 and gw(R) = 0.

Similarly, w; is the positive nonincreasing solution to the equation

2

(4.5),, Zzw(r) = ay(r)w(r),
with the boundary condition w(1) = 1. But

(4.7) < qly,lie, -

d -
gw;(R)’ Q/; Y(2)wy(2) dz

Now by the standard compactness argument, the local solvability of (4.5) and
the strong Markov property, it follows that w, satisfies (4.5), w,(1) = 1 and

. d
awq(r) = ,}l_rﬁo awq(R).

Thus (4.7) and condition (C3) imply that w, satisfies boundary conditions (4.6)
and therefore by uniqueness w,(r) = wy(r)V g > 0, r € (1, R). Consequently,
A, = A% on (1, R) and (4.4) follows. O

5. Properties of radially admissible solutions. Our main objective in
this section is to prove Theorem 1.14 which asserts that any radially admissi-
ble solution u? satisfies the following condition on the boundary T = {R} x
S9-1 (in the natural scale):

du® s s
(51) | =vp [S[u (R, &) — u®(R,0)|k(c,£)l(dE).
Moreover, we will show how the kernel %2 above is related to a particular
perturbation {y,} leading to u®. First of all, certain regularity properties of

radially admissible solutions are reflected in the following Fatou-type lemma
which will also be useful later.on.

LEMMA 5.2. Assume that u® is radially admissible. Then lim,_, p u®(p, - )
exists in C*(S%~1), -
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Proor. Note that if y & L,[1, R), the claim of the lemma follows from
Lemma 2.11. Thus it suffices to consider the remaining case y € L'[1, R).
Then by virtue of Consequence 2.9, it is enough to establish the convergence
only in L,(S%1). So let 1 <r, <R. Then the set {u®(r, - )Ir € (ry, R)} is
precompact in L,(S?~1) by Consequence 2.9. Therefore, it is always possible
to find a sequence of points r, — k, such that {u?(r,, - )} converges. Let {r,} be
such a subsequence and denote by 7, the exit time of B, from the interval
A, =1[r,,r,,1]. Then for r € A,

lu(r, <) = ub(re, )z, = F(r) + F(r) - 2(u(ry, ), Erwu(ﬁ(Brk’@rk»Lz,
where ( -, - )1, denotes the scalar product in L,(S?~!). By Consequence 2.9,
sup(| Vet (r, ) o < 7 < B} <.
Consequently,
<u¢(rk’ ) Er”u¢(BTk’ ®7'k)>L2 = f(rk) + O(HEr, 'd(' s ®1-k)“)

+O(f(r) = Ff(rre1),
where d(-, - ) denotes the Riemann distance on the sphere S?~1. The third
term on the right-hand side of (5.3) is 0(1), both by the choice of the sequence
{r,} and by Consequence 2.9. To estimate the second term, set ¢(¢) =
E, ,d(c,0,) (¢, of course, does not depend on o); then ¢ is a bounded
continuous function on [0, ) and ¢(0) = 0. Let A,(d¢) be the distribution of
[¢#y(B,) ds. In this notation,

E, d(-,0,) = f[R+¢(t))tk(dt).

We will prove that the second term on the right-hand side of (5.3) is o(1) by
showing that

(54) w —lim A, = §,.

(5.3)

To prove this assertion, set
Tk
wy(r) = E,[ y(B,) ds.
0

It is not hard to see that w, satisfies w} = —vy(r) and w,(r,) = w,(r, ;) = 0.
So w,, can be explicitly calculated and, involving the initial assumption y €
LY1, R), we obtain

klim max{w,(r)lr € A,} =0,

and (5.4) follows. Therefore, ||u®(r, - ) — u®(r,, - )II2L2 = 0(1) and the lemma is
completely proved. O

REMARK Note that the above result combined with Lemma 4.2 suggests
that as far as the radially admissible solutions are concerned, the Kuramochi
compactification of D is the proper one to consider.
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Now let {y,} be a radially admissible perturbation, let {z?} be the corre-
sponding sequence of solutions to (EPY, and let u® denote the limiting
admissible solution

u?(x) = limu?, xeD.
n—oo
Then all the information about u? is contained in the sequence {u? D}, where
u®? is the restriction of u? to D. Thus, to derive the desired boundary
condition for u?, we should consider not the process X, itself but rather its
trace X2 on D. Set i ,(¢) = [{1,(X,(s)) ds, where | p stands for the indicator of
the set D, and let I,(¢) denote the right-continuous inverse of i,

L(t) = influ:i,(v) > ¢t}.

Then XP(¢) = X,(I,(¢)) and (XP, 1.y Pr) is a family of SMP on D. Further-
more,

(5.5) uf(x) = E.d(X2(71)).

Since u? belongs to the domain of the generator of XD we are in fact looking
for the boundary conditions X satisfies on T'. This problem was solved in [10]
in a much more general situation. Our task, however, is to exploit radial
symmetry to obtain more precise information which enables us to verify
Theorem 1.14. To this end set M to be a strictly elliptic operator on [1, %) X
S9-1 given by

M =02/or% + a(r)A,,

with @ € L1, ). Let Y(¢) denote the diffusion generated by M on [1, ») X
S~ (with absorption on the unit sphere) and set Y2 to be its trace on D.
Furthermore, let A(M, D) denote the domain of the generator of Y?. Let Bs®
denote a squared Bessel process of order 0 with initial condition a, that is,

Bs*(x) =a+ 2 “VBs“(y) dB(y),

with B being a one-dimensional Brownian motion. Let T be a 1/ 2-exponential
random variable (T € exp(1/2)) independent of B. Set Bs = Bs” and define

Y = [ma(x + R) Bs(x) dx.

Then x is a positive, infinitely divisible random variable; let u denote its Lévy
measure.

LEMMA 5.6.  Assume that v € A(M, D) N C¥ D) and set g = vly. Then
v

ar

= /R (Qug — &) /tu(dy),

r

where Q, is the transition operator of BM on S¢-1,
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Proor. If X(¢) =[B(#),0(2)] is the skew-product representation of X,
then X, = [B(I(2)),0(I(?))], where, as before, I is the right-continuous in-
verse of the time spent by X in D. Note that B(I(#)) is just a one-dimensional
BM with reflection at R and absorption at 1. Since v € C%(D), an easy
calculation (cf. [7]) reveals that

dv

(5.7) | = Im 5 (Br, £(0(r)) - 8),

where 7; = inf{t: B(¢) = R — 8}. Recall now that 0(¢) = X([¢a(B(s)ds). Set
Xs = [§8a(B(s))ds. Let us rewrite (5.7) as follows:

Jdu

ar

1

lim [ [(Qug —8)/t] - (t/5P{xs = dt})

r §—-0
lim [ (Qug — &) /tus(dt).

where us(dt) = t/8P{x; € dt}. We want to show that {us} converges to u in a
way that enables us to pass to the limit in (5.8). We can obviously ignore the
values of a to the left of R. Then by the occupation density formula and the
Ray-Knight theorem ([13] and [14]), the following holds:

(5.8)

(5.9) %2 [ a(R +x)BsT5(x) d,
R+

where T; € exp(1/26) and is independent of the BM which underlies the
corresponding squared Bessel process. By the scaling properties of Bessel
processes [13], x is distributed as a sum of 1/§ independent copies of x;.
Therefore, if f;, f are the Laplace transforms of u; and u respectively, then

f(/\) = f e_“IL (dt) = lEX e Mo = _li(Ee—/\xa)
’ R 5 5 dX
— _li —Ax)‘s — ___E_’}/_erf__
é dA (Ee_AX)l—B'
As a consequence we obtain
d
i = —— —AX) = —At —
(5.10) ;I_I)I})fs()‘) =TI In( Ee™X) /[;“e u(dt) = f(A).

Therefore, {u;} converges weakly to u on every finite interval [0, N). On the
other hand, note that

® 1
f 1/tus(dt) = EP{Xa >N}
N

We can make use of (5.9) and some standard arguments to derive the following
easy estimate:

1
(5.11) gP{Xa > N} < (lallLyr, =) /N + 1/(R' — R)
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for each R’ > R. Consequently,
lim fN 1/tuy(dt) = 0,

uniformly in 8. To conclude the proof of the lemma, just note that by Ité’s
formula, (@, — g)/t is bounded on [0, ») and goes to 0 as ¢ tends to . O

We are ready now to give a description of the class of radially admissible
solutions. As usual, let {y,} be an admissible perturbation, {u%} the correspond-
ing sequence of solutions to (EP), and set u®(x) = lim, _, u?, x € D.

LEMMA 5.12. There exists a o-finite measure u on R+ , such that

du?
(5.13) =

ar |Ir

= [R (@i —g)/tu(dr),

where g = u®r.

ProoF. As in the proof of Lemma 2.17, we shall distinguish between two
cases:

(i) VR >R, limsuplly,llou, )=
and
(ii) IR >R, lim suplly, |l L i1, By < .
n—o
First assume (i). Then the claim is that u? satisfies (5.13) with u = 0; that is,
du® dut(p, -
(5.14) M) gim tim 2222
dr Ir  p-Rn-ow ar
Indeed,
au'ﬁ(p, '

(5.15) ) _ fR+(Q,gp,,, — 8p,n)/thp n(dt),

ar

where g, , = u®(p, - ) and K, » is the Lévy measure of the random variable
Xp,ns

Xon = [ (x + P)Bs(x) dx.

The absolute value of the expression on the right-hand side of (5.15) is
bounded from above by

(5.16) 1, ([0,1])11Ag, ,llsp + 25uplQ.g,., — ansup/l 1/tu,, ,(dt).
t>1

We may assume without loss of generality that ¢ = 0. Note that in the
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notation of Lemma 2.17, g, , can be represented as
(517)  &,.u(") = E,, $(0,() = [ Pn, € d)Qé = E,Q,.

On the other hand, it follows by the very nature of the measure u, , that for
every A > 0, .

(518)  max{u, o([01]), [ 1/t (1)} < ¢(3) + In B~
1

where ¢ = ¢()) is a constant. But [|Q,¢llsy, < ce™ ", where A, is the smallest
positive eigenvalue of 1/2A on S¢~! (recall that we have assumed ¢ to be 0).

Therefore, since x,, , < 1,,

(5.19) T 1im |E,@, $llup(e() + In Bje o) = 0

for any A < A,. Since all the reasoning above remains true if we consider A ¢
instead of ¢, estimates (5.16)-(5.19) imply (5.14) and this gives us the proof of

the lemma in case (i).
Now assume (ii). Then there exists a number & > 0 such that for any n € N

and p <R,
(5.20) , P{Xp,n <1} >s.

Therefore, the set {Ee **»»; n € N, p < R} is bounded away from 0. Conse-
quently, we obtain that {u, ,} is o-finite uniformly in p and n. Similarly,

lim jN 1/tu, .(dt) =0,

uniformly in » € N and p < R. Thus {, ,} is a tight family of measures in
the sense of convergence which was implicitly introduced in the course of
proving Lemma 5.6. As a consequence, we can choose a cluster point u of
{u,, ) and a subsequence {p,,, n,}, such that the equality

li li F(t) /t dt) = 3(t) /t dt
Jim lim [ 9(E) /tuy,, 0 (dt) = [ 0(8)/thy o(d)
holds for any continuous ¢ for which 9(¢) and 9(¢)/¢t are bounded on R+ .
The result follows if we pick 9(¢) = Q,u?*(R,-) — u?(R, - ) and use Conse-
quence 2.9 and Lemma 5.1 to justify the successive approximations of u*(p, - )
by u%(p, ) and u®(R, - ) by u®*(p, ). O

Lemma 5.12 almost readily implies the claim of Theorem 1.14. Note first

that if assumption (C2) holds true, we may simply pick 2 = 0. Otherwise, the
above lemma asserts that any radially admissible solution u? satisfies

¢
(5.21) ‘Z,i’ = [ 1/m@n) [, a(t,0,6)(u(R,€) — u¥(R,0))i(de).
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In this case the claim of the theorem holds with

k(o,£) = fR Ja(t,o,€) /tu(dt).

Indeed, changing the order of the integration in the integral on the right-hand
side of (5.21), we obtain '

du? 4 4 4

| = w0 8ut +vp. jsd_lk(a,g)(u (R, &) — u®(R,a))l(d¢).

Finally, the diffusion term can be omitted, as follows from the following
proposition.

ProposITION 5.22. Let u be as in the statement of Lemma 5.12. Then u
has no atom at 0.

Proor. Note that under assumption (ii) of Lemma 5.12, for each ¢ > 0 the
family {P(x,, , > )} is bounded away from 0 by & = 8(¢) > 0. In particular, it
follows that

In Ee **».» > In §(e) — €A.
Therefore, for all n € N, p < R, A > 0 and ¢ > 0, the following holds true:

fol(e—M — 1) /tu, (dt) = In 8(¢) — eA.

Consequently, no cluster point of the family {w, ,,} can have an atom at 0. This
completes the proof of Theorem 1.14. OO

6. General smooth exterior domains. Let D be an exterior domain
with C%® boundary and compact complement D°. We assume that D¢ con-
tains an open neighborhood of the origin. Fix two numbers 8, A > 0; B(0;3) C
D¢ c B(0;A). Set B, = (8,0) Xx S9! and B, = (A,») X S¢°L,

Proor oF THEOREM 1.14. Suppose that u? is a radially admissible solution
of (EP);, in D. Set ¢(2) = u®(2) for |z| = A. Then it is easy to see that u?|g, is
a radially admissible solution to

Lu =0 in B,,

u'aB2 =¢.

Thus the proof of Section 5 applies and hence the result. O

Proor oF LEMMA 1.10. Assume that u? is admissible and satisfies (1.3)
with some number «,. Then it is easy to see that

j;;dilud’(r,a)l(da) =u,

for each r > A. On the other hand, using the notation of Section 1, we may
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represent u? as
(6.1) ul(x) = h(x) [ d(2)h(dz) + (1= h(x))u,.

Integrating (6.1) over S¢~! for p = |x| > A, we therefore obtain

Ug = fsd_lh(p,0)l(d0)faD¢(z);L’;,;(dz) + (1 - /Sd_lh(p’e)l(de))%'

Thus it remains to prove that
lim h(p, ) /[, hp,0)1(d0)

exists, and Lemma 1.10 is established. To this end, let us switch to the natural
scale (1.13) and investigate

limg(r,) [ [, g 0)1(a0),

where g(r, - ) = h(T~X(r), - ). Since g satisfies

14  vy(p)
(5575 + —2—As)g =0

and g(R, -) = 0, it follows that

fsd_lg(r,e)l(dé)) =1/¢(R~r)
for some constant ¢ > 0. On the other hand, set p = T(A) and let 7 ¥ denote
the first exit time from (p, R) X S?~!. Then for r € (p, R),
g(r,") = P{B(7"%) = p)E, [h(p,0("F))/B(7"F) = p]
(R-r)
“(R-p)

Consequently, we obtain
g(r, )/f . &(r,0)l(do) =cg(r,")/(R~r)
S

=c(R - p)E, [h(p,0(77F))/B(s7F) = p].

But this last quantity converges to some B € C( Sd_l) as r—> R; (1.11)
follows. To complete the proof of Lemma 1.10, pick a ¢-admissible perturba-
tion which satisfies (C2) and note that by Lemma 2.17, u?|p, satisfies (1.3). O

E, [n(p,O(sF))/B(r>F) =p].

Proor oF THEOREM 1.5. If [*V(pXexp[2/#b(z)dz]) dp = », then one can
apply Theorem 1.5 for the case of radially symmetric domains to check that
u?| B, satisfies (1.3) for each admissible solution ©®. Hence by Lemma 1.10,
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there is exactly one admissible solution for each ¢ € C(dD). Therefore, (EP),
is indeed stable.

To prove the “only if”’ part of the theorem, let us return to the natural scale
and assume that y € L,(1, R). We then construct a boundary function ¢ and a
¢-admissible perturbation {L,} in such a fashion that ©#* does not satisfy (1.3).
By virtue of Lemma 1.10, this means that there are two different admissible
solutions; therefore, (EP) cannot be stable.

Recall now that B(0;1) c D¢ [in the natural scale (3.11)] and define v on
dB(0;1) as in (2.15). Pick some radially admissible perturbation {y,} and
denote by v’ the corresponding admissible solution in T'(B;). Note that v’
does not satisfy (1.3). So u? = v’|p also does not satisfy (1.3). But u?® is
admissible with ¢ = v”|;p and the claim follows. O

Proor oF THEOREM 1.9. Note that under the transformation (1.13) all the
conclusions of Lemma 3.2 still hold true. In particular, the (unique) solution to
Problem 1.8 is still given by

ud:k(r’ 0) = Er,ed)(BAr’(:)r),

where 7 is the first exit time from T'(D). Pick a radially admissible perturba-
tion {y,}, which satisfies conditions (C1) and (C3). Let u* denote the corre-
sponding admissible solution. We claim that u? = u% . Indeed, pick p,q €
(T(A), R); p < q. Furthermore, let 7, denote the first exit time from 7'(D) N
B(0; g) and let 7, denote the first hitting time of B(0; p). Then

(6.2) u*(x) = E,u*(B, 6, )

for |x| = q. On the other hand, for |x| = p,

(63) u'(x) =E[u*(X,);I1X,| - q| + E[(X,); X, = T(D)|.

But in view of the strong Markov property, (6.2) and (6.3) are equivalent to
u¢(r’ 0) = Er,ﬂd)(‘BAT’ (:)7)7

and the result follows. O

7. Radially symmetric diffusions in the plane. The results of the
previous sections can be extended readily to the case of the general elliptic
self-adjoint radially symmetric operators in the plane. Let L be a generator of
a transient diffusion, given by

L = V(A(p)V) + A(p) VgV,
where V = (3/dp,3/3¢)T, ¢ = q(p) and A is 2 X 2 matrix:
a(p) b(p)
b(p) c(p))
Let D be the exterior of the unit ball. We are going to find a factorization of L

A(p) = (



PERTURBATIONS OF DIFFUSIONS 1149

and D which fits the natural scale setting of Section 2. This amounts to the
proper choice of new radial and angular variables, which we denote by r and ¢
respectively. We will skip a rather obvious geometrical interpretation of this
choice and set

r(p) =1+ [ a(z)dz, (=) =R <=,
1

€p, ) = ¢ — flpb(Z)/a(z) dz.

Then an easy computation reveals that in the new coordinates, L takes the
form

L =09%/0r% + 2 det A(p)A, L

and D is mapped one to one onto the annulus (1, R) X S¢~!. The following
lemma is a direct consequence of the results of the previous sections and a
characterization of the Martin boundary at « given in [12]:

LEMMA 7.1. Let L be as above. Then:

(1) The following three statements are equivalent:
(a) The exterior Dirichlet problem is stable in the sense of Section 1.
(b) The Kuramochi boundary at « for L is a singleton.

© [ (e"®/a(p)) det A(p) dp = .

(ii) The Martin boundary at « for L is a singleton (S!) iff
[ e a(p)(R — r(p))’ [ ¢?® det A(2) /(a(2))(R - r(2)))* dzdp
1 p
= o (< ).

REMARK. Note that claim (ii) of the above lemma partially complements
the result in [3] which asserts that the Martin boundary at « for radially
symmetric diffusions in the plane is either a singleton or S.
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