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THE INFINITE SECRETARY PROBLEM WITH RECALL

By Amy L. RocHA
San Jose State University

The infinite secretary problem, in which an infinite number of rankable -
items arrive at times which are i.i.d., uniform on (0, 1), is modified to allow
for a fixed period of recall of length @, 0 < @ < 1. The goal is to find the
maximum probability of best choice, v = v(a), as well as an optimal stop-
ping time 7* = 7*(a).

A differential-delay equation is derived, the solution of which yields v(a)
and 7*(a), the latter given in terms of a constant #* [= #*(a)]. For
@ > 1/2, the complete solution to the problem is obtained. For 0 < & < 1/2,
v(a) cannot be put in closed form, so upper and lower bounds for v(«) and
t*(a) are obtained and are investigated for @ near 0 and near 1,2, where
the solutions are known. We also find asymptotic expansions of v(«) and
t*(a) about « = 0 and a = 1/2.

Finally, the solution to the finite, n-item length-m recall problem
introduced by Smith and Deely is shown to converge to the solution of the
infinite problem when m/n — a.

0. Introduction. We shall formulate and solve a modification of the
standard finite secretary problem. The standard problem is the following: A
finite and known number, n, of rankable items arrive one by one in random
order, all n! permutations being equally likely. At any time the observer knows
only the relative ranks of the items which have arrived thus far. As an item
arrives, the observer may reject it and go on to examine the next arrival, or he
may select it, in which case the process stops. If the last item is presented, it
must be accepted. Once an item is rejected, the observer is not allowed to recall
it at a later stage. The goal of the observer is to find a strategy under which
the best item (the one of smallest rank) is selected with maximum probability.

Our modification is to allow recall of certain previous arrivals and to let the
number n of arrivals be infinite. These modifications were introduced by
Smith and Deely (1975) and by Gianini and Samuels (1976), respectively. By
combining them we obtain a simpler method for finding directly the limit of
Smith and Deely’s result as n becomes infinite. We also evaluate this limit
from their result and verify that it agrees with the result which we obtain
directly.

For m fixed, Smith and Deely allowed recall (i.e., selection) of any one of the
m — 1 previous arrivals in addition to the current arrival. Thus, at any stage
k, the observer may select any one of the items which have arrived thus far if
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1 < k < m, and he may select any one of the m items which arrived at times
Jok—m+1<j<k, for m+ 1<k <n. As in the standard problem, the
goal is to maximize the probability of selecting the best item. We shall denote
this maximum probability by v = v = p(™»™),

They showed that the optimal rule is: Stop at the first time from r* onward
when the best item so far is about to be lost. Here r* is a fixed constant which
depends on n and m. They derived recursion equations, the solution of which
determines r* and v. From these equations they obtained asymptotic results
for v and r* as n and m tend to infinity with m/n —» a, 1/2 < @ < 1. Their
result for v is

(0.1) vo>2—-a+hna.

For the case 0 < @ < 1/2, they merely state that Mucci’s technique [Mucci
(1973a, b)] of approximating difference equations by differential equations can
be used to give the asymptotic probabilities and stopping rules but they do not
indicate what these are or what differential equations are indeed obtained.

Gianini and Samuels (1976) formulated an infinite problem which is the
analogue of another variation of the standard finite secretary problem dis-
cussed above. In this version of the finite problem, the goal is to minimize the
expectation of some prescribed positive increasing function, g(+), of the actual
rank of the individual selected. Recall is not allowed. [See, for example, Chow,
Moriguti, Robbins and Samuels (1964).] For the infinite analogue, an infinite
sequence of rankable individuals (with rank 1 the best) arrive at times which
are i.i.d. and uniformly distributed on (0, 1). As they arrive, only their relative
ranks are observable. The goal is to minimize the expectation of ¢(-) without
recall.

Letting f(¢) be the minimal expectation among all stopping rules that are

.greater than ¢, they derived, by a direct analysis of the infinite problem, a
differential equation which must be satisfied by f(:) as well as an optimal
stopping rule for the problem. This differential equation is identical to that
obtained by Mucci by an asymptotic analysis of the difference equation for the
finite problem. In a separate paper, Gianini (1977) shows that the infinite
problem is in fact, in a strong sense, the ‘“limit’’ of a corresponding sequence
of ‘“finite secretary problems.”

We will analyze a modification of the infinite problem of Gianini and
Samuels, which can be considered the infinite analogue of the finite m-recall
problem posed by Smith and Deely. The infinite model we shall use is that
formulated by Gianini and Samuels. Our goal, however, is to find the maxi-
mum probability of selecting the candidate of absolute rank 1 in the presence
of a limited form of recall. Specifically, at any time ¢, we can select any arrival
in the interval [[¢ — a]?, ¢], where 0 < @ < 1 is fixed. We shall pose and solve
this problem independently of the analogous finite problem.

In addition, we shall obtain the limit as n and m become infinite of what is,
in essence, the solution to the difference equations derived by Smith and Deely
for the finite problem. We shall show that it converges uniformly to the
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solution of the differential equations obtained directly for the infinite problem.
That is, the solution of the infinite problem is indeed the limit of the solution
of the finite problem.

1. The infinite model. The best, second best, and so on, of an infinite
sequence of rankable items arrive at times U;, U,, . .., respectively, which are
independent and identically distributed, uniform on (0, 1). This completely
defines the model in the sense that all of the other random variables to be
considered are functions of U = (U, U,, ...).

At any time ¢, 0 < ¢ < 1, we are, in effect, able to observe only the relative
ranks of those items which have arrived thus far. Additionally, for the best
choice problem (which we will consider), we need only keep track of the arrival
time of the current relative best: the so-called “candidate.” Thus, for each
t € (0,1], let Z(¢) denote the arrival time of the best item to arrive in (0, ¢].
Formally, we define

K(t) = min{j: U, <t}
and
Z(t) = UK(t)'

Our innovation is to introduce a fixed recall time a, with 0 <a < 1. An
item which arrives at time ¢ can be held until time ¢ + @, at which time it
must be either selected or discarded. Equivalently, at time ¢, the observer is
allowed to select any item from the interval [[¢ — «]",f]. Once an item is
selected the process stops.

Our goal is to find a stopping time, adapted to Z(-), which maximizes the
probability of best choice. That is, letting € denote the set of stopping times
adapted to Z(-), we seek, for each « € [0, 1],

(1.1) v, = I:leaép([T—a]+S U <),

as well as an optimal stopping time 7* = 7*(a) (if any), such that

(1.2) v, = P([7* —a]" <U, < 7*]).

REMARK 1. Since the class ¢ is infinite, the optimal stopping time need not
exist. We shall directly exhibit the form of the rule 7*(a), thereby proving
existence.

We first introduce certain useful classes of stopping times. Let
é={re€:r<1=2Z(r)=1—-a,as}.

Foreach #, 0 <t < 1, let

. €={red:7>tasl)}

and let
6, = 6N 6.
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Thus, € is the set of those stopping times which stop and select a candidate
before time 1 only when that candidate would become unavailable should we
continue observations—that is, we stop only when the candidate must be
either selected or discarded. €, is the set of those stopping times which do not
stop before time ¢. % is the subset of € for which, in addition, 7 > ¢. Clearly,
€= 4t,.
Now, given any 7 € €, thereisa o € ?jx, namely,
o=1Ainf{t > 7:Z(t) =t — a}

with at least as large a success probability as 7. That is, it is clearly suboptimal
to stop and select a candidate which would remain ayailable should we
continue observations. In particular, it follows that 7* € €, and the following
lemma obtains:

LemMA 1. v, =max, .z P(r—a<U; <)

Now, for each fixed ¢, 0 < ¢ < 1, define the stopping time 7, by

(1.3) .- t+a11<1£<1 {s: Z(s) =s a}, if the set is nonempty,
1, otherwise,

where, in addition, we associate with the stopping time 7, the restriction that
selection is limited to items arriving after time t. Thus, for a given ¢, 7, ignores
all arrivals up to and including time ¢ and selects the first candidate, if any,
arriving after time ¢, which is still relatively best at the end of its recall period
—or stops at time 1 and selects the best if still available—whichever comes
first.

- Remarx 2. For <1 -aq, restricting selection to (¢,1] plays no role as
" 7, — a >t by definition of 7,. However, for t>1—-a, 7, =1 and the restric-
tion limits allowable selection to (¢,1]. Thus, for ¢,s > 1 —a, t # s, 7, and 7,
correspond to different strategies in that 7, can select from (¢,1] and 7, from
(s, 1]. Defining strategies in this way for 1 —a <7 < 1 has the advantage of
simplifying later arguments.

_ Let I ={r,:0 <t <1— a}. Observe that Jc 4, and{r;t<s<1l-a}cC
4, .. We will now prove that the optimal time 7* belongs to 7.

LEMMA 2. v, =max,., P(r1—a<U; <7)=maXg o1 P(r,—a <
U, < 7).

Proor. For any time ¢, 0 < ¢ < 1, we define the utility of stopping at time

t, given Z(¢), by
_— B Ly |t ifZ(t) >t —a,
u(t) = uy(t,2(t)) =P([t —a] <U; < t|Z(t)) = 0 Z(1) <t-a.

Similarly, we define the maximum expected utility of continuing at time ¢,
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given Z(t), by
v(t) = v (¢, Z(t)) = max P([r—a]” < U, < 1Z(2)).

Clearly, behaving optimally, we should stop at the first time ¢ (if any) for
which the utility of stopping exceeds the expected utility of continuing. Hence,
the optimal stopping rule 7* must be of the form

5 inf{¢: u(t) > v(t)}, ifthe setis nonempty,
1, otherwise.

Define, for 0 <t < 1,
(1.4) e.(t) = maé(P({t <U}Nn{r—ax<U <1}).
TE f

¢,(t) is the maximum probability of best choice over all stopping rules which
stop after time ¢ and which ignore all arrivals in (0, £].
For 1 — a <t < 1, we easily see that

(1.5) 0, (t) =P(U;>t)=1-1t, l-a<t<l.
For 0 <t <1 — a, it follows by the argument leading to Lemma 1 that
(1.6) ¢o(t) = max P(tr—a<U, <1), 0<t<l-a.

Te'gbhx

Also, since €, ¢ €, for t > s, ¢,(¢) is a decreasing (i.e., nonincreasing) func-
tion of ¢, and in particular, if 0 < ¢ < 1 — a, then by (1.5),

(1.7) 0(t) =, (1 —a) =a, 0<t<l-a.

Consider now the case where Z(¢) <t — a, for ¢ > a. Should we continue,
we are forced to seek a new candidate among those items arriving after time ¢.
Thus, by independence of Z(¢) with the arrival time (and true rank) of the best
arrival in (¢, 1], it follows that when Z(¢) < ¢ — a, v(¢) = ¢,(¢) a.s. In particu-
lar, on the set where Z(¢) =t — a, v(¢) = ¢(t), as.

By Lemma 1, 7* € % Therefore, for 0 < ¢t < @, v(¢) > u(¢) since 7* > qa;
and for ¢ > a, v(¢) > u(t) if Z(¢) + ¢t — a. The utility of continuing is larger
than the utility of stopping in each case. Hence, the only interesting case is
when ¢ > a and Z(¢) = ¢ — «; but in this case, v(¢) = ¢ (¢) and u(¢) = ¢. Thus,
T* is given by
inf{t >a: Z(t) =t —aand t > ¢, ()}, if the set is nonempty,
1, otherwise. :

(1.8) 7*= {

Now, since ¢_(¢) is a decreasing function of ¢ with ¢,(1) = 0, there exists (a
unique) £ [= #(a)] such that ¢ (¢) >t for ¢ <#, and ¢, (¢) <t for ¢ > . Let
tf =1V a, that is,

(1.9) tr = inf{t > a: ¢, (2) < t}.
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It follows that

(1.10) 7%= {
Observe that, in the case where 1/2 <« < 1, ¢} = « since, by (1.5), ¢ (¢) =
1 -1t <t for t > a. Letting .
(1.11) t, =t —a,

we see that 0 < ¢, <1 —a and 7* =7, € 7. The result follows. O

inf{t > t*: Z(t) = ¢t — @}, if the set is nonempty,
1, otherwise.

For 0 < ¢t < 1, define the probability that the rule , selects the overall best
item by

(1.12) ¥, (t) = P[r,*“selects the best”].

Observe that

(1.13) ¢ (¢) = P[r,= min(U; + ,1)], for0<t<1l-a
and that

(1.14) Y (¢) =P[U; >t]=1-¢, forl-—a<t<]l.

We will now prove the main result of this section:

THEOREM 1. For each a € [0, 1],
(1'15) va = max lpa(t) = lpa(ta)7
0<t<1

where t, is the unique time at which ¢, (t) achieves its maximum given by
t, =t* — a, where

1.16 g | fazs,
(1.16) gt ifa<i
Moreover, the solution t* to (1.16) is unique. The optimal stopping time is then
uniquely given by v* = 1, , where 7, is of the form (1.3).
Fora=0,y)(t)= —tlnt,ty=t{ =e landvy=e "
For a > 0, () satisfies the differential equation

(1.17) gy <=2 i1
« t+a ’

with boundary condition

(1.18) U () =1—1¢, l-a<t<l.

Proor. That v, = max,_,; ¥,(¢t) follows from Lemma 2, the definition of
¢ (¢) and the fact that ¢ (1 —a) =a > ¢, (t), 1 —a <t < 1. (That is, the
maximum is not affected by taking the maximum over the larger interval.) If
we ‘can show there exists a point ¢, €[0,1] at which ,(¢) achieves its
maximum, then v, = ¢,(¢,) and the optimal rule becomes 7* = 7, , again by
definition of ,(¢). For a > 0, we will prove the existence of ¢, by proving that
¥,(t) is a continuous (bounded) function of ¢ on [0, 1].
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In the classical no-recall case corresponding to @ = 0,
t
(1.19) ¢o(t) = P[U, > t; Z(Uy) < t] = jlg dz=—tlnt, 0<t<lL.
t

Since ,(¢) achieves its maximum value of e ! at ¢ = e, it follows that
to =e ! and v, = e !, which are the well known limits in the finite no-recall
best choice problem. [See, for example, Lindley (1961) or Gilbert and Mosteller
(1966).]

For a > 0 and ¢ > 1 — @, the boundary condition (1.18) is immediate from
(1.14). The case with £ <1 — a is more complicated. For 0 < 6 <a and
t+6<1-—a,

(1.20) {7, “selects the best” but 7, ;“doesn’t”’} = {t < U; <t + 8}
while

{(t <Z(t + a) <t+ 8} N{r,,, “selects the best”’}
(1.21) D {1,,5 “selects the best” but 7, “doesn’t’’}

D{t <Z(t+a+38) <t+8) N{7,q4.s  selects the best”}.

From the definition of ,(-) and using (1.20), we obtain
(1.22) ¢ (t) = ¥ (t + 8) + & — P{r,, 5 selects the best” but 7,*“doesn’t”’},
from which we obtain, using (1.21), the extremely useful inequalities

U (t + @) Y (t +a+d)

<P (8) — o (t +6) < 8|1 -
a Pa(£) = W, (t +8) PR

(1.23) 5[1 -

From the inequalities (1.23) and the boundedness of ,(¢), we see that ¢ (¢)
is continuous on 0 <¢ <1 — @, and is left-continuous at t =1 — a, so is
continuous on all of (0,1]. Moreover, by dividing (1.23) through by é and
letting 6 — 0, it follows that ¢ (¢) satisfies the differential equation (1.17).

Continuity of ,(¢) and (1.23) imply that the function ¢ (¢ + a)/(¢ + a) is
continuous and strictly decreasing on [0, 1 — a]. This, together with the dif-
ferential equation (1.17), implies that ¢,(-) is unimodal and concave with a
unique maximum at

(1.24) t,=tr —a,

where ¢* satisfies (1.16). An easy calculation shows that ,(0) > a which, with
concavity, implies uniqueness of the solution to (1.16). O

REMARK 3. Uniqueness of ¢, and ¢* imply that ¢, as given by (1.11) and
(1.9), is in fact the same as that given by (1.24) and (1.16). Indeed, it can be
shown that ¢, (¢) as given in (1.4) satisfies (1.17) for ¢ € (¢,,1 — a) with
boundary condition (1.18) so that ¢,(¢) = ¢ (¢) for ¢, <¢ < 1. [See Rocha
(1988).] ‘

The differential equation (1.17) is easily solved on [[1 — 2a]*,1 — a] by
substituting the known value ¢ (t + @) =1 — ¢t — @, from (1.18), into the
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right-hand side of (1.17). The solution is

(125) ¢ (t)=2-2 —a+In(t+a), [l-2a]'<t<l-a.
This yields the complete solution for a > 1/2, namely,

(1.26) t, =0, v,=2—-a+Inea, ifax>1/2.

For a < 1/2, we can, in principle, use the differential equation (1.17),
together with the boundary condition (1.18), to successively solve for ,(¢) on
intervals of length a (.e., first on [1 — 2a,1 — @], then on [1 — 3a,1 — 2a]
and so on) until we find the interval containing ¢*. We then use (1.17) once
more to determine v, = ¢, (¢ — a).

Unfortunately, for @ < 1/2, the solution for v, cannot be put in closed
form: For ¢ < 1 — 2a, we encounter integrals of the form

(1.27) / %jf—a) dt.

We can still find ¢, by using (1.25), as long as ¢,,(1 — 2a) > (1 — 2a)—which
holds for a > 0.260303—but even then we are faced with an integral like
(1.27) to find v,,.

In the next two sections, we will estimate v, and ¢ for « near 0 and « near
1/2, where the solutions are known. In Section 2 we will improve the bounds
on () given in (1.23); we will obtain these bounds probabilistically. We will
then use these improved bounds to get upper and lower bounds for v, and #}.
In Section 3, we will find analytically, asymptotic expansions for v, and ¢,
directly from the differential equation (1.17) and boundary condition (1.18).

2. Upper and lower bounds on v, and ¢¥. An improvement on (1.21),
valid for0 <d <aand t+6 <1 —aq,is

r
U
k=1

k
a)st+—6}
r

8<Ulst+a+6}

k-1
{t+ 8<Z(t+a+
r

k-1
N

{t+a+

U{T,1a+5 ‘selects the best "’} ”

21
(2.1) > {7,,5 ‘selects the best” but r,“doesn’t”’}
r k-1 k k
> U {t+ 6<Z(t+a+—8)st-+—8}
rol r r r
: k
7 n{t+a+76<Ulst+a+8}

U[{t <Z(t +a+8) <t+8)} N7, .4, selects the best”}].
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This enables us to improve (1.23) to

1 7 [8(1—(k—1)/r) + (¢t +a+8)
6(1‘7,51[ trat ((F-1)/r)e )
(2.2) <Pu(t) — (¢ +9)
1 8(1—k/r) U (t + a +9)
<6(1_7k§1 t+a+(k/r)5]_ t+a+o

Letting r — o yields
8
26 — [(t+a+9) +l/}a(t+a+6)]ln(1 + —)
t+a

(2.3) <P, (8) — Yo (t +9)
Yy (t +a+9d)

)
S26—(t+a+6)1n(1+——- -4
t+a t+a+6

Now, for 0.260303 < a < 0.5, the solution, ¢*, to the equation y(t) =t
belongs to the interval [1 — 2a, 1 — a], where ,(¢) = 2 — 2t — a + In(¢t + a),
and thus ¢* can be explicitly calculated from

(2.4) U (t5) = 2 — 2t* — o + In(£* + ) = £2.

Substituting 6 =a and ¢ =¢, =t¥ —a into (2.3) and using the fact
that v, = ¢,(t,) = ¥ (¢t — ), ¥ (t, +a) =y (%) =t and ¢ (¢, + 2a) =
o (tF +a)=1— (% + @), for such a, we obtain the following bounds on v,:

a
th + 2a — ln(l + —*)
ta

(2.5)

a a
<v, <t!+3a-(tF+a)n|l+ |- ,
o=t B (1 L ) -

0.260303 < a < 0.5.
Solving (2.4) for ¢ and then substituting the result into (2.5), we obtain the

values of a near « = 0.5 given in Table 1. By comparison, when « = 0.5,
t*=0.5and v, = 3/2 — In2 = 0.8068528194.

TABLE 1
t* is explicitly calculated from (2.4) using Newton’s method. The upper and lower bounds are
obtained by substitution of this value into.(2.5)

Lower bound Upper bound

« tk . for v, for v,
0.400 0.4971594375 0.7068366205 0.7216941183
0.490 0.4999747042 0.7968528182 0.7987391753

0.499 0.4999997497 0.8058528194 0.8060455150
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Now, we can furthermore use (2.4) to obtain a power series expansion of ¢
about a = 1/2:
2 3 4 5
(26) tr=3-31G3-a) %G -a) -z~ ) +O((%—a) )

This, in turn, can be substituted into the left- and right-hand sides of (2.5) to
yield the following series expansions for the lower and upper bounds, respec-
tively, for v,:

42 11+°‘—(3 12) 1 )
*+2a¢—1In | =g~ In g @

a

(2.7 1 4 1 5
__(E_a) +o((§_a))
and
£+ 8a — (¢ + a)ln[1+ —= | - -
t, t, ta
=(§_1nz)+f_§+1nz)(l_a)
2 |72 2
e +[-2e tma)(l )
8 4 2
7 7 1 8 49 79 1 4
+ —Z§+ﬂln2)(§—a) +(— 8+E§l 2)(5—01)

Considering now a near 0, we note that the inequalities (2.5) are not valid and
the inequalities (2.3) are not helpful. To obtain sharper bounds on v, and ¢}
for small «, we need some additional relations. Observe that

(t<U <t+a) U[{U >t+a} N {Z(U, —a) <t}]

(2.9)
c {r,“selects the best”’}
and
(2.10) (U<t} U[{U; >t +a) n{t<Z(U) < U, —a}]

c {r,“does not select the best”’}

both obtain. By taking probablhtles in (2.9) and (2.10) and direct computation,
we obtain the inequalities
a+tln(l-a)—tnt <y, (t) <a-(t+a)n(t+a),

(2.11)
0<t<1l-—a.
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From (2.11), we easily obtain
(2.12) e l<ti<e !l +a.

(Recall that from Theorem 1, ¢, = t§ = ™! is optimal for a = 0.)

Now, we can increase the sets on the left sides of (2.9) and (2.10), thereby
improving the bounds in (2.11). Specifically, the left sides of (2.9) and (2.10)
can be enlarged by taking the unions with the sets

r-1 k _ k-1
U[{U1>t+a}ﬂ{Ul—a—7a<Z(U1—a)<U1—a— p a}
k=1
(2.13) E k
ﬂ{Z(UI —a — 7&) < t} N {Ul —a < Z(Ul - 7(1)}]
and
r k k-1
U {U1>t+a}m{Ul—;a<Z(U1)<U1— " a}
214) "7

k k
ﬁ{t<Z(U1—7a)<U1—a—7a} ,

respectively. Note that the choice of sets in (2.13) and (2.14) is in no way
unique. The particular events used here have the advantage of having easily
computed probabilities and the resulting improved bounds are

L
a+tln(l-a)—tlnt+ Y C,
k=
(2.15) ' ,
<y (t)y<a—(t+a)ln(t+a)+ Y, D,, 0<t<l-a,
k=1
where

¢ k k k
C, = % —In(1 -a) + ln(t + 701) + 7ln(1 - 761) - ;ln(t +a)

(2.16) B B B
R PN T
r r r
a k
D,=—In t+oz+—a)

r r
(2.17) t+a k k

+ ln(l—;a) —ln(t+a)+ln(t+a+ 7a) )

(2.18) L=min(r— 1,[2(1 —a—t)])
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TABLE 2
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The bounds obtained are for r = 100, using the method outlined above

Lower bound Upper bound Lower bound Upper bound
« for t¥ for ¢} for v, for v,
0.001 0.3685107832 0.3685113314 0.3685121424 0.3685126953
0.010 0.3741219108 0.3741711301 0.3742578092 0.3743114118
0.100 0.4229465858 0.4246721619 0.4360199240 0.4401380709
0.400 0.4969611948 0.4971682574 0.6148702554 0.7314882162
and
. r
(2.19) U = min r,[—(l —a—t)] .
a

We can use (2.15) to get upper and lower bounds for v,—call them v, and
vy, respectively—as follows:

1. Choose r.

2. Denoting the left and right sides of (2.15) by ¢;(#) and ¢y, (#), respectively,
get upper and lower bounds for ¢! by finding the roots ¢; and ¢; of
¥, (¢) = t and ¢ (¢) = ¢, respectively.

3. Get a lower bound for v, by evaluating v, = max[y (¢, — a), ¥, (¢; — @)].

4. Get an upper bound for v, by evaluating vy = Yty — a) + (¢ — 1) X
(1 — ¢,(¢ty)/ty). That vy is indeed an upper bound for v, follows by
substituting ¢ = t* — « and & = ¢, — ¢} into the rightmost inequality in
(1.23), and using the fact that ¢, (¢) < ¢, (t) < Yy (2).

, For r =100, we obtain the bounds given in Table 2. Remarkably, for

a = 0.001, the bounds obtained determine v, to six decimal places. On the
other hand, when a = 0.1, the accuracy is only to the first decimal place. For
a = 0.4, the bounds break down, as expected.

3. Asymptotic analysis. An alternative approach to the probabilistic
bounds obtained in the last section is to do a classical asymptotic analysis of
the perturbed differential equation and boundary condition, (1.17) and (1.18).
[See, for example, Nayfeh (1973); this is the approach used in Rocha (1988).]
For ease of notation we will henceforth write (¢, «) in place of (¢).

To investigate (¢, ) and ¢* for a near 0, we will seek solutions of the form

(3.1) W(t,a) = Po(t) + dy(t)a + dp(t)a® + -
and
(3.2) £ =ty + tia + ta® + -,

where t,,¢,,,,... are constants and the functions ¢(2), ¥,(2), P5(2), ... de-
pend on ¢ alone. Substituting (3.1) into the differential equation (1.17), using
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Taylor’s theorem to expand the functions ,(¢ + «) for i = 0, 1,2, as

(3.3) gt + @) = ¥i(t) + gi(t)a + ¥ (¢)a® + O(a®)

[which we can expect to be valid for 0 < ¢ < 1 — a, even though (¢, a) is
discontinuous at ¢ = 1 — a—see Hardy (1958), page 289], and then equating
like powers of a, yields a set of first-order linear ordinary differential equa-

tions. These can be solved explicitly using the boundary condition at t = 1 — «,
yielding

4t 4

We next substitute (3.2) in place of ¢ in (3.4). Expanding the result in
powers of a and using the equation
(3.5) Pty a) =&
to equate like powers of « enables us to solve for the coefficients in (3.2). In
this way we obtain

1 3
(3.4) y(t,a) = —tlnt+ (1 —t)a + (— - —t)az + 0(a?).

e+el

4

Finally, since v, = ¢,(t,, @) = ¢, (t¥ — a, a), we can use (3.6) and (3.4) to
obtain

(3.6) th=el+(1-eYa- ( )a2 + 0(a?).

-1

a? + 0(a?).

(3.7 v,=e '+ (1-eHa+ (e

In principle, asymptotically as a« — 0, (3.7) provides a more accurate esti-
mate of v, than the bounds obtained in Section 2—which from Table 2 can be
seen to differ by about O(a2). However, lacking explicit bounds on the error
term in (3.7), we are unable to gauge the accuracy of the approximation for
specific values of a. Hence, for particular values of «, the bounds obtained in
Section 2 must be considered more reliable than the polynomial approxima-
tions given here. Table 3 is obtained from the second-degree approximating
polynomials in (3.6) and (3.7), and should be compared with Table 2 of the last
section. As noted, it is rather fortuitous that these estimates fall within the
bounds provided there.

TABLE 3
The estimates given here were obtained from the second-order approximating polynomials in «
obtained from the asymptotic expansions about a = 0, given in (3.6) and (3.7)

Estimate Estimate
« . of t* of v,
0.001 0.3685107902 0.3685121493
0.010 0.3741234927 0.3742594068

0.100 0.4233760939 - 0.4369675030
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TABLE 4
The estimates given here were obtained from the fourth-order approximating polynomials in
3 — a) obtained from the asymptotic expansions about a = %, given in (3.8) and (3.9). The actual
value of t*, shown for comparison, is from Table 1 of Section 2

Estimate Estimate
« ¢ -a) t of ¢t of v,
0.400 0.100 0.4971594375 0.4971671875 0.7071986528
0.490 0.010 0.4999747042 0.4999747042 0.7968531540
0.499 0.001 0.4999997497 0.4999997497 0.8058528198

In a similar manner, to investigate v, and ¢} for a near i, a < 3, we
assume they have expansions in powers of (3 — @) and carry through the
analysis as above. We obtain

2 3 4 5
38) tr=i-13-o) -%(G-) - (3 -a) +0(3-a)

[23

and ‘
(89) v,=(3-1n2)~ (3 —a) + 5(t —a)’ + 12— a)' + O((} ~ a)?).

Note that (3.8) was obtained previously in (2.6).

As with the expansion about a = 0, without specific bounds on the error
terms in (3.8) and (3.9), we must view the bounds from Table 1 as more
reliable for given values of a—even though these bounds differ by (— 3 +
In2)3 — a) + O((3 — a)?), as can be seen from (2.7) and (2.8). Table 4,
obtained from the fourth-order approximating polynomials from (3.8) and
(3.9), should be compared with Table 1 of the last section.

4. The limit of the finite problem. We will now prove that the solution
to the finite secretary problem with recall of length m converges to the
solution of the corresponding infinite problem when m /n — «. We first derive
a variant of the recursion equations of Smith and Deely (1975) in ordeér to
relate the solution of the finite problem more closely to our solution of the
infinite problem.

Thus, consider the finite secretary problem with recall of length m. Smith
and Deely proved that the optimal stopping rule has the following form: Stop
at the first time after some fixed r* > m at which the current candidate is
about to be lost, and otherwise stop at time n. In particular, they showed that
it suffices to consider the following class of stopping rules: For fixed £k,
0 < k < n, define the rule ¢, by .

inf{j: (k + m) A n <j < n and the current candidate
(4.1) Iy = isat j —m + 1}, if the set is nonempty,
n, otherwise,

where, corresponding to the rule ¢,, we -additionally restrict selection to
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arrivals in {£ + 1,..., n}. (Note that the latter condition only affects the rules
for which £ > n — m + 1 where ¢, = n; moreover, therulesfork >n —m + 1
are clearly suboptimal.) Furthermore, define

(4.2) P(k) = P(t, “selects the best”).

Clearly P(k) and t, are the finite analogues of () and r, of Section 1. Not
surprisingly, we have the following theorem analogous to Theorem 1.

THEOREM 2. P(k) is the unique solution to the recursion equation

n—=~k
e n-m<k<n,
(4.3) P(k) = 1 P(k+m)
P(k+1)+——————, 0<k<n-m-—1.
n k+m
Moreover, let
(4.4) r* = m;n {k: P(k) <k/n}.
m<gr<n
Then
(4.5) v™®™ = P(r* —m) = max P(k)
O<k=<n

and the optimal time is given by t,«_,,, defined by (4.1) with k = r* — m.

ProoF. Since Smith and Deely proved that the optimal rule has the form
(4.1), it follows by definition of P(k) that v™™ = max,_, _, P(k).

For n —m <k <n, P(k) = P(¢, “selects the best’”) = P(best item arrives
in{k+1,...,n) =(n—k)/n.

The rest of the proof of (4.3) is just like the derivation of the left-hand side
of (1.23) but with equality holding. For 0 < 2 < n — m — 1, we have

P(k) = P(k + 1) + P(t, “selects the best”; ¢, , , “doesn’t select the best”)

— P(2),, “selects the best”; ¢, “doesn’t select the best”’)
1
=P(k+1)+ - — P({bestof {1,2,..., %k + m} is at k)

N{t; ., ‘“‘selects the best”’})

P(k+m)

, by independence.
k+m Y P

1
=P(k+1) +— -

This proves (4.3).
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Now taking probabilities in the set inequality
{best of {1,2,...,k + m}isat £ + 1}
N{t, ., “‘selects the best’’}
O {bestof {1,2,...,k +m + 1} isat & + 1}
N {1 m 1 “selects the best”’},

we obtain the inequality
P(k+m) P(k+m+1)
k+m = k+m+1

valid for all 2, 0 <k <n —m — 1. It follows that P(k + m)/(k + m) is a
decreasing function of k. In particular, together with (4.3) this shows that
P(-) is unimodal with a unique maximum at r* — m, where r* is given by
(4.4). The optimal rule is thus ¢,.«_,. O

)

By comparing the recursion equations (4.3) with those of Smith and Deely
[(1975), page 360, equations (3.5)-(3.8)], we see that the function F(%), which
they considered, is just our nP(k) for r* —m <k <n. In essence, they
proved that if k/n - ¢t and m/n - a > 1/2, then P(k) — (), r*/n — t*
and v™™ — v, where ,(¢), t* and v, are the analogous quantities for the
infinite a-recall problem. In the remainder of this section we will prove that
this result holds for all a, 0 < a < 1. We first need a definition and a lemma.

For each pair, (n, m), define the piece-wise linear function £ ™X¢) on [0, 1]
by f™™(k/n)=P"™™(k)=P(k), k=0,1,2,...,n, and define f™™(¢)
elsewhere by linear interpolation. Then the following lemma holds:

LemMa 3.  Fix B > 0. The family of functions { f™™(t): n,m = 1,2,3,...;
m/n > B} is a bounded, equicontinuous family on [0, 1].

Proor. Since 0 < P(k) < 1for all 0 < k& < n, it follows that |[f™™(¢)| < 1
for all n, m.

To show equicontinuity, it suffices to show that the derivatives, where they
exist, are uniformly bounded. For given n and m, if 1 —m/n <¢ < 1, then
fm™(¢)=1—t¢, and so f™™'(t)= —1. For 0 <k <n —m — 1, we have,
using (4.3) and the assumption m/n > B,

fO((R+ 1) /n) = f(k/R) | P(k+m)
(46) v _‘_ (exmy/n
St Gimym =T

This inequality proves the lemma. O
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THEOREM 3. Fix 0 <a < 1. Let m [= m(n)] and n tend to infinity in such
a way that m/n - a, 0 < a < 1. Then f™™Xt) converges uniformly to y(¢)
on [0, 1], where ¢ (¢) is the (unique) solution to the differential equation (1.17)
with boundary condition (1.18). Moreover, r*/n — t* where t* is defined by
(1.16). In particular, v™™ — v,.

ProoF. Since m/n — a, B = sup{m/n} < ». It follows from Lemma 3
that the (sub-)family { f™™)X(¢): m/n — a} is a bounded, equicontinuous fam-
ily. By the Ascoli-Arzela theorem [see, for example, Royden (1968)], there
exists a subsequence {f»™(¢)}7_,, which converges uniformly to a function
f(#), continuous on [0, 1]. We will show that f is unique and thus that the full
sequence converges to f on [0,1]. Consequently, we henceforth drop the
subscript j and write £ ™X¢) in place of f™»™(t) [keeping in mind that
m = m(n) here].

Now f™™(t)=1—-¢t for 1 —m/n <t <1. Hence, since m/n — a, it
follows that f(¢) =1 —¢ for 1 —a <t < 1. That is, f(¢) satisfies the bound-
ary condition (1.18).

Now suppose ¢ > 0 is given. For fixed k&, with 0 < 2 <n — m — 1, repeated
application of (4.3) yields

n—1 (n,m)/ ;
(4.7) pom(b) oy B LG TG,

noi—m+k J/n

Take k/n — t, €[0,1 — a] (maintaining 0 <k <n —m — 1) and let ¢ =
e(ty + a)/2. Since f™™X(t) = f(¢), t € [0, 1], it follows that there exists N, =
Ny(&'), independent of ¢, such that for all n > N,, we have

(4.8) | () - f(8)] <&

Similarly, since £/n + m/n — t, + a, there exists N, such that for all n > N,,
k/n + m/n > (t, + a)/2. In particular, taking n > max(N,, N,), we have

1 ”il fG/m) 1 ”il fm(j/n)

njmir I/ N jm+k J/n

(4.9) — <e

Since ¢, + @ > 0, f(x)/u is bounded and continuous on [¢, + «, 1]. It follows
that it is integrable there as well, so there exists N; = N;(¢,, ¢), such that for
all n > Nj,

(4.10) <e

[ g, L g Tum

1
ota U Njomir J/TM

Thus, for all n > max(N;, N, N,),

[ @) 4o L5t 107G/

tota U nj—m+k J/n

< 2e.

(4.11)
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Letting n — « in (4.7), since ¢, € [0,1 — a] was arbitrary, it follows that
f(¢t) satisfies the integral equation

f(u)

u

(4.12) fy=1-t- [ du, O0<t<1-a.
t+a

Since f(u)/u is continuous on [t + «, 1], it follows from (4.12) that f is

differentiable on (0, 1 — a). Differentiating (4.12) we obtain

f(t+ a)

, 0<t<1-a,
t+a

(413) Fit) = -
which is (1.17).

Finally, since there is a unique solution to the integral equation (4.13)
satisfying the boundary condition (1.18), it follows that the limiting function f
is unique. We have proved f(¢) = ¢ (¢) and thus

(4.14) Fom(e) = g (t), 0=<t<l.

Now, since f™™Xt) = ¢ (t) on [0, 1], it follows by continuity and the
definition of r* that r*/n — ¢*, where ¢* satisfies ¢ = inf,_, _{{¢: ¢,(¢) < t}.
As already noted in Remark 3, this definition of #* is equivalent to (1.16).

From (4.5), v'»™ = P(r* — m). Thus (with m/n — a, as above), we have

lim v™™ = lim P"™)(r* — m)

n—oo n—o

r* —m
- lim f("’m)( - )=z[za(tf; —a)=u,

n—o

(4.15)

Theorem 3 is now proved. O
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