SUPPORTS OF CERTAIN INFINITELY DIVISIBLE PROBABILITY MEASURES ON LOCALLY CONVEX SPACES¹

By Balram S. Rajput

University of Tennessee, Knoxville

Let **B** be a separable Banach space and let μ be a centered Poisson probability measure on **B** with Lévy measure M. Assume that M admits a polar decomposition in terms of a finite measure σ on the unit sphere of **B** and a Lévy measure ρ on $(0, \infty)$. The main result of this paper provides a complete description of the structure of \mathcal{L}_{μ} , the support of μ . Specifically, it is shown that: (i) if $\int_{(0,1]} s\rho(ds) = \infty$, then \mathcal{L}_{μ} is a linear space and is equal to the closure of the semigroup generated by \mathcal{L}_{M} (the support of M) and the negative of the barycenter of σ ; and (ii) if $\int_{(0,1]} s\rho(ds) < \infty$ and zero is in the support of ρ , then \mathcal{L}_{μ} is a convex cone and is equal to the closure of the semigroup generated by \mathcal{L}_{M} . The result (i) yields an affirmative answer to the question, open for some time, of whether the support of a stable probability measure of index $1 \le \alpha < 2$ on B is a translate of a linear space. Analogs of these results, for both Poisson and stable probability measures defined on general locally convex spaces, are also provided.

1. Introduction. This paper provides a complete description of the structure of the supports of general (not necessarily symmetric) Poisson probability measures [defined on general locally convex (l.c.) spaces] whose Lévy measures admit a polar-type decomposition. This work is inspired by and completes a result of de Acosta [3] and several results of Tortrat [10], [11].

The core result is Theorem 3.1(a). It shows that if the Lévy measure M of a centered Poisson probability measure μ on a separable Banach space \mathbf{B} admits a polar decomposition in terms of a finite measure σ on the unit sphere of \mathbf{B} and a (Lévy) measure ρ on $(0,\infty)$ which satisfies $\int_{(0,1]} s \rho(ds) = \infty$, then \mathcal{S}_{μ} , the support of μ , is a (closed) linear space and it is equal to the closure of the semigroup generated by \mathcal{S}_{M} , the support of M, and the negative of the barycenter of σ . This result completes and encompasses several results of Tortrat ([10], Theorems 2(i), 3, and 4 and Corollary 1; [11], Proposition 1 and Theorem 3'). It also settles two of his conjectures, which state that, under the hypotheses of Theorem 3.1(a), \mathcal{S}_{μ} may fail to be a linear space in the infinite-dimensional case even when \mathbf{B} is a Hilbert space ([10], page 41) and that \mathcal{S}_{μ} "presque sûr" appears to be a linear space in the finite-dimensional case ([11], page 294). We also prove a companion result to Theorem 3.1(a) [Theorem 3.1(b)]. It shows that if $\int_{(0,1]} s \rho(ds) < \infty$ and if 0 belongs to the

The Annals of Probability.

www.jstor.org

Received November 1988; revised October 1991.

¹Research partially supported by AFSOR Grant 87-0136, and, at the time of the revision, by AFSOR Grant 90-0168.

AMS 1991 subject classifications. Primary 60B11; secondary 60E07.

Key words and phrases. Infinitely divisible and stable probability measures, topological support.

support of ρ , then \mathscr{I}_{μ} is a translate of a (closed) convex cone and that this cone is equal to the closure of the semigroup generated by \mathscr{I}_{M} . In this result we also provide a necessary and sufficient condition in order for this cone to be a linear space. In addition, we provide, in Theorems 4.1(a) and 4.1(b), appropriate analogs of Theorems 3.1(a) and 3.1(b), respectively, for probability measures defined on general l.c. spaces.

Let μ be an α -stable, $1 \le \alpha < 2$, probability measure on \mathbf{B} ; the question of whether \mathscr{S}_{μ} is a translate of a linear space (without any restrictive hypotheses on the space or on the measure) has been open for some time (see [3], page 874, Theorem 5.2; [10], pages 38–39, Theorems 2 and 3; and [11], pages 294–295, Corollary and Remark). The core result and its analog in l.c. spaces yield two corollaries which answer this question in the affirmative for measures defined not only on \mathbf{B} but also on general l.c. spaces. These complete the results of de Acosta and Tortrat just noted as well as pertinent results obtained in [2], [5] and [6].

The methods of proof used are refinements of those exploited earlier in [4], [7] and [10–12]. The organization of the rest of the paper is as follows: Section 2 contains preliminaries. Section 3 contains the core result, its companion result and a few of their corollaries. Section 4 contains the analogs of results of Section 3 for measures defined on general l.c. spaces.

2. Preliminaries. Throughout, **B** and **E** will denote, respectively, a separable Banach space and a l.c. space; further, \mathbf{B}^* and \mathbf{E}^* will denote, respectively, the topological duals of **B** and **E**. For a subset of A of **B**, the closure of the linear space (resp., the convex cone) generated by A will be denoted by $\mathbf{L}(A)$ [resp., by $\mathbf{C}(A)$]. Unless stated otherwise, all measures on a topological space X are assumed to be defined on the Borel σ -algebra of X; for a set A in X, \overline{A} will denote the closure of A.

Let ν be a finite or infinite measure on a separable metric space X. Then the *support* of ν , denoted throughout by \mathscr{S}_{ν} , is, by definition, the intersection of all closed sets F with $\nu(F^c) = 0$, where, throughout, for a set A, A^c denotes the complement of A. Clearly, $\mathscr{S}_{\nu} = \{x \in X : \nu(V) > 0\}$, for every open neighborhood V of x. If $X = \mathbf{B}$, then the *linear support* of ν , denoted throughout by $\mathscr{L}\mathscr{S}(\nu)$, is the intersection of all closed linear subspaces G of \mathbf{B} with $\nu(G^c) = 0$. It is easy to see that

(2.1)
$$\mathscr{L}\mathscr{I}(\nu) = \mathbf{L}(\mathscr{I}_{\nu}); \qquad \mathscr{L}\mathscr{I}(\nu) = \mathscr{I}_{\nu}, \text{ if } \mathscr{I}_{\nu} \text{ is linear.}$$

Let M be a finite or infinite measure on ${\bf B}$. If M admits a polar decomposition, that is, $M=(\sigma\times\rho)\circ\Psi^{-1}$, where Ψ is the topological isomorphism from $\partial\Delta\times(0,\infty)$ onto ${\bf B}\setminus\{\theta\}$ defined by $\Psi(u,t)=tu$, and where σ and ρ are, respectively, a finite measure on $\partial\Delta$ (the boundary of $\Delta=\{x\in{\bf B}:\|x\|\leq 1\}$ and a measure on $(0,\infty)$ (θ being the zero element of ${\bf B}$), then we shall write, throughout, $M=\Psi(\sigma\times\rho)$.

Now let $M = \Psi(\sigma \times \rho)$ be a Lévy measure [therefore, ρ is also Lévy on $R^+ = (0, \infty)$]. Following [1], the τ -centered Poisson probability measure on \mathbf{B} with Lévy measure M will be denoted, throughout, by c_τ -Pois(M) or by

 c_{τ} -Pois (σ, ρ) , $0 \le \tau \le \infty$. If $\tau = 0$ (resp., $\tau = \infty$), it is assumed here and elsewhere that $\int_{\Lambda} ||x|| \ dM < \infty$ (resp., $\int_{\Lambda^c} ||x|| \ dM < \infty$).

Let $M=\Psi(\sigma\times\rho)$ be a Lévy measure on **B**. The barycenter $\int_{\partial\Delta}\!u\,\sigma(du)$ and, for a fixed $\tau>0$, the function $\lambda\mapsto\int_{(\lambda,\,\tau]}\!s\,\rho(ds),\ 0<\lambda<\tau$, we shall denote, throughout, by $a_{\sigma}(\equiv a)$ and $\varphi_{\tau,\,\rho}(\equiv\varphi_{\tau})$, respectively. Further, throughout, we shall use the notation $\mathbf{I}_j,\ j=1,2$, to denote the following integral conditions on M:

(2.2)
$$\begin{aligned} \mathbf{I}_{1} \colon & \int_{\Delta} \|x\| \, dM = \infty \quad \big(\Leftrightarrow \varphi_{1,\,\rho}(0^{+}) = \infty \big); \\ \mathbf{I}_{2} \colon & \int_{\Delta} \|x\| \, dM < \infty \quad \big(\Leftrightarrow \varphi_{1,\,\rho}(0^{+}) < \infty \big). \end{aligned}$$

Finally, we shall use the notation $\tilde{\sigma}$ ($\equiv \tilde{\sigma}_a$) and \tilde{M} ($\equiv \tilde{M}_a$) for the measures defined, respectively, by

(2.3)
$$\tilde{\sigma} = \begin{cases} \sigma, & \text{if } a = \theta, \\ \sigma + \|a\| \delta_{\{-a/\|a\|\}}, & \text{if } a \neq \theta, \end{cases}$$

$$\tilde{M} = (\tilde{\sigma} \times \rho) \circ \Psi^{-1}.$$

where $\delta_{\{\cdot\}}$ is the Dirac measure. The Hahn–Banach theorem yields

(2.4)
$$a_{\sigma} \in \mathbf{C}(\mathscr{S}_{\sigma}), \text{ hence, by (2.3), } \mathbf{L}(\mathscr{S}_{\sigma}) = \mathbf{L}(\mathscr{S}_{\tilde{\sigma}}).$$

Therefore, if $\mathbf{C}(\mathscr{S}_{\sigma})$ is a linear space, then

(2.5)
$$\mathbf{C}(\mathscr{S}_{\sigma}) = \dot{\mathbf{L}}(\mathscr{S}_{\sigma}) \qquad \left[= \mathbf{L}(\mathscr{S}_{\tilde{\sigma}}) = \mathbf{C}(\mathscr{S}_{\tilde{\sigma}}) \right].$$

Now we state two preliminary results [Propositions 2.1(a) and 2.1(b)]; for a proof of (a) see [10], page 39; a proof of (b) can be provided using (2.1) and standard techniques. We will need one additional notation: For a measure γ on **B**, following [10], page 34, we shall denote by $\Sigma(\mathscr{S}_{\gamma})$ the closure of the semigroup generated by \mathscr{S}_{γ} and $\{\theta\}$.

Proposition 2.1. Let $M=\Psi(\sigma\times\rho)$ by a Lévy measure on ${\bf B}$ and let $\mu_{\tau}\equiv c_{\tau}\text{-Pois}(\sigma,\rho),\ 0\leq\tau\leq\infty.$

(a) If $0 < \tau \le \infty$, then, for any sequence $\tau > \lambda_n \downarrow 0$,

$$(2.6) \quad \mathscr{S}_{\mu_{\tau}} = \bigcap_{m>1} \left[\bigcup_{n>m} \left\{ \overline{A}_{\lambda_n} - a_{\sigma} \varphi_{\tau}(\lambda_n) \right\} \right] = \bigcap_{m>1} \left[\bigcup_{n>m} \left\{ A_{\lambda_n} - a_{\sigma} \varphi_{\tau}(\lambda_n) \right\} \right];$$

if $\tau = 0$, then, for any sequence $\lambda_n \downarrow 0$,

(2.7)
$$\mathscr{I}_{\mu_0} = \bigcap_{m>1} \left[\bigcup_{n>m} \overline{A}_{\lambda_n} \right] = \bigcap_{m>1} \left[\bigcup_{n>m} A_{\lambda_n} \right],$$

where A_{λ_n} is the semigroup generated by $\mathscr{S}_{M/\{\|x\| \geq \lambda_n\}} \cup \{\theta\}$.

(b) For any $0 \le \tau \le \infty$, set $\mathbf{B}_0(\mu_\tau) = \{x \in \mathbf{B}: y(x) = 0, \text{ for all } y \in B^* \text{ with } \mu_\tau \circ y^{-1} = \delta_{\{0\}}\}$. Then

(2.8)
$$\mathbf{B}_{0}(\mu_{\tau}) = \mathcal{L}(\mu_{\tau}) \Big(= \mathbf{L}(\mathscr{S}_{\mu_{\tau}}) \Big) = \mathcal{L}(\sigma) \Big(= \mathbf{L}(\mathscr{S}_{\sigma}) \Big)$$
$$= \mathcal{L}(M) \Big(= \mathbf{L}(\mathscr{S}_{M}) \Big).$$

3. The supports of Poisson probability measures on B. We first state our main theorem and several of its implications; then we state several lemmas necessary to prove the theorem. Next we present our proof of the theorem; the proofs of the lemmas are given after the proof of the theorem.

THEOREM 3.1. Let $M = \Psi(\sigma \times \rho)$ be a Lévy measure on \mathbf{B} , let $0 \le \tau \le \infty$ and let $\mu_{\tau} = c_{\tau}\text{-Pois}(M)$ [$\equiv c_{\tau}\text{-Pois}(\sigma, \rho)$]. Then the following hold:

(a) If M satisfies \mathbf{I}_1 [see (2.2)], then $\Sigma(\mathscr{S}_{\tilde{M}})$, $\mathbf{C}(\mathscr{S}_{\tilde{\sigma}})$ and $\mathscr{S}_{\mu_{\tau}}$, $0<\tau\leq\infty$, are linear spaces and

(3.1)
$$\mathscr{I}_{\mu_{\tau}} = \Sigma(\mathscr{I}_{\tilde{M}}) = \mathbf{C}(\mathscr{I}_{\tilde{\sigma}}) = \mathbf{B}_{0}(\mu_{\tau}) = \mathbf{L}(\mathscr{I}_{\sigma}) = \mathbf{L}(\mathscr{I}_{M}),$$

for every $0 < \tau \leq \infty$; in particular, all the supports $\mathscr{I}_{\mu_{\tau}}$'s are identical.

(b) If M satisfies \mathbf{I}_2 and $0 \in \mathscr{S}_{\rho}$, then \mathscr{S}_{μ_0} and $\Sigma(\mathscr{S}_M)$ are convex cones; moreover,

$$(3.2) \quad \mathscr{S}_{\mu_0} = \Sigma(\mathscr{S}_M) = \mathbf{C}(\mathscr{S}_\sigma) \quad and \quad \mathscr{S}_{\mu_\tau} = -a_\sigma \varphi_\tau(0^+) + \Sigma(\mathscr{S}_M),$$

for all $0 < \tau \le \infty$ (recall $\varphi_{\tau} = \varphi_{\tau,\rho}$). Further, $\mathscr{I}_{\mu_{\tau}}$, for one (equivalently, for all) $\tau \in [0,\infty]$, is a linear space if and only if \mathscr{I}_{σ} (equivalently, \mathscr{I}_{M}) is not contained in the half-space $\{y \ge 0\}$, for any $y \in \mathbf{B}^*$ with $y \ne 0$ on $\mathbf{L}(\mathscr{I}_{\sigma})$. If this condition is satisfied, then $\forall \tau$,

(3.3)
$$\mathscr{I}_{\mu_{\tau}} = \Sigma(\mathscr{I}_{M}) = \mathbf{C}(\mathscr{I}_{\sigma}) = \mathbf{B}_{0}(\mu_{\tau}) = \mathbf{L}(\mathscr{I}_{\sigma}) = \mathbf{L}(\mathscr{I}_{M}),$$

in particular, all supports $\mathscr{S}_{\mu_{\tau}}$ are identical.

Let ν be an infinitely divisible (i.d.) probability measure on **B** (without a Gaussian component) with Lévy measure $M = \Psi(\sigma \times \rho)$. Then, for any $0 \le \tau \le \infty$,

(3.4)
$$\nu = \delta_{\{x_{\tau}\}} * c_{\tau} \operatorname{Pois}(M) = \delta_{\{x_{\tau}\}} * c_{\tau} \operatorname{Pois}(\sigma, \rho),$$

for some $x_{\tau} \in \mathbf{B}$, where, recall, it is assumed that the condition (i) $\int_{[1,\infty)} s\rho(ds) < \infty$ [resp., (ii) $\int_{(0,1]} s\rho(ds) < \infty$] is satisfied if $\tau = \infty$ (resp., $\tau = 0$). For t>0, the measure $\nu^t = \delta_{\{tx_{\tau}\}} * \operatorname{Pois}(tM = \delta_{\{tx_{\tau}\}} * \operatorname{Pois}(\sigma, t\rho)$ is called the t-th root of ν . If ν is symmetric, then one can take M and σ symmetric and, hence, one can write $\nu = c_1\operatorname{-Pois}(M) = c_1\operatorname{-Pois}(\sigma, \rho)$ [resp., $c_0\operatorname{-Pois}(M) = c_0\operatorname{-Pois}(\sigma, \rho)$] under the condition \mathbf{I}_1 (resp., \mathbf{I}_2).

Recall that a measure ν_{α} on ${\bf B}$ is called α -stable, $0<\alpha<2\Leftrightarrow\nu_{\alpha}$ admits the representation (3.4), with $\rho_{\alpha}(ds)=s^{-(1+\alpha)}ds$. Clearly, since ρ_{α} satisfies the above condition (i) [resp., (ii)] if $1<\alpha<2$ (resp., $0<\alpha<1$), one can take $\tau=\infty$ (resp., $\tau=0$), in (3.4), if $1<\alpha<2$ (resp., $0<\alpha<1$). Recall also that ν_{α}

is called *strictly* α -stable $\Leftrightarrow \nu_{\alpha}^{t}(\cdot) = \nu_{\alpha}(t^{-1/\alpha} \cdot)$ for all t > 0; in the case $1 < \alpha < 2$ (resp., $0 < \alpha < 1$), this is equivalent to taking $x_{\infty} = \theta$ (resp., $x_{0} = \theta$) in (3.4).

In view of the above observations and the facts that $\mathscr{I}_{t\gamma} = \mathscr{I}_{\gamma}$ for a measure γ on \mathbf{B} , that $\widetilde{tM} = t\widetilde{M}$ and that $\alpha_{\sigma} = \theta$ (and, hence, $\widetilde{\sigma} = \sigma$, $\widetilde{M} = M$) when σ is symmetric, Theorem 3.1 immediately yields the following.

COROLLARY 3.1. Let ν be an i.d. probability measure on **B** with representation (3.4). Then we have the following:

- (a) If ρ satisfies \mathbf{I}_1 and $0 < \tau \leq \infty$, then \mathscr{I}_{ν^t} is the translate by tx_{τ} of any one of the equal linear spaces appearing in (3.1). This applies, in particular, when ν is α -stable $1 \leq \alpha < 2$; further, if ν is strictly α -stable, $1 < \alpha < 2$, then \mathscr{I}_{ν^t} is equal to any one of these linear spaces.
- (b) If ρ satisfies \mathbf{I}_2 (and $0 \leq \tau \leq \infty$), then \mathscr{I}_{ν^t} is a translate by $t(x_{\tau} a_{\sigma}\varphi_{\tau}(0^+))$ of the convex cone $\mathbf{C}(\mathscr{I}_{\sigma}) [\equiv \mathbf{\Sigma}(\mathscr{I}_{\nu})] [\varphi_0(0^+) \equiv 0]$; further, \mathscr{I}_{ν^t} is the translate by tx_{τ} of any one of the equal linear spaces appearing in (3.3) \Leftrightarrow the condition for the linearity for $\mathscr{I}_{\mu_{\tau}}$ in Theorem 3.1 is satisfied. These apply, in particular, if ν is α -stable, $0 < \alpha < 1$. Further, if ν is strictly α -stable, $0 < \alpha < 1$, then $\mathscr{I}_{\nu^t} = \mathbf{C}(\mathscr{I}_{\sigma})$, and the obvious analogous statement holds for the linearity of \mathscr{I}_{ν^t} .
- (c) If ν is symmetric (with σ and M also taken symmetric) then, under either one of the conditions \mathbf{I}_1 or \mathbf{I}_2 , $\mathbf{C}(\mathscr{S}_{\sigma})$ and $\mathbf{\Sigma}(\mathscr{S}_M)$ are linear spaces and $\mathscr{S}_{\nu^t} = \mathbf{C}(\mathscr{S}_{\sigma}) = \mathbf{\Sigma}(\mathscr{S}_M) = \mathbf{L}(\mathscr{S}_{\sigma}) = \mathbf{L}(\mathscr{S}_M)$. All of these apply, in particular, to symmetric α -stable measures, \forall α .

Whenever we encounter several Lévy measures having the *same* first component σ but varying second component we will write, for clarity, $M(\rho_r)$ for M, if the second component is ρ_r . Further, we will write $\mu(\rho_r)$ for the probability measure c_1 -Pois (σ, ρ_r) . In addition, for a given Lévy measure ρ_r on R^+ , we shall write ψ_{ρ_r} for the function $\psi_{\rho_r}(\lambda) = \rho_r([\lambda, \infty))$, $\lambda > 0$; finally, we shall also use the notation φ_{ρ_r} for φ_{1,ρ_r} .

Lemma 3.1. Let $M = \Psi(\sigma \times \rho)$ be a finite (or infinite) Lévy measure on \mathbf{B} . Assume that $0 \in \mathscr{S}_{\rho}$. Then $\Sigma(\mathscr{S}_{M})$ is a convex cone and, $\forall m_{0} \in N \equiv \{1, 2, \ldots\}$,

(3.5)
$$\mathbf{C}(\mathscr{S}_{\sigma}) = \mathbf{\Sigma}(\mathscr{S}_{M}) = \bigcap_{n \geq 1} \left[\bigcup_{k \geq n} A_{\lambda_{k}} \right] = \left[\bigcup_{k \geq m_{0}} A_{\lambda_{k}} \right],$$

where $\{\lambda_k\}$ is any sequence with $1 > \lambda_k \downarrow 0$ and the A_{λ_k} 's are as defined in Proposition 2.1.

From (3.5) one notes that $\Sigma(\mathscr{S}_M)$ is independent of any other property of ρ except that $0 \in \mathscr{S}_{\rho}$; this will be used in the following without any specific reference.

Lemma 3.2. Let $M(\rho_i) = \Psi(\sigma \times \rho_i)$, i = 1, 2, be two Lévy measures on **B**. Assume $\mathscr{S}_{\rho_1} = \mathscr{S}_{\rho_2}$ and $\varphi_{\rho_1}(\lambda) - \varphi_{\rho_2}(\lambda) \to 0$ as $\lambda \downarrow 0$. Then $\mathscr{S}_{\mu(\rho_1)} = \mathscr{S}_{\mu(\rho_2)}$.

Lemma 3.3. Let ρ_d be a discrete Lévy measure on R^+ with $\varphi_{\rho_d}(0^+) = \infty$. Then one can construct a discrete Lévy measure $\rho_{d0} = \sum_n p_n \delta_{\{t_n\}}$ on R^+ such that $1 > t_1 > \cdots, > t_n, \ldots, \ t_n \downarrow 0, \ \varepsilon_n = t_n p_n \to 0, \ as \ n \to \infty, \ 0 < p_n \le \rho_d(\{t_n\}), \ \forall \ n, \ and \ that \ \varphi_{\rho_{d0}}(0^+) = \infty.$

LEMMA 3.4. Let $\rho_{d0} = \sum_{n=1}^{\infty} p_n \delta_{\{t_n\}}$ be the Lévy measure on R^+ as in the conclusion of Lemma 3.3. Then one can construct Lévy measures ρ_1 , ρ_2 , ρ_{20} and ρ_{21} on R^+ which satisfy the following properties:

(a) ρ_1 is continuous on R^+ , $\varphi_o(0^+) = \infty$ and

(3.6)
$$\psi_{\rho_1}(\lambda) \leq \psi_{\rho_{d_0}}(2^{-1}\lambda), \text{ for all } \lambda > 0;$$

 $\begin{array}{lll} \text{(b)} \ \mathscr{S}_{\rho_{2}} = \mathscr{S}_{\rho_{1}} \ \ and \ \ \varphi_{\rho_{2}}(\lambda) - \varphi_{\rho_{1}}(\lambda) \to 0, \ \ as \ \lambda \to 0 \ [\ \ hence, \ \ also \ \ \varphi_{\rho_{2}}(0^{+}) = \infty]; \\ \text{(c)} \ \ \rho_{2} = \rho_{20} + \rho_{21}, \quad \rho_{21}(R^{+}) < \infty, \quad \rho_{20} \leq \rho_{d0}, \quad 0 \in \mathscr{S}_{\rho_{20}} \cap \mathscr{S}_{\rho_{21}} \quad \ \ and \\ (\rho_{d0} - \rho_{20})(R^{+}) < \infty. \end{array}$

PROOF OF THEOREM 3.1(a). Clearly, \mathbf{I}_1 implies that $0 \in \mathscr{I}_{\rho}$; hence, from (3.5), $\Sigma(\mathscr{I}_{\tilde{M}}) = \mathbf{C}(\mathscr{I}_{\tilde{\sigma}})$. Thus, it is sufficient to prove that $\mathbf{C}(\mathscr{I}_{\tilde{\sigma}})$ is a linear space and that $\mathscr{I}_{c_1\text{-Pois}(\sigma,\,\rho)} = \mathbf{C}(\mathscr{I}_{\tilde{\sigma}})$. In fact, once this is done, the proof of (3.1) follows from (2.1), (2.8) and the fact that $\mu_{\tau} = \delta_{\{k(\tau)a_{\sigma}\}} * c_1\text{-Pois}(\sigma,\rho)$, where $k(\tau) = -\int_{R} +sI_{(\tau,\,1]}(s)\rho(ds)$, if $0 < \tau < 1$, and $k(\tau) = -\int_{R} +sI_{(1,\,\tau]}(s)\rho(ds)$, if $1 < \tau \leq \infty$; and the fact that $a_{\sigma} \in \mathbf{C}(\mathscr{I}_{\sigma}) \subseteq \mathbf{C}(\mathscr{I}_{\tilde{\sigma}})$ [see (2.4)]. Set $\mu \equiv c_1\text{-Pois}(\sigma,\rho)$; now we will prove (i) $\mathbf{C}(\mathscr{I}_{\tilde{\sigma}})$ is a linear space and (ii) $\mathscr{I}_{\mu} = \mathbf{C}(\mathscr{I}_{\tilde{\sigma}})$. The proof is divided into two parts.

Part I. In this part we prove the above two assertions under the additional assumption that ρ has no atom near 0. First consider the case when $a_{\sigma}=\theta$; in this case we have $\tilde{\sigma}=\sigma$ and $\tilde{M}=M$ [see (2.3)]. Hence, using (2.4) and (3.5), we get (ii), that is,

(3.7)
$$\mathscr{S}_{\mu} = \mathbf{C}(\mathscr{S}_{\tilde{\sigma}}) = \mathbf{C}(\mathscr{S}_{\sigma}).$$

Next we show that if $y \in \mathbf{B}^*$ and $y(x_0) \neq 0$, for some $x_0 \in \mathbf{L}(\mathscr{S}_\sigma)$, then $\mathscr{S}_{\mu \, \circ \, y^{-1}} = R$. As $y \not\equiv 0$ on $\mathbf{L}(\mathscr{S}_\sigma)$, we can find an $u_0 \in \mathscr{S}_\sigma$ with $y(u_0) \neq 0$; hence there exists an open neighborhood V of u_0 such that y is nonzero on V. Thus, since $u_0 \in \mathscr{S}_\sigma$, we have $\sigma(W) > 0$ and |y| > 0 on W, where $W = V \cap \mathscr{S}_\sigma$. It is easy to verify that $\mu \circ y^{-1}$ is i.d. with Lévy measure $M_y \equiv M \circ y^{-1}/R \setminus \{0\} = (\sigma \times \rho) \circ (y \circ \Psi)^{-1}/R \setminus \{0\}$. Therefore, we have

$$\begin{split} \int_{\{0 < |s| < 1\}} &|s| \, dM_y = \int_{\{x : y(x) \neq 0\}} |y(x)| I_{\{0 < |s| \leq 1\}}(y(x)) \, dM \\ &\geq \int_W &|y(u)| \left(\int_{(0, |y(u)|^{-1}]} \!\! s \rho(ds) \right) \!\! \sigma(du) = \infty, \end{split}$$

since the integral $\int_{(0,|y(u)|^{-1}]} s \rho(ds) = \infty$, by \mathbf{I}_1 , and |y(u)| > 0, for every $u \in W$ and $\sigma(W) > 0$. Therefore, by [11], page 293, $\mathscr{S}_{\mu \circ y^{-1}} = R$.

Now we prove that $\mathscr{S}_{\mu}=\mathbf{L}(\mathscr{S}_{\sigma})$. We already know $\mathscr{S}_{\mu}=\mathbf{C}(\mathscr{S}_{\sigma})\subseteq\mathbf{L}(\mathscr{S}_{\sigma})$; if there is a strict inclusion, then we can find $x_0\in\mathbf{L}(\mathscr{S}_{\sigma})\setminus\mathbf{C}(\mathscr{S}_{\sigma})$, and, by the Hahn–Banach theorem,

(3.8)
$$y_0 \in \mathbf{B}^* \text{ with } y_0(x_0) < r \equiv \inf\{y_0(x) : x \in \mathbf{C}(\mathscr{S}_\sigma)\}.$$

Then, since $\theta \in \mathbf{C}(\mathscr{S}_{\sigma})$, we have $r \leq 0$; hence $y_0(x_0) < 0$. Therefore, from above, $\mathscr{S}_{\mu \circ y_0^{-1}} = R$. On the other hand, by (3.7) and (3.8), $\mu\{x \in B: y_0(x) \geq r\} = 1$; this is a contradiction. This completes the proof of the two assertions, under the condition $\alpha_{\sigma} = \theta$.

Now let $a_{\sigma} \neq \theta$, and set $\tilde{\mu} = c_1$ -Pois $(\tilde{M}) = c_1$ -Pois $(\tilde{\sigma}, \rho)$. Now, since $a_{\tilde{\sigma}} = \int_{\partial \Delta} u \, \tilde{\sigma}(du) = a_{\sigma} - a_{\sigma} = \theta$, it follows, from what we proved above, that $\mathscr{I}_{\tilde{\mu}}$ is a linear space and that

(3.9)
$$\mathscr{I}_{\tilde{u}} = \mathbf{C}(\mathscr{I}_{\tilde{\sigma}}) \left[= \mathbf{L}(\mathscr{I}_{\tilde{\sigma}}) \right].$$

Next let $\gamma_1=c_1\text{-Pois}(\|a_\sigma\|\delta_{\{1\}},\rho)$ and $\nu_1=\gamma_1\circ f^{-1}$, where $f\colon R\to B$ is the map $f(s)=-s(a_\sigma/\|a_\sigma\|)$. Then, from \mathbf{I}_1 and [11], page 293, $\mathscr{I}_{\gamma_1}=R$; hence, using Lemma 1 of [7], $\mathscr{I}_{\nu_1}=a_\sigma R$. Now observe that $\nu_1=c_1\text{-Pois}(\|a_\sigma\|\delta_{\{-a_\sigma/\|a_\sigma\|\}},\rho)$ and that

$$\tilde{\mu} = c_1 \operatorname{Pois}(\sigma, \rho) * c_1 \operatorname{Pois}(\|\alpha_{\sigma}\| \delta_{\{-\alpha_{\sigma}/\|\alpha_{\sigma}\|\}}, \rho) = \mu * \nu_1.$$

Therefore, by (3.9) and [5], page 307, we have

(3.10)
$$\mathbf{C}(\mathscr{S}_{\tilde{\sigma}}) = \mathscr{S}_{\tilde{\mu}} = \overline{\mathscr{S}_{\mu} + \mathscr{S}_{\nu_1}} = \overline{\mathscr{S}_{\mu} + \alpha_{\sigma} R}.$$

Now observing that $a_{\sigma} \in \mathbf{C}(\mathscr{S}_{\sigma})$ [= $\mathbf{\Sigma}(\mathscr{S}_{M})$] [see (2.4) and (3.5)], we have, by [12], page 352, $\mathscr{S}_{\mu} + ta_{\sigma} \subseteq \mathscr{S}_{\mu}$, for all $t \geq 0$, and, by [10], page 38 (where it is additionally required that ρ is continuous on R^{+} and that $\mathscr{S}_{\rho} = [0, \infty)$, but these are not required for the proof of $\mathscr{S}_{\mu} - ta_{\sigma} \subseteq \mathscr{S}_{\mu}$, for $t \geq 0$), $\mathscr{S}_{\mu} - ta_{\sigma} \subseteq \mathscr{S}_{\mu}$, for all $t \geq 0$. Consequently, since $\mathscr{S}_{\mu} \subseteq \mathbf{L}(\mathscr{S}_{\sigma}) \subseteq \mathbf{L}(\mathscr{S}_{\sigma}) = \mathbf{C}(\mathscr{S}_{\sigma})$ [see (2.3), (2.8) and (3.9)], we have, from (3.10), that $\mathscr{S}_{\mu} = \mathbf{C}(\mathscr{S}_{\sigma})$, completing the proof of Part I.

Part II. Now let ρ be arbitrary and let ρ_c and ρ_d denote the continuous and discrete parts of ρ ; then, since $M(\rho_c)$ and $M(\rho_d)$ are dominated by M [$\equiv M(\rho)$], both of these are Lévy measures. Since $M = M(\rho_c) + M(\rho_d)$, we have $\mu = \mu(\rho_c) * \mu(\rho_d)$. If $\varphi_{\rho_c}(0^+) = \infty$, then, from Part I, $\mathscr{I}_{\mu(\rho_c)}$ is a linear space and $\mathscr{I}_{\mu(\rho_c)} = \mathbb{C}(\mathscr{I}_{\tilde{\sigma}})$. Therefore, since

$$\mathcal{L}_{\mu} = \overline{\mathcal{L}_{\mu(\rho,l)} + \mathcal{L}_{\mu(\rho,l)}} = \overline{\mathbf{C}(\mathcal{L}_{\tilde{\rho}}) + \mathcal{L}_{\mu(\rho,l)}}$$

and since $\mathscr{S}_{\mu(\rho_d)}\subseteq \mathbf{L}(\mathscr{S}_{\sigma})$ [by (2.8)] $\subseteq \mathbf{L}(\mathscr{S}_{\bar{\sigma}})=\mathbf{C}(\mathscr{S}_{\bar{\sigma}})$, we have $\mathscr{S}_{\mu}=\mathbf{C}(\mathscr{S}_{\bar{\sigma}})$ (= $\mathscr{S}_{\mu(\rho_c)}$). Thus, the only remaining case of interest is when $\varphi_{\rho_c}(0^+)<\infty$ and $\varphi_{\rho_d}(0^+)=\infty$. To take care of this case, let ρ_{d0} be the Lévy measure on R^+ constructed in Lemma 3.3 for the measure ρ_d . Then, observing that $\rho=\rho_{d0}+(\rho_c+(\rho_d-\rho_{d0}))$ (recall that $\rho_{d0}\leq\rho_d$), we have that $M(\rho_{d0})$ and $M(\rho_{d'0})$ are

both Lévy measures on **B**, where $\rho_{d'0} = \rho_c + (\rho_d - \rho_{d0})$. Hence $\mathscr{L}_{\mu} = \mathscr{L}_{\mu(\rho_{d0})} + \mathscr{L}_{\mu(\rho_{d0})}$; thus, making use of similar arguments to those above, it follows that, in order to prove that \mathscr{L}_{μ} is a linear space and that $\mathscr{L}_{\mu} = \mathbf{C}(\mathscr{L}_{\bar{\sigma}})$, we need only prove these two assertions for $\mathscr{L}_{\mu(\rho_{d0})}$. We do this in the following:

Let $\rho_1,\,\rho_2,\,\rho_{20}$ and ρ_{21} be the Lévy measures on $\,R^{\,+}\,$ constructed in Lemma 3.4 for the measure ρ_{d0} . Using (3.6) and the fact that $M(\rho_{d0})$ is a Lévy measure on B, we have, from the contraction principle ([8], page 64; we thank Professor Jan Rosinski for bringing this contraction principle to our attention) that $M(\rho_1)$ is also a Lévy measure on **B**. Thus, since ρ_1 is continuous on R^+ and $\varphi_{\varrho_1}(0^+) = \infty$, we have, from Part I, that $\mathscr{S}_{\mu(\varrho_1)}$ is a linear space and that $\mathscr{I}_{\mu(\rho_1)} = \mathbf{C}(\mathscr{I}_{\tilde{\rho}})$. Since $\rho_{21}(R^+) < \infty$ and $\rho_{20} \le \rho_{d0}$, both $M(\rho_{21})$ and $M(\rho_{20})$ [and, hence, also $M(\rho_2)$] are Lévy measures on **B**. Hence, since $\mathscr{S}_{\rho_1} = \mathscr{S}_{\rho_2}$ and $\varphi_{\varrho_2}(\lambda) - \varphi_{\varrho_1}(\lambda) \to 0$ as $\lambda \to 0$, we have, by Lemma 3.2, that $\mathscr{S}_{\mu(\varrho_2)} = \mathscr{S}_{\mu(\varrho_1)}$. Thus $\mathscr{I}_{\mu(\rho_2)}$ is a linear space and is equal to $\mathbb{C}(\mathscr{I}_{\tilde{\sigma}})$. Since $\rho_{21}(R^+) < \infty$, we have that $\mathscr{S}_{\mu(\rho_{21})} = \Sigma(\mathscr{S}_{M(\rho_{21})}) - \varphi_{\rho_{21}}(0^+)a_{\sigma}$ ([6], page 333); further, since $0 \in$ $\mathscr{S}_{\rho_{21}}\cap\mathscr{S}_{\rho_{20}}$ we have, from Lemma 3.1, that $\Sigma(\mathscr{S}_{M(\rho_{21})})=\Sigma(\mathscr{S}_{M(\rho_{20})})$. Therefore, since, by [12], page 352, $\mathcal{S}_{\mu(\rho_{20})} + \Sigma(\mathcal{S}_{M(\rho_{20})}) \subseteq \mathcal{S}_{\mu(\rho_{20})}$, and since $\mathcal{S}_{\mu(\rho_{2})} = \overline{\mathcal{S}_{\mu(\rho_{20})} + \mathcal{S}_{\mu(\rho_{21})}}$ [recall $M(\rho_{2}) = M(\rho_{20}) + M(\rho_{21})$], we have that $\mathscr{S}_{\mu(\rho_2)} \subseteq \mathscr{S}_{\mu(\rho_{20})} - \varphi_{\rho_2}(0^+)a_{\sigma}$. Consequently, since $\mathscr{S}_{\mu(\rho_2)} = \mathbb{C}(\mathscr{S}_{\tilde{\sigma}})$ is a linear space and $a_{\sigma} \in \mathbf{C}(\mathscr{S}_{\sigma}) \subseteq \mathbf{C}(\mathscr{S}_{\tilde{\sigma}})$ [recall (2.3) and (2.4)], we have $\mathbf{C}(\mathscr{S}_{\tilde{\sigma}}) \subseteq \mathscr{S}_{\mu(\rho_{20})}$. But, by (2.4) and (2.8), $\mathscr{S}_{\mu(\rho_{20})} \subseteq \mathbf{L}(\mathscr{S}_{\sigma}) = \mathbf{L}(\mathscr{S}_{\tilde{\sigma}})$; therefore, since $\mathbf{C}(\mathscr{S}_{\tilde{\sigma}}) = \mathbf{L}(\mathscr{S}_{\tilde{\sigma}})$ $\mathbf{L}(\mathscr{S}_{\tilde{\sigma}})$, we have $\mathscr{S}_{\mu(\rho_{20})} = \mathbf{C}(\mathscr{S}_{\tilde{\sigma}})$ [$\equiv \mathbf{L}(\mathscr{S}_{\sigma})$]. Finally, since $\rho_{20} \leq \rho_{d0}$, we have $\mathscr{I}_{\mu(\rho_{d0})} = \overline{\mathscr{I}_{\mu(\rho_{20})} + \mathscr{I}_{\mu(\rho_{d0} - \rho_{20})}}$. But, since $\mathscr{I}_{\mu(\rho_{20})} = \mathbf{C}(\mathscr{I}_{\sigma}) = \mathbf{L}(\mathscr{I}_{\sigma})$ and $\mathscr{S}_{\mu(\rho_{d0}-\rho_{20})}\subseteq\mathbf{L}(\mathscr{S}_{\sigma})$, we have $\mathscr{S}_{\mu(\rho_{d0})}=\mathscr{S}_{\mu(\rho_{20})}$. This completes the proof of part (a) of the theorem. \Box

PROOF OF THEOREM 3.1(b). Clearly, we have $\mu_{\tau} = \delta_{\{-\varphi_{\tau}(0^+)a_\sigma\}} * \mu_0$; also, by (2.7), we have $\mathscr{L}_{\mu_0} = \bigcap_{m \geq 1} \dot{[} \bigcup_{n \geq m} A_{\lambda_n} \dot{]}$. Therefore, by Lemma 3.1, \mathscr{L}_{μ_0} and $\Sigma(\mathscr{L}_M)$ are convex cones and (3.2) holds. The proof of the stated equivalence now follows easily using the Hahn-Banach theorem as in the proof of Theorem 3.1(a) and is omitted. The proof of (3.3) follows trivially from (3.2), (2.5) and (2.8). \Box

PROOF OF LEMMA 3.1. Trivially, $\mathscr{S}_M \cup \{\theta\} \supseteq \mathscr{S}_{M_{\lambda_k}} \cup \{\theta\}$, $\forall \ k$, where $M_{\lambda_k} = M/\{\|x\| \ge \lambda_k\}$; consequently, $\Sigma(\mathscr{S}_M) \supseteq [\bigcup_{k \ge n} A_{\lambda_k}]$, for every $n \in N$. Further, since $\mathscr{S}_M \cup \{\theta\} \subseteq [\bigcup_{k \ge n} A_{\lambda_k}]$, $\forall \ n$, we also have $\Sigma(\mathscr{S}_M) \subseteq [\bigcup_{k \ge n} A_{\lambda_k}]$. Thus $\Sigma(\mathscr{S}_M) = \bigcap_{n \ge 1} [\bigcup_{k \ge n} A_{\lambda_k}] = [\bigcup_{k \ge m_0} A_{\lambda_k}]$, $\forall m_0 \in N$. Up to now no special property of M is used, and in fact, there is nothing new in this proof; it is included in [10], page 34. To see that $\Sigma(\mathscr{S}_M) = \mathbb{C}(\mathscr{S}_\sigma)$, we first observe that $\mathscr{S}_M = \{tu \colon t \in \mathscr{S}_\rho, \ u \in \mathscr{S}_\sigma\}$ (use Lemma 1 of [7], page 302). Therefore, as $0 \in \mathscr{S}_\rho$, $\Sigma(\mathscr{S}_M) = \{\overline{\Sigma} t_i u_i \colon t_i \in \mathscr{S}_\rho, \ u_i \in \mathscr{S}_\sigma\}$, where Σ denotes the sum over the finite elements. Thus, since, clearly, $\mathbb{C}(\mathscr{S}_\sigma) = \{\overline{\Sigma} t_i u_i \colon t_i \ge 0, \ u_i \in \mathscr{S}_\sigma\}$, we have that $\mathbb{C}(\mathscr{S}_\sigma) \supseteq \Sigma(\mathscr{S}_M)$. Now, let $t_0 > 0$ and $u_0 \in \mathscr{S}_\sigma$; then, as $0 \in \mathscr{S}_\rho$, we

can choose $t_n \in \mathscr{S}_\rho$ and $k_n \in N$ such that $t_n k_n \to t_0$. Therefore, since $k_n t_n u_0 \in \Sigma(\mathscr{S}_M)$ and $k_n t_n u_0 \to t_0 u_0$, we have $t_0 u_0 \in \Sigma(\mathscr{S}_M)$. Thus, as $\Sigma(\mathscr{S}_M)$ is a closed semigroup, $\{\Sigma t_i u_i \colon t_i \geq 0, \ u_i \in \mathscr{S}_\sigma\}$ and, hence, $\mathbf{C}(\mathscr{S}_\sigma) = \{\overline{\Sigma} t_i u_i \colon t_i \geq 0, \ u_i \in \mathscr{S}_\sigma\} \subseteq \Sigma(\mathscr{S}_M)$, proving that $\mathbf{C}(\mathscr{S}_\sigma) = \Sigma(\mathscr{S}_M)$. \square

PROOF OF LEMMA 3.2. The hypothesis $\mathscr{S}_{\rho_1}=\mathscr{S}_{\rho_2}$ clearly implies that, for any sequence $\{\lambda_k\}$, with $1>\lambda_1>\cdots>\lambda_n>\cdots$ and $\lambda_n\downarrow 0$, $A_{\lambda_k}(M(\rho_1))=A_{\lambda_k}(M(\rho_2))$ for all k (see Proposition 2.1 for the definition of A_{λ_k} 's). Now let $x\in\mathscr{S}_{\mu(\rho_1)}$ and $\varepsilon>0$; then, by (2.6), there exists a subsequence $\{\lambda_{k(r)}\}$ of $\{\lambda_k\}$ and $x_r\in A_{\lambda_{k(r)}}(M(\rho_1))$ such that $\|x-(x_r-a_\sigma\varphi_{\rho_1}(\lambda_{k(r)}))\|<\varepsilon/2$, for large r. Then, observing that

$$\begin{aligned} \left\| x - \left(x_r - a_{\sigma} \varphi_{\rho_2} (\lambda_{k(r)}) \right) \right\| &\leq \left\| x - \left(x_r - a_{\sigma} \varphi_{\rho_1} (\lambda_{k(r)}) \right) \right\| \\ &+ \left\| a_{\sigma} \right\| \left| \varphi_{\rho_1} (\lambda_{k(r)}) - \varphi_{\rho_2} (\lambda_{k(r)}) \right| \end{aligned}$$

and using the hypothesis $\varphi_{\rho_1}(\lambda) - \varphi_{\rho_2}(\lambda) \to 0$ as $\lambda \to 0$, we get that $\|x - (x_r - a_\sigma \varphi_{\rho_2}(\lambda_{k(r)}))\| < \varepsilon$, for large r; therefore, since $x_r \in A_{\lambda_k(r)}(M(\rho_2))$, for every r, we have $x \in \mathscr{I}_{\mu(\rho_2)}$. Thus $\mathscr{I}_{\mu(\rho_1)} \subseteq \mathscr{I}_{\mu(\rho_2)}$; similarly, $\mathscr{I}_{\mu(\rho_2)} \subseteq \mathscr{I}_{\mu(\rho_1)}$, showing that $\mathscr{I}_{\mu(\rho_1)} = \mathscr{I}_{\mu(\rho_2)}$. \square

PROOF OF LEMMA 3.3. Since $\varphi_{\rho_d}(0^+)=\infty$, we can choose distinct $0< u_j^{(1)}<1,\ j=1,\ldots,m_1$, such that $\sum_{j=1}^{m_1}u_j^{(1)}\rho_d(\{u_j^{(1)}\})\geq 1$. Let $u_{j(1)}^{(1)}>\cdots>u_{j(m_1)}^{(1)}$ be the natural order of $u_j^{(1)}$'s and let $v_r=u_{j(r)}^{(1)},\ r=1,2,\ldots,m_1$. Now noting that $\int_{(0,v_{m_1})}s\rho_d(ds)=\infty$, with a similar argument, we get $v_{m_1+1}>\cdots>v_{m_2}$ with $\sum_{j=1}^{m_2}v_{m_1+j}\rho_d(\{v_{m_1+j}\})\geq 2$. Continuing this process inductively, we get a sequence $\{v_r\}$ such that $1>v_1>\cdots>v_r>\cdots,\ v_r\downarrow 0$ and $\sum_{r=1}^{\infty}v_r\rho_d(\{v_r\})=\infty$. Now if $v_r\rho_d(\{v_r\})\to 0$ as $r\to\infty$, then we are done by taking $s_r=v_r$ and $p_r=\rho_d(\{v_r\})$. If not, then there must exist a subsequence $\{r_n\}$ of $\{r\}$ and $\varepsilon>0$ such that $v_{r_n}\rho_d(\{v_{r_n}\})\geq \varepsilon$, \forall n. In this case, it suffices to take $s_n=v_{r_n}$ and $p_n=\varepsilon(v_{r_n}n)^{-1}$, \forall n. \square

PROOF OF LEMMA 3.4. (The reader is advised to draw rough sketches of the functions φ 's and ψ 's to understand the proof.) Let

$$0<\alpha_n<\min\left\{\frac{t_n}{3}\,,\,\frac{t_{n-1}-t_n}{2}\,,\,\frac{t_n-t_{n+1}}{2}\right\},\quad \text{with }t_0=1;$$

set $f(s) = \sum_{n=1}^{\infty} (2\alpha_n)^{-1} p_n I_{T_n}(s)$ and define $\rho_1(ds) = f(s) ds$, $0 < s < \infty$, where $T_n = [t_n - \alpha_n, \ t_n + \alpha_n], \ n \in N$. Next let $0 < \beta_n < \min\{1, p_n/4\}, \ q_n = p_n - 2\alpha_n\beta_n$, $\forall \ n \in N$ (note that $0 < q_n < p_n$). Let ρ_{20} and ρ_{21} denote, respectively, the measures on R^+ defined by $\sum_{n=1}^{\infty} q_n \delta_{\{t_n\}}$ and g(s) ds, where $g(s) = \sum_{n=1}^{\infty} \beta_n I_{T_n}(s), \ s \in R^+$; finally, define $\rho_2 = \rho_{20} + \rho_{21}$.

Clearly, ρ_1 is a continuous measure on R^+ , $\mathscr{S}_{\rho_2} = \mathscr{S}_{\rho_1}$ (= $\bigcup_n T_n \cup \{0\}$), $0 \in \mathscr{S}_{\rho_{21}}$. Trivially, $\rho_i(C) = 0$, i = 1, 2, where $C = R^+ \setminus \bigcup_n V_n$ and $V_n = (t_n - \alpha_n, t_n + \alpha_n)$. Next, observing that $\int_{T_n} \rho_{21}(ds) = 2\alpha_n \beta_n$, we have

 $\begin{array}{l} \rho_{21}(R^+) = 2 \sum_{n=1}^\infty \alpha_n \beta_n < \infty \ \ (\text{recall that} \ \ 0 < \beta_n < 1 \ \ \text{and} \ \ \sum_{n=1}^\infty \alpha_n < \infty). \ \ \text{This,} \\ \text{along with} \ \ 0 < q_n < p_n, \ \text{shows that} \ \ \rho_{20} \leq \rho_{d0}, \ \text{that} \ \ \rho_{20} \ \ \text{is a L\'{e}vy measure on} \\ R^+ \ \ \text{and that} \ \ (\rho_{d0} - \rho_{20})(R^+) < \infty. \ \ \text{Now note that} \end{array}$

$$\int_{T_n} s \rho_1(ds) = t_n p_n \quad \text{and}$$

$$\int_{T_n} s^2 \rho_1(ds) = (2\alpha_n)^{-1} p_n \left[2\alpha_n^3 + 6t_n^2 \alpha_n \right] \le 4t_n^2 p_n;$$

therefore, since $\rho_{d0}=\sum_{n=1}^{\infty}p_n\delta_{\{t_n\}}$ is a Lévy measure on R^+ and $\sum_{n=1}^{\infty}t_np_n=\infty$, we have that ρ_2 is a Lévy measure on R^+ [recalling that $\rho_2(C)=0$] and that $\varphi_{\rho_1}(0^+)=\infty$. Further, the first equation in (3.11), the facts that $\int_{T_n}s\rho_2(ds)=q_nt_n+\int_{T_n}sg(s)\,ds=q_nt_n+2\alpha_n\beta_nt_n=t_np_n$ and $\int_{T_n}s\rho_1(ds)=p_n$ and that $\rho_i(C)=0$ together imply

$$(3.12) \quad \varphi_{\rho_{d0}}(\lambda) = \varphi_{\rho_1}(\lambda) = \varphi_{\rho_2}(\lambda) \quad \text{and} \quad \psi_{\rho_{d0}}(\lambda) = \psi_{\rho_1}(\lambda), \qquad \forall \ \lambda \in C$$
 and

$$(3.13) \qquad \varphi_{\rho_{d0}}(t_n+\alpha_n) < \varphi_{\rho_1}(\lambda), \qquad \varphi_{\rho_2}(\lambda) < \varphi_{\rho_{d0}}(t_n+\alpha_n) + t_n p_n,$$

$$\forall \lambda \in V_n.$$

Therefore, since $\varepsilon_n = t_n p_n \to 0$, it follows, from (3.13) and the first equation in (3.12), that $\lim_{\lambda \to 0} (\varphi_{\rho_1}(\lambda) - \varphi_{\rho_2}(\lambda)) = 0$. The proof is thus completed except for the last part in (a), which we prove now.

From the second equation in (3.12) and the nonincreasing property of $\psi_{\rho_{d0}}$, we have that, if $\lambda \in C$, then $\psi_{\rho_1}(\lambda) \leq \psi_{\rho_{d0}}(2^{-1}\lambda)$. If $\lambda \in (t_n - \alpha_n, t_n]$, then $\psi_{\rho_1}(\lambda) \leq \psi_{\rho_1}(t_n - \alpha_n) = \psi_{\rho_{d0}}(t_n - \alpha_n) = \psi_{\rho_{d0}}(\lambda) \leq \psi_{\rho_{d0}}(2^{-1}\lambda)$, by the nonincreasing property of ψ_{ρ_1} and $\psi_{\rho_{d0}}$, (3.12) and the facts that $t_{n-1} < (t_n - \alpha_n)$ and that ρ_{d0} has jumps only at t_n 's. Next, if $t_n < \lambda < (t_n + \alpha_n)$, then, since $2^{-1}(t_n + \alpha_n) < (t_n - \alpha_n)$ (recall $\alpha_n < t_n/3$), we have $2^{-1}\lambda < (t_n - \alpha_n)$. Therefore, using the nonincreasing property of $\psi_{\rho_{d0}}$ and ψ_{ρ_1} and (3.12) again, $\psi_{\rho_{d0}}(2^{-1}\lambda) \geq \psi_{\rho_{d0}}(t_n - \alpha_n) = \psi_{\rho_1}(t_n - \alpha_n) \geq \psi_{\rho_1}(\lambda)$. \Box

4. The supports of Poisson probability measures on E. Let μ be a nondegenerate τ -regular probability measure on E (μ is defined on the Borel σ -algebra of the topology of E); and let $E_0 \equiv E_0(\mu)$ be defined as in Proposition 2.1(b). Define \mathscr{I}_{μ} , the *support* of μ , as in Section 2. Let \mathscr{P}_E be a fixed family of seminorms generating the (l.c.) topology of E, and let $\mathscr{P} = \{p \in \mathscr{P}_E, p \not\equiv 0 \text{ on } E_0\}$. Then, $\forall p \in \mathscr{P}$, the normed space $(E_0/(\{p=0\} \cap E_0), \|\cdot\|_p)$ and, hence, also its completion E_p , is *separable*, where $\|\cdot\|_p$ is the natural induced norm. Furthermore

(4.1)
$$\mu(\mathbf{E}_0) = 1, \qquad \mathscr{I}_{\mu} = \bigcap_{\mathscr{P}} \pi_p^{-1} (\mathscr{I}_{\mu_p}),$$

 $\mathscr{S}_{\mu_p} \equiv$ the support of $\mu_p \equiv \mu_0 \circ \pi_p^{-1}$, where $\mu_0 = \mu/\mathbf{E}_0$ and π_p is the natural projection of \mathbf{E}_0 into \mathbf{B}_p (see [7], pages 299–300, and [10], page 29, for details on these results).

Now assume that μ is a weakly Poisson type (resp., an α -stable, a strictly α -stable) probability measure, that is, each finite-dimensional projection of μ is a translated Poisson (resp., an α -stable, a strictly α -stable) probability measure. It follows that μ_p is a translated centered Poisson (resp., an α -stable, a strictly α -stable) probability measure on \mathbf{B}_p (the result in [9], page 313, is needed here). In the following, the Lévy measure of μ_p will be denoted by M_p , the statement that $M_p \equiv \Psi(\sigma_p \times \rho_p)$ will have a similar meaning as in Section 2, and the notations $\tilde{\sigma}_p$ and \tilde{M}_p will denote measures defined as in (2.3) with σ and M replaced, respectively, by σ_p and M_p . Further, if μ_p is symmetric, we will take M_p and σ_p also symmetric. Finally, if μ_p is degenerate, we will take, by convention, $\sigma_p = M_p = \tilde{\sigma}_p = \tilde{M}_p \equiv 0$ and $\Sigma(\mathscr{S}_{M_p}) = \mathbf{C}(\mathscr{S}_{\sigma_p}) = \Sigma(\mathscr{S}_{\tilde{M}_p}) = \mathbf{C}(\mathscr{S}_{\sigma_p}) \equiv \{\theta\}$.

Using the above notation and conventions, we now state the main result and a corollary. The proofs of these follow immediately using the above facts, (4.1), Theorem 3.1 and Corollary 3.1, and are, therefore, omitted.

Theorem 4.1. Let μ be a τ -regular weakly Poisson type probability measure on \mathbf{E} and assume $M_p = \Psi(\sigma_p \times \rho_p)$, $\forall p \in \mathscr{P}$. Then we have the following:

(a) If $\varphi_{\rho_p}(0^+)$ [$\equiv \int_{(0,1]} s \rho_p(s) \, ds$] = ∞ , whenever $\mu_p \equiv \delta_{\{x_p\}} * c_1$ -Pois (σ_p, ρ_p) is nondegenerate, then $\bigcap_{\mathscr{P}} \pi_p^{-1}(\Sigma(\mathscr{S}_{\tilde{M}_p}))$ and $\bigcap_{\mathscr{P}} \pi_p^{-1}(\mathbb{C}(\mathscr{S}_{\tilde{\sigma}_p}))$ are equal linear spaces (denoted \mathscr{L}_{μ}) and

$$(4.2) \mathscr{S}_{\mu} = b_{\mu} + \mathscr{L}_{\mu}, \quad \text{for any } b_{\mu} \in \bigcap_{\mathscr{D}} \pi_{p}^{-1} \Big(x_{p} + \Sigma \Big(\mathscr{S}_{\tilde{M}_{p}} \Big) \Big).$$

(b) If $\mu_p = c_0$ -Pois (σ_p, ρ_p) , $\forall p \in \mathscr{P}$, and if $\varphi_{p_p}(0^+) < \infty$ and $0 \in \mathscr{I}_{\rho_p}$ whenever μ_p is nondegenerate, then \mathscr{I}_{μ} is a convex cone and

$$(4.3) \mathscr{I}_{\mu} = \bigcap_{\mathscr{P}} \pi_p^{-1} \Big(\Sigma \Big(\mathscr{I}_{M_p} \Big) \Big) = \bigcap_{\mathscr{P}} \pi_p^{-1} \Big(\mathbf{C} \Big(\mathscr{I}_{\sigma_p} \Big) \Big),$$

and $\mathscr{S}_{\mu} = \mathbf{E}_0(\mu) \Leftrightarrow \forall y \in \mathbf{E}^*$, which is nonzero on \mathbf{E}_0 , $\mathscr{S}_{\mu \circ \gamma^{-1}} = R$.

(c) If μ is symmetric and if, \forall p for which μ_p is nondegenerate, either $\rho_p(0^+) = \infty$ or $\rho_p(0^+) < \infty$ and $0 \in \mathscr{S}_{\rho_p}$, then the convex cones in (4.3) are linear spaces and each is equal to \mathscr{S}_{μ} .

COROLLARY 4.1. Let μ be a τ -regular weakly α -stable probability measure on \mathbf{E} so that $M_p = \psi(\sigma_p \times s_{ds}^{-(1+\alpha)})$. Then we have the following:

- (a) If $1 \le \alpha < 2$, then $\mathscr{S}_{\mu} = b_{\mu} + \mathscr{L}_{\mu}$ [see (4.2)]; further, if $1 < \alpha < 2$ and μ is strictly stable, then $\mathscr{S}_{\mu} = \mathscr{L}_{\mu}$.

 (b) If $0 < \alpha < 1$ and if μ is strictly stable, then \mathscr{S}_{μ} is equal to either of the
- (b) If $0 < \alpha < 1$ and if μ is strictly stable, then \mathscr{I}_{μ} is equal to either of the equal cones appearing in (4.3), otherwise it is a translate (by x_0) of any of these equal cones, where x_0 is the centering element of μ . Further, the analog of the last statement in Theorem 4.1(b) holds.
- (c) If μ is symmetric, then the convex cones in (4.3) are linear spaces and each is equal to \mathcal{L}_{μ} .

Remark 4.2. Using the same methods as noted above, versions of both of these results can be proved for weakly Poisson type and weakly α -stable probability measures μ which are defined on the *cylinder* σ -algebra (rather than on the Borel σ -algebra) of **E**. In this case, the hypothesis of τ -regularity of μ is replaced by "**E** is μ -reductible", and the support of μ is defined as in [9], pages 27–28. These results were included in an earlier version of the paper, but are excluded from this version for brevity. Theorem 3.1(b) and the just-noted versions of Theorem 4.1(b) and Corollary 4.1(b) complement Proposition 4 and Theorem 1 of [10]. However, since the proof of these [except perhaps for proving that \mathscr{S}_{μ} is a convex cone in Theorem 3.1(b)] follow directly from Proposition 4 of [10], we do not claim any credit for these.

REFERENCES

- [1] Araujo, A. and Giné, E. (1980). The Central Limit Theorem for Real and Banach Valued Random Variables. Wiley, New York.
- [2] Brockett, P. L. (1977). Supports of infinitely divisible measures on Hilbert spaces. Ann. Probab. 5 1012–1017.
- [3] DE ACOSTA, A. (1975). Stable measures and seminorms. Ann. Probab. 3 865-875.
- [4] LOUIE, D. and RAJPUT, B. S. (1980). Support and seminorm integrability theorems for r-semistable probability measures on locally convex topological vector spaces. Probability Theory on Vector Spaces II. Lecture Notes in Math. 828 179–195. Springer, New York
- [5] RAJPUT, B. S. (1977). On the support of certain symmetric stable probability measures on TVS. Proc. Amer. Math. Soc. 63 306-312.
- [6] RAJPUT, B. S. (1977). On the support of symmetric infinitely divisible and stable probability measures on LCTVS. Proc. Amer. Math. Soc. 66 331-334.
- [7] RAJPUT, B. S. and VAKHANIA, N. N. (1977). On the support of Gaussian probability measures on locally convex topological vector spaces. In *Proc. Fourth International Symp. on Multivariate Analysis* 297–309. North-Holland, Amsterdam.
- [8] ROSINSKI, J. (1987). Bilinear random integrals. Dissertationes Math. 259 1-76.
- [9] TORTRAT, A. (1969). Sur la structure des lois indéfiniment divisibles dans un E. V. T. Z. Wahrsch. Verw. Gebiete 11 311-326.
- [10] TORTRAT, A. (1977). Sur le support des lois indéfiniment divisibles dans les espaces vectoriels localment convexes. Ann. Inst. H. Poincaré 13 27-43.
- [11] TORTRAT, A. (1977). Complément "Sur le support des lois indéfiniment divisibles." Ann. Inst. H. Poincaré 13 293-298.
- [12] TORTRAT, A. (1978). Second complément "Sur le support des lois indéfiniment divisibles." Ann. Inst. H. Poincaré 14 349-354.

DEPARTMENT OF MATHEMATICS UNIVERSITY OF TENNESSEE 121 AYRES HALL KNOXVILLE, TENNESSEE 37996-1300