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SUPPORTS OF CERTAIN INFINITELY DIVISIBLE PROBABILITY
MEASURES ON LOCALLY CONVEX SPACES!

By BALrRAM S. RaJruT

University of Tennessee, Knoxville

Let B be a separable Banach space and let u be a centered Poisson
probability measure on B with Lévy measure M. Assume that M admits a
polar decomposition in terms of a finite measure o on the unit sphere of B
and a Lévy measure p on (0,). The main result of this paper provides a
complete description of the structure of ., the support of u. Specifically,
it is shown that: (i) if [, 1;sp(ds) = =, then . is a linear space and is
equal to the closure of the semigroup generated by ./}, (the support of M)
and the negative of the barycenter of o; and (ii) if /i, 1;50(ds) < = and zero
is in the support of p, then ./, is a convex cone and is equal to the closure
of the semigroup generated by .#},. The result (i) yields an affirmative
answer to the question, open for some time, of whether the support of a
stable probability measure of index 1 <a <2 on B is a translate of a
linear space. Analogs of these results, for both Poisson and stable probabil-
ity measures defined on general locally convex spaces, are also provided.

1. Introduction. This paper provides a complete description of the struc-
ture of the supports of general (not necessarily symmetric) Poisson probability
measures [defined on general locally convex (l.c.) spaces] whose Lévy measures
admit a polar-type decomposition. This work is inspired by and completes a
result of de Acosta [3] and several results of Tortrat [10], [11].

The core result is Theorem 3.1(a). It shows that if the Lévy measure M of a
centered Poisson probability measure u on a separable Banach space B admits
a polar decomposition in terms of a finite measure o on the unit sphere of B
and a (Lévy) measure p on (0, ») which satisfies [, ;;sp(ds) = », then ./, the
support of u, is a (closed) linear space and it is equal to the closure of
the semigroup generated by ./, the support of M, and the negative of the
barycenter of o. This result completes and encompasses several results of
Tortrat ([10], Theorems 2(i), 3, and 4 and Corollary 1; [11], Proposition 1 and
Theorem 3'). It also settles two of his conjectures, which state that, under the
hypotheses of Theorem 3.1(a), ./, may fail to be a linear space in the
infinite-dimensional case even when B is a Hilbert space ([10], page 41) and
that ./ “presque slir”’ appears to be a linear space in the finite-dimensional
case ([11], page 294). We also prove a companion result to Theorem 3.1(a)
[Theorem 3.1(b)]. It shows that if [ ;;8p(ds) <~ and if O belongs to the
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support of p, then . is a translate of a (closed) convex cone and that this
cone is equal to the closure of the semigroup generated by .#4,. In this result
we also provide a necessary and sufficient condition in order for this cone to be
a linear space. In addition, we provide, in Theorems 4.1(a) and 4.1(b), appropri-
ate analogs of Theorems 3.1(a) and 3.1(b), respectively, for probability mea-
sures defined on general l.c. spaces. )

Let u be an a-stable, 1 < a < 2, probability measure on B; the question of
whether ., is a translate of a linear space (without any restrictive hypotheses
on the space or on the measure) has been open for some time (see [3], page 874,
Theorem 5.2; [10], pages 38-39, Theorems 2 and 3; and [11], pages 294-295,
Corollary and Remark). The core result and its analog in l.c. spaces yield two
corollaries which answer this question in the affirmative for measures defined
not only on B but also on general l.c. spaces. These complete the results of
de Acosta and Tortrat just noted as well as pertinent results obtained in [2], [5]
and [6].

The methods of proof used are refinements of those exploited earlier in [4],
[7] and [10-12]. The organization of the rest of the paper is as follows: Section
2 contains preliminaries. Section 3 contains the core result, its companion
result and a few of their corollaries. Section 4 contains the analogs of results of
Section 3 for measures defined on general l.c. spaces.

2. Preliminaries. Throughout, B and E will denote, respectively, a sepa-
rable Banach space and a l.c. space; further, B* and E* will denote, respec-
tively, the topological duals of B and E. For a subset of A of B, the closure of
the linear space (resp., the convex cone) generated by A will be denoted by
L(A) [resp., by C(A)]. Unless stated otherwise, all measures on a topological
space X are assumed to be defined on the Borel o-algebra of X; for a set A in
X, A will denote the closure of A.

Let v be a finite or infinite measure on a separable metric space X. Then
the support of v, denoted throughout by .7, is, by definition, the intersection
of all closed sets F' with v(F°¢) = 0, where, throughout, for a set A, A° denotes
the complement of A. Clearly, . = {x € X: »(V) > 0, for every open neigh-
borhood V of x}. If X = B, then the linear support of v, denoted throughout
by -Z#(v), is the intersection of all closed linear subspaces G of B with
v(G°) = 0. It is easy to see that

(2.1) LA wv)=L(~); LA(v)=, if S islinear.

Let M be a finite or infinite measure on B. If M admits a polar decomposi-
tion, that is, M = (o X p)o ¥~ where ¥ is the topological isomorphism from
A X (0,) onto B\ {6} defined by ¥(u,t) =tu, and where o and p are,
respectively, a finite measure on dA (the boundary of A={x eB:|x|] <1} and
a measure on (0,») (§ being the zero element of B), then we shall write,
throughout, M = ¥(o X p).

Now let M = V(o X p) be a Lévy measure [therefore, p is also Lévy on
R*= (0,)]. Following [1], the 7-centered Poisson probability measure on B
with Lévy measure M will be denoted, ‘throughout, by c,-Pois(M) or by
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¢,-Pois(o,p), 0 <7 < . If 7 =0 (resp.,, 7 = »), it is assumed here and else-
where that [,||lxll dM < « (resp., [illx|ldM < ).

Let M = ¥(o X p) be a Lévy measure on B. The barycenter [;,uo(du) and,
for a fixed 7> 0, the function A — f, ,;sp(ds), 0 <A <7, we shall denote,
throughout, by a,(= @) and ¢, (= ¢,), respectively. Further, throughout, we
shall use the notation I, j = 1,2, to denote the following integral conditions
on M:

Li [llxlldM = (=@, ,(07) = =);
(2.2) 4
I: /AIIxIIdM<oo (e @1 ,(0%) < ).

Finally, we shall use the notation & (= é,) and M (= M,) for the measures
defined, respectively, by

_ {0', ifa=29,
0'=

(2.3) o+ lalld_q ey, ifa+0,

M= (6%xp)¥t,
where §, is the Dirac measure. The Hahn-Banach theorem yields
(2.4) a, € C(#), hence, by (2.3), L()=L().
Therefore, if C(.#) is a linear space, then
(2.5) C(A4) =L(4)  [=L(#4) =C(A)].

Now we state two preliminary results [Propositions 2.1(a) and 2.1(b)]; for a
proof of (a) see [10], page 39; a proof of (b) can be provided using (2.1) and
standard techniques. We will need one additional notation: For a measure y on
B, following [10], page 34, we shall denote by X(.#) the closure of the
semigroup generated by ., and {6}.

ProposITION 2.1. Let M = W(o X p) by a Lévy measure on B and let
u, = c,-Pois(o, p), 0 < 7 < .
(@ If 0 <71 <, then, for any sequence T > A, |0,

26) 4 = N [ U {&n—aawn)}] - N[ U, -ano)]:

m=1ln>=m m=1ln>=m

if =0, then, for any sequence A, |0,

(2.7) = NJU&A|=-nlual

m=1lln=m m=>=1Ln=m

where A, is the semigroup generated by Ay =,y Y (0}
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(b) Forany 0 <7 < o, set By(u,) = {x € B: y(x) = 0, forall y € B* with
p, oyt =8¢} Then

By(1,) = A (n)(= L(A)) =£A()(= L(A))

(2.8)
= 2/ (M) (= L(A))-

3. The supports of Poisson probability measures on B. We first
state our main theorem and several of its implications; then we state several
lemmas necessary to prove the theorem. Next we present our proof of the
theorem; the proofs of the lemmas are given after the proof of the theorem.

TuEOREM 3.1. Let M = ¥(o X p) be a Lévy measure on B, let 0 <7 <
and let . = c,-Pois(M) [= c,-Pois(a, p)l. Then the following hold:

(a) If M satisfies I, [see (2.2)], then (), C(#) and A, , 0 <7 < =, are
linear spaces and

(3.1) .= 2(A) = C(A4) = Bo(n,) = L(A) = L(A),

for every 0 < < o; in particular, all the supports A, s are identical.
(b) If M satisfies 1, and 0 € ./, then ./, and X(#)) are convex cones;
moreover,

(32) A, =2(A) =C(A4) and A = —a,e.(07) + (),

for all 0 <1 <o (recall ¢, = ¢, ,). Further, ./, , for one (equivalently, for
all) 7 €[0,], is a linear space if and only if #, (equivalently, ) is not
contained in the half-space {y = 0}, for any y € B* with y # 0 on L(A). If
this condition is satisfied, then V T,

(33) S = 2(A) = C(#4) = Bo(n,) = L(-7) = L(Au),

in particular, all supports 7, are identical.

Let » be an infinitely divisible (i.d.) probability measure on B (without a
Gaussian component) with Lévy measure M = ¥(o X p). Then, for any
0<7<™,

(3.4) v =8, *c,-Pois(M) =8 ,* c,-Pois(o, p),

for some x_ € B, where, recall, it is assumed that the condition
(1) [z, msp(ds) < o [resp., (i) fo, ysp(ds) < ] is satisfied if 7 = oo (resp., 7 = 0).
For ¢ > 0, the measure v’ = 5, ,*Pois(¢M = 84, * Pois(a, tp) is called the
¢-th root of v. If v is symmetric, then one can take M and o symmetric and,
hence, one can write v = c¢;-Pois(M) = ¢,-Pois(o, p) [resp., co-Pois(M) = c,-
Pois(a, p)] under the condition I, (resp., I,).

‘Recall that a measure v, on B is called a-stable, 0 <a <2 < v, admits the
representation (3.4), with p,(ds) = s~*® ds. Clearly, since p, satisfies the
above condition (i) [resp., ()] if 1 <a <2 (resp., 0 <a < 1), one can take
T = o (resp., 7 = 0),in (8.4),if 1 <a <2 (fesp, 0 <a < 1). Recall also that v,
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is called strictly a-stable < vi(-) =y (t7*/%-) for all ¢ > 0; in the case 1 <
a < 2 (resp., 0 < a < 1), this is equivalent to taking x, = 0 (resp., x, = 6) in
(3.4).

In view of the above observations and the facts that g/;y L/; for a
measure y on B, that tM=tM and that a, = 0 (and, hence, ¢ = o, M = M)

when ¢ is symmetric, Theorem 3.1 1mmed1ately yields the following.

COROLLARY 3.1. Let v be an i.d. probability measure on B with representa-
tion (3.4). Then we have the following:

(a) If p satisfies I, and 0 < 7 < «, then #: is the translate by tx_ of any
one of the equal linear spaces appearing in (3.1). This applies, in particular,
when v is a-stable 1 < a < 2; further, if v is strictly a-stable, 1 < a < 2, then
2 is equal to any one of these linear spaces.

(b) If p satisfies I, (and 0 <7 < ), then /. is a translate by
t(x, — a,@,(0")) of the convex cone C(.#) [= Z(A)][¢(0%) = O]; further, 7
is the translate by tx, of any one of the equal linear spaces appearing in
(8.3) < the condition for the lznearzty for #, in Theorem 3.1 is satisfied.
These apply, in particular, if v is a-stable, 0 < a < 1. Further, if v is strictly

a-stable, 0 < a < 1, then #: = C(22), and the obvious analogous statement
holds for the linearity of </j,:.

(c) If v is symmetric (with o and M also taken symmetric) then, under
either one of the conditions 1, or 1,, C(.2) and 2(.#)) are linear spaces and
S = C(SA) = X(Ay) = I(A4) = L(H#)). All of these apply, in particular, to
symmetric a-stable measures, ¥V a.

Whenever we encounter several Lévy measures having the same first
component o but varying second component we will write, for clarity, M(p,)
for M, if the second component is p,. Further, we will write u(p,) for the
probability measure c¢;-Pois(o, p,). In addition, for a given Lévy measure p, on
R™, we shall write ¢, for the function ¥, (M) = p,([A,»)), A > 0; finally, we
shall also use the notation ¢, for ¢, ,.

LEmMa 38.1. Let M = (o X p) be a finite (or infinite) Lévy measure on B.
Assume that 0 € ;. Then 2(#}) is a convex cone and,¥ m, € N = {1,2,...},

(3.5) C(A4) = (A1) = nl[ku AA,,] =[ U A]

where {A,} is any sequence with 1> A, |0 and the A,’s are as defined in
Proposition 2.1.

From (8.5) one notes that 2(.#},) is independent of any other property of p
except that 0 € /; this will be used in the following without any specific
reference. ’

LemMA 3.2. Let M(p;) = V(o X p;), i = 1,2, be two Lévy measures on B.
Assume /, =/ and ¢,(A) — ¢,(A) > 0as A 0. Then A, , = S,
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LEmMmA 3.3. Let p; be a discrete Lévy measure on R™ with ¢,(0%) = .
Then one can construct a discrete Lévy measure pyo = X, P, 0, on R* such
that1 > ¢, >, ", >t,,..., t,10,e,=t,p, 2> 0,asn - »,0 <p, <p;({t,D,
V n, and that ¢, (07) = .

LemmA 3.4. Let pyo = L;,_1P,8; , be the Lévy measure on R* as in the
conclusion of Lemma 3.3. Then one can construct Lévy measures py, py, Pgo
and py; on R which satisfy the following properties:

(a) p, is continuous on R™, ¢,(0%) = © and
(3.6) Y, (A) <9, (271), forall x> 0;

®) A, = and ¢,(A) — ¢,(1) > 0, as A - 0 [hence, also ¢,(07) = «];
(© py = pao + P21, Par(RT) < ®, pyy < pge, 0 € A N and

(pao — p2o)(R™) < oo, on

Proor orF THEOREM 3.1(a). Clearly, I, implies that 0 € .; hence, from
(8.5), (A1) = C(+). Thus, it is sufficient to prove that C(.#) is a linear
space and that A p,,,) = C(/ ). In fact, once this is done, the proof of (3.1)
follows from (2.1), (2.8) and the fact that w, = 8., , * ¢;-Pois(o, p), where
k(1) = — [g+sl, 1(s)p(ds), if 0 < 7 < 1, and k(r) = — [g+s], (s)p(ds), if 1 <
7 < o; and the fact that a, € C() € C(#) [see (2.4)] Set u =
cl-Pois(a, p); now we will prove (i) C(#) is a linear space and (i) ./, = C(#).
The proof is divided into two parts.

Part I. In this part we prove the above two assertions under the additional
assumption that p has no atom near 0. First consider the case when a, = 6; in
this case we have & = o and M = M [see (2.3)]. Hence, using (2.4) and (3.5),
we get (ii), that is,

(3.7) A = C(A) = C(A).

Next we show that if y € B* and y(x,) # 0, for some x, € L(.#), then
S.,1=R. As y #0 on L(), we can find an u, € ., with y(u,) # 0;
hence there exists an open neighborhood V of u, such that y is nonzero
on V. Thus, since u, € ./, we have (W) > 0 and [y| > 0 on W, where W =
VN /. It is easy to verify that woy~! is i.d. with Lévy measure M, =

Mo y‘l/R N {0} = (0 X p)o(y o ¥)~1/R \{0}). Therefore, we have

|SIdM = x) |, s|< x)) dM
[{0<Is|<1} Y {x;y(x)*o}ly( )l 0<] I—l)(y( ))

> [le(u)l( I Iy(u)l-lfﬂds))‘f(du) — o,

since the integral [ |,c.)-y5p(ds) = %, by I, and [y(w)| > 0, for every u € W
and o(W) > 0. Therefore, by [11], page 293, /., -1 = R.
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Now we prove that ., = L(#). We already know ./, = C(#) ¢ L(#); if
there is a strict 1nclus1on then we can find x, € L(./, ) N C(~ ) and, by the
Hahn-Banach theorem,

(3.8) Yo € B* with y,(xo) <7 =inflys(x): x € C(A)}.

Then, since 6 € C(), we have r < 0; hence y,(x,) < 0. Therefore,
from above, ./, -1 = R. On the other hand, by (8.7) and (3.8), u{x € B:
yo(x) = r} = 1; this is a contradiction. This completes the proof of the two
assertions, under the condition a, = 6.

Now let a, # 6, and set 4 = cl-P01s(M ) = ¢;-Pois(d, p). Now, since a; =
Joaud(du) = a, — a, = 6, it follows, from what we proved above, that ./, is a
linear space and that

(3.9) = C(A4) [=L(A)].

Next let y; = ¢;-Pois(lla, I8, p) and v, =y, f~', where f: R — B is the
map f(s) = —s(a,/lla,lD. Then, from I, and [11], page 293, ./ =R;
hence, using Lemma 1 of [7], #/ =a,R. Now observe that v, = c;-
Pois(lla,18,_,, /a1 £) and that

fi = c;-Pois(a, p)* c;-Pois(lla, 16—, /e s P) = B * V1.
Therefore, by (3.9) and [5], page 307, we have
(3.10) C(A)=FA=FA+A = +a,R.

Now observing that a, € C(.2) [= 2(#,)] [see (2.4) and (3.5)], we have, by
[12], page 352, ./, + ta c ./, for all ¢ > 0, and, by [10], page 38 (where it is
additionally requlred that p 1s continuous on R* and that ./ = [0, ), but
these are not required for the proof of ., — ta, C ./, for ¢ > 0) o, —ta, C
#,, for all ¢ > 0. Consequently, since ., C L(/ ) c L(/ ) = C(A4) [see (2 3),
(2 8) and (3.9)], we have, from (3.10), that , = C(#), completing the proof
of Part 1.

Part II. Now let p be arbitrary and let p, and p; denote the continuous
and discrete parts of p; then, since M(p,) and M(p,) are dominated by M
[= M(p)], both of these are Lévy measures. Since M = M(p,) + M(pd) we
have u = u(p)* u(py). If ¢,(0%) = , then, from Part I, 4, , is a linear

space and .7, , = C(.#3). Therefore, since
Fa = Foo T Fon = C(FE) + Ao
and since 7, € L() [by (2.8)] < L(#) = C(43), we have /] = C(+3)

(= S0 Thus, the only remaining case of interest is when ¢, (O*) < o and

®, (O*) = », To take care of this case, let p,, be the Lévy measure on R*
constructed in Lemma 3.3 for the measure pg- Then, observing that p = pgo +

(p, + (pg — pgo)) (recall that pyo < py), we have that M(p,,) and M(p,,) are
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both Lévy measures on B, where pgo=p. + (pg — pgo). Hence ./, =
Fioa T T paro thus, making use of similar arguments to those above, it
follows that, in order to prove that ./, is a linear space and that -, = C(+),
we need only prove these two assertlons for A, ., We do th1s in the
following:

Let p,, py, pgo and py; be the Lévy measures on R* constructed in Lemma
3.4 for the measure p,,. Using (3.6) and the fact that M(p,,) is a Lévy
measure on B, we have, from the contraction principle ([8], page 64; we thank
Professor Jan Rosinski for bringing this contraction principle to our attention)
that M(p,) is also a Lévy measure on B. Thus, since p, is continuous on R*
and ¢,(0%) = «, we have, from Part I, that ./, , is a linear space and that
Sy = C(A). ‘Since pzl(R ) <o and pyy < pyg, both M(p21) and M(py,)

(p1
[ahé hence, also M(p,)] are Lévy measures on B. Hence, since ./ ~  and

P2
@, A) — <pp(A) — 0 as A » 0, we have, by Lemma 3.2, that ./;L(p) -

u(p1)*
Thus ., , is a linear space and is equal to C(+). Since py(R*) < 0, we

have that / = (Ao ~ o0 )a,, (6], page 333); further, since 0 S

u(pg1)

. N . we have, from Lemma 3.1, that X(#,, ) = 2('/M(P20))' There-

P21

fore, since, by [12] page 352, /., .+ Z(Ay pa)) S Tioyy and since
Trion = Taomy T T oy LrECA M(p,) = M(py,) + M(p21)] we have that
Tion S Triomw — P07 )a,. Consequently, since Fipy = C(A4) is a linear

space and a, € C() c C(+) [recall (2.3) and (2.4)], we have C(A4) c A, pg0)"
But, by (2. 4) and (2.8), -, , € () = L(#}); therefore, since C(.4 )=
L(#), we have ./,  =C(+) [=L(~)). Finally, since pyy < pgo, We
have .~ =/ But, since ./ = C(+) = L() and

m(pgo) m(p20) + m(p20)
7 =/

w(pPao—P20)°
c L(#), we have ./, ‘(oo This completes the proof of part

w(pgo—pP20) =

(a) of the theorem. O

(Pdo)

Proor oF THEOREM 3.1(b). Clearly, we have u, = 8_, (o+)a,)* Ko; also, by
(2.7), we have . = N, .1[U, » A, ] Therefore, by Lemma 3.1, ., and
¥(Ay) are convex cones and (3.2) holds The proof of the stated equlvalence
now follows easily using the Hahn-Banach theorem as in the proof of Theorem
3.1(a) and is omitted. The proof of (3.3) follows trivially from (3.2), (2.5) and
(2.8). O

Proor oF LEMmaA 3.1. Trivially, /4, U {6} 2 /M U {6}, V k, where M,

M /{llxll = A,}; consequently, () 2[U ;. ,4,,], for every n € N. Further
since A, U {0} C[U,.,A,L VY n, we also have 2(#}) c[U . ,A,,] Thus
(A = n>1[Uk>nA)\k] [UkZmOA ], Vm, € N. Up to now no special
property of M is used, and in fact, there is nothing new in this proof; it is
1nc1uded in [10], page 34. To see that X(.#,) = C(.), we first observe that

={tu: te A, ue #} (use Lemma 1 of [7], page 302). Therefore, as
O e A, (A = {Ttiu;: t, € A, u; € A}, where L denotes the sum over
the ﬁnlte elements. Thus, since, clearly, C(A4) = {Zt u:t;>20,u, €A}, we
have that C(-2) 2 X(.#4,). Now, let ¢, > 0 and u, € / then as0 e S, we
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can choose ¢, €./ and k, €N such that ¢,k, — ¢,. Therefore, since
k.t,uy € Z(Ay)and k,t,uy — tou,, we have tou, € X(A,). Thus, as =(A,)
is a closed semigroup, {Zt,u;: ¢; > 0, u; € ./} and, hence, C(.2) = {Lt,u;:
t; =20, u; € A} C X(Hy), proving that C(4) = (A,). O

Proor oF LEMMA 3.2. The hypothesis , =, clearly implies that, for
any sequence {A,}, with 1 >24; > -+ >, > --- and 4,10, A, (M(p)) =
A, (M(p,)) for all k (see Proposition 2.1 for the definition of A, ’s). Now let
x € A, and & > 0; then, by (2.6), there exists a subsequence {A,,)} of {A,}
and x. € A, (M(py) such that lx — (x, — a,¢,(Ay I < /2, for large r.

Then, observing that
”x - (x’ - a”¢P2(Ak(’))),, S||x - (xr - aU‘Dpl()‘k(r)))”

Hlagll @, Arcry) = Lo Akry)|

and using the hypothesis ¢,(A) — ¢,(A) > 0 as A > 0, we get that [x —
(x, — a,0, (M)l <&, for large r; therefore, since x, € A,,»(M(py), for
every r, we have x € A, Thus A, c A, similarly, A, c A,

showing that ., ) = A, O

o

ProOF OF LEMMA 3.3. Since ¢, (0") = o, we can choose distinct 0 < z(P <
1, j=1,...,my, such that X7,uWp,(uPh > 1. Let uf) > --- > ug.?ml)
be the natural order of u{"’s and let v, = u({),, r = 1,2,..., m;. Now noting
that ](o,vml)Spd(ds) = o, with a similar argument, we get v,, ., > -+ > v,
with X720, ,:ps({v,, +;}) = 2. Continuing this process inductively, we get a
sequence {v,} such that 1 >v; > -+ >v, > -+, v, /0 and 7_v,p,(v,}) =
. Now if v,.p;({v,}) = 0 as r — o, then we are done by taking s, = v, and
p, = pg({v, D). If not, then there must exist a subsequence {r,} of {r} and ¢ > 0
such that v, p;({v, }) > ¢, V n. In this case, it suffices to take s, = v, and

p,=¢(,n)", ¥ n. O

Proor oF LEMMA 3.4. (The reader is advised to draw rough sketches of the
functions ¢’s and ¢’s to understand the proof.) Let

t, t —t, .
3 2 , 2 }, with ¢, = 1;
set f(s) =X, _,2a,)”'p,Ir(s) and define p,(ds) = f(s)ds, 0 < s < , where
T,=It,—a,, t,+a,], n € N. Next let 0 <8, <min(l,p,/4}, q, =p, —
2a,B,, VY n € N (note that 0 < g, < p,). Let py, and p,, denote, respectively,
the measures on R™ defined by X;_,q,6,, and g(s)ds, where g(s)=
X -1B.Ir(s), s € R™; finally, define p, = pyy + py;.

~ Clearly, p; is a continuous measure on R*, ./ =./ (= U,T, U {0},
0 €. . Trivially, p(C)=0, i=1,2, where C=R™\ U,V, and V, =
(¢, — a,, t, +a,). Next, observing that [r py(ds) = 2a,B,, we have

n—1 n

0<a,< min{
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po(R*) = 2Y% _a,B, < (recall that 0 <8, <1 and ¥%_,a, < »). This,
along with 0 < g, < p,,, shows that py, < pg,, that p,, is a Lévy measure on
R™* and that (p o — pso(R*) < ®». Now note that

| spi(ds) =t,p, and
T,

(3.11)
[ s%u(ds) = (2a,) 'p,[203 + 6t2a,] < 4t2p,;
Tll

therefore, since p;o = X5, _ 1P, 9, is a Lévy measureon R* and ¥, _,t,p, = ,
we have that p, is a Lévy measure on R™* [recalhng that p,(C) = 0]
and that ¢,(0") = . Further, the first equation in (3.11), the facts that
,[T sz(dS) Qntn + fT Sg(S) dS - qntn + 2aan n = t and [T"spl(ds) = DPn
and that p(C)=0 together imply

(3.12) ¢,,(2) =¢,(A) =¢,(A) and ¢, (A) =4,(A), viecC
and

Ppulln T ) <@,(A), P (A) <o, (t, +a,) +t,p,,
VieV,.

Therefore, since ¢, = ¢,p, = 0, it follows, from (3.13) and the first equation
in (3.12), that lim, _, 0(<,op(/\) ¢,{A)) = 0. The proof is thus completed except
for the last part in (a), which we prove now.

From the second equation in (3.12) and the nonincreasing property of ¢, ,
we have that, if A € C, then ¢,(\) <y, (27'). If A € (¢, — ,,1,], then
P, <y, @, —a,) =1y, (¢, —a ) U, (/\) < ¢,,{27'1), by the nonincreas-
1ng property of ¢, and z/f , (8. 12) and the facts that t,_1 < (¢, —a,) and
that pg, has Jumps only at t,’s. Next, if ¢, <A < (¢, + a,,), then, since

27, + ) < (@, — a,) (recall a, <t,/3), we have 2~ 0 <(t, —a,).
Therefore using the nonincreasing property of ¢, and ¢, and (3.12) again,

o, (27 1/\)>¢/p(t —a,) =y,(t, a)>1/;()t)|]

d0

(3.13)

4. The supports of Poisson probability measures on E. Let u be a
nondegenerate t-regular probability measure on E (u is defined on the Borel
o-algebra of the topology of E); and let EO = E(u) be defined as in Proposition
2.1(b). Define .7, the support of y, as in Section 2. Let #y be a fixed family
of seminorms generatlng the (L.c.) topology of E, and let #={p € P, p #0
on Ey}. Then, V p € &, the normed space (E,/({p = 0} N E,), |- Il,) and,
hence, also its completion B, is separable, where | - ||, is the natural induced
norm. Furthermore

(4 w(Eo) =1, A= N1 (A),

, = the support of u, = pyem, ", 1 where u, = u/E, and m, is the natural

Hp

projection of E, into B, (see [7], pages 299- 300 and [10], page 29, for details
on these results).
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Now assume that u is a weakly Poisson type (resp., an a-stable, a strictly
a-stable) probability measure, that is, each finite-dimensional projection of u is
a translated Poisson (resp., an a-stable, a strictly a-stable) probability mea-
sure. It follows that u, is a translated centered Poisson (resp., an a-stable, a
strictly a-stable) probability measure on B, (the result in [9], page 313, is
needed here). In the following, the Lévy measure of u p» Will be denoted by M,
the statement that M, = ¥(g, X p,) will have a similar meaning as in Section
2, and the notations g, and M » Will denote measures defined as in (2.3) with
o and M replaced, respectively, by o, and M. Further, if 41, is symmetric, we
will take M » and o, also symmetric. Finally, if u, is degenerate, we will take,
by convention, ¢, =M, =J,=M,=0 and 2(p/Mp) = C(v{;p) = E(/Mp) =
C(A4) = (0).

Using the above notation and conventions, we now state the main result
and a corollary. The proofs of these follow immediately using the above facts,
(4.1), Theorem 3.1 and Corollary 3.1, and are, therefore, omitted.

THEOREM 4.1. Let p be a 7-regular weakly Poisson type probability mea-
sure on E and assume M,, = ¥(o, X p,), V p € &. Then we have the follow-

ing:

(@ If 2, X07) [= fo,1y85p,(8) ds] = =, whenever ., = 8,y * €1-Pois(ay,, p,,) is
nondegenerate, then Ngm, 1(E(L/Mp)) and Ngm, 1(C(u{;p)) are equal linear
spaces (denoted -Z,) and

(4.2) A =b,+4, foranyb, € N7 (x, + Z(A))-
i

®) If p, =coPois(o,,p,), ¥ p € P, and if cppp(0+) <o and 0 € Q/;p
whenever ., is nondegenerate, then . 15 a convex cone and

(4.3) =0 7 (2(A,)) = N 7 (C(4)),
and #, = Eo(n) « YV y € E*, which is nonzero on E,, .1 =R.

(©) If p is symmetric and if, V p for which K, is nondegenerate, either
p,(07) = or p,(07) <o and 0 € L/;p, then the convex cones in (4.3) are
linear spaces and each is equal to 7,

COROLLARY 4.1. Let u be a t-regular weakly a-stable probability measure
on E so that M, = y(o,, X s;8*®). Then we have the following:

(@ If 1 <a <2, then / =b, + 2, [see (4.2)]; further,if 1 <a <2 and
w is strictly stable, then ./, = 2Z,. .

(b) If 0 < @ < 1and if u is strictly stable, then . is equal to either of the
equal cones appearing in (4.3), otherwise it is a translate (by x,,) of any of these
equal cones, where x, is the centering element of . Further, the analog of the
last statement in Theorem 4.1(b) holds.

(©) If u is symmetric, then the convex cones in (4.3) are linear spaces and
each is equal to .
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REMARK 4.2. Using the same methods as noted above, versions of both of
these results can be proved for weakly Poisson type and weakly «-stable
probability measures u which are defined on the cylinder o-algebra (rather
than on the Borel o-algebra) of E. In this case, the hypothesis of 7-regularity
of u is replaced by “E is u-reductible”’, and the support of w is defined as in
[9], pages 27-28. These results were included in an earlier version of the paper,
but are excluded from this version for brevity. Theorem 3.1(b) and the
just-noted versions of Theorem 4.1(b) and Corollary 4.1(b) complement Propo-
sition 4 and Theorem 1 of [10]. However, since the proof of these [except
perhaps for proving that ./ is a convex cone in Theorem 3.1(b)] follow
directly from Proposition 4 of [10], we do not claim any credit for these.
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