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TOWARD A GENERAL LAW OF THE ITERATED LOGARITHM
IN BANACH SPACE!

By Uwe EINMAHL

Indiana University

A general bounded law of the iterated logarithm for Banach space
valued random variables is established. OQur result implies: (a) the bounded
LIL of Ledoux and Talagrand, (b) a bounded LIL for random variables in
the domain of attraction of a Gaussian law and (c) new LIL results for
random variables outside the domain of attraction of a Gaussian law in
cases where the classical norming sequence {YnLLn } does not work. Basic
ingredients of our proof are an infinite-dimensional Fuk-Nagaev type
inequality and an infinite-dimensional version of Klass’s K-function.

1. Introduction. Let B denote a real separable Banach space with norm
|l -1l and assume that X, X;, X,,... are iid B-valued random variables with
0 <E|X|l <wand EX = 0. Asusual, let S, = X7_,X;, n > 1 and write Lt to
denote log(t V e), t = 0. The function L(L¢) will be written as LL¢, and B*
stands for the topological dual of B.

Ledoux and Talagrand (1988) obtained the following characterization for
the bounded law of the iterated logarithm (LIL) in Banach space.

THEOREM A. A random variable X: Q — B satisfies the bounded LIL,

that is,

(1.1) limsup||S,ll/VvrLLn <® a.s.,

n—o

if and only if the following three conditions are fulfilled:

(1.2) EIX|?/LLIX| < ,
(1.3) Ef(X)’ <o, fe B*,
(1.4) {Sn /VnLLn } is bounded in probability.

Moreover, they showed that in type 2 spaces condition (1.4) follows from
(1.2). This means that in such Banach spaces the bounded LIL holds if and
only if conditions (1.2) and (1.3) are satisfied. Recall that a Banach space is
called a type 2 space if there exists a constant C such that for any sequence
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{Y,,} of independent mean zero random variables,
(15) ElIY,+ - +Y,I> < C(EIY* + --- +EIY,I*), n=>2.

It is well known that finite-dimensional spaces and Hilbert spaces are type 2
spaces. '

Starting with the work of Feller (1968), a number of authors have shown
that one can prove more general LIL type results for real-valued random
variables when using different norming sequences. [See, e.g., Kesten (1972),
Klass (1976, 1977) and Pruitt (1981).] In particular it is possible to obtain LIL
type results for random variables which are only in the domain of attraction of
the normal distribution. An infinite-dimensional version of the latter result is
due to Kuelbs and Zinn (1983).

THEOREM B. Let X be a random variable in the domain of attraction of a
Gaussian random variable Z, that is, there exists a sequence a, / ® such that

(1.6) Z(8S,/a,) converges weakly to £ (Z).
Then we have
(1.7 0 < limsupl|S,ll/ay, ;ppyLLn <® a.s.

if and only if

(1.8) z‘,lp{uxn > ap, pmLln} < .
e

This result was later improved by Kuelbs (1985) to a functional LIL with
specified cluster set. Einmahl (1989) has finally established a strong invariance
principle under condition (1.8) which implies the functional LIL of Kuelbs
(1985).

Theorem B is more general than Theorem A in the sense that it admits
more general norming sequences. On the other hand, if one specializes Theo-
rem B to the sequence a, = Vn, one only obtains the LIL for random
variables satisfying the central limit theorem (CLT) and condition (1.2). This is
of course much more restrictive than the conditions of Theorem A. It is
natural now to ask whether it is possible to establish a general LIL, which
implies both Theorem A and Theorem B, and can also be applied to random
variables outside the domain of attraction of a Gaussian law when the norming
sequence {YnLLn } does not work. It is the main purpose of the present paper
to show that this is indeed possible. It will also turn out that in some
situations, which are not covered by the previous theory, we have LIL type
results of an entirely different character. We shall show that for any a > 1/2
there exist random variables X: ()} — B such that

(1.9) 0< limsupIISnll/\/E(ﬂLLn)a <o a.s.

n—owo
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and, at the same time, for any f € B*,

(1.10) f(S,)/Vn (LLr)* - 0 a.s.

This means that we have a truly infinite-dimensional LIL behavior in this
situation. If we project the properly normalized partial sum sequence onto a
fixed finite-dimensional space, we obtain almost sure convergence to zero.
Nevertheless, the original sequence does not converge to zero. It is interesting
that a behavior of this type cannot occur in any of the cases covered by
Theorems A and B.

We shall show that it is possible to obtain such a general LIL by an
appropriate extension of Klass’s universal LIL to Banach space. The K-func-
tion introduced by Klass (1976) will be of fundamental importance for our
work. It is defined as follows. Let ¢ be a real-valued random variable with
0 < El¢| < . Define the strictly increasing absolutely continuous function
G(y), y > 0 by

(1.11) G =5/ [ "Elel1{lel > u) du

and let K(-) be the inverse function of G.
Then it follows from Theorem (1.1) of Klass (1976) and Theorem 7 of Klass
(1980) that if E¢ = 0 and {¢,} is a sequence of independent copies of ¢,

¢
1

n

¢

1

n>1.

)

(1.12) 1E

<K(n) <2E

Moreover, we have in this case the following:

THEOREM C [Klass (1976, 1977)].

1 < lim sup fgj/[K(n/LLn)LLn] <15 a.s.

n—o 1

if and only if

i P{¢ > K(n/LLn)LLn} < c.
n=1

Using (1.12), one can infer both (1.1) for real-valued random variables with
finite variances and Theorem B for real-valued random variables in the domain
of attraction of the standard normal distribution from Theorem C. Thus, in
order to prove the desired general LIL, we have to find an analogue of the
K-function in Banach space.

2. Statement of the main results. Noting that we have E|f(X)| < «,
f € B* since E|X|| < «, for any functional fe< B* with E|f(X)| > 0, let
K/(-) be the K-function corresponding to the real-valued random variable



GENERAL LIL IN BANACH SPACE 2015

f(X). Set

(2.1) K(y) = sup{K/(y):IIfll <1, EIf(X)| >0}, y>o0.
Denoting the K-function corresponding to || X|| by K(-), we readily obtain

(2.2) K(y) <K(y) <o, y>0.

Using (2.1) and (2.2) in combination with relations (2.3) and (2.4) of Klass
(1976), we find that

(2.3) K(y)/y~0

and

(24)  RK(y)/Vy 7 sup{Ef(X)*1Ifll<1

Finally, note that as a consequence of (1.12) we have

(2.5) K(n) < 2sup{EIf(S,)l: IIfl < 1} < 2EIS,l, n=>1.

1/2 . . .
} (possibly infinite).

THEOREM 1. Let X be a B-valued random variable with mean zero and
0 < E|lX|| < ». Let {c,} be a sequence of positive real numbers satisfying

(2.6) c,/n® is nondecreasing for some a > 0
and
(2.7) ¢, > K(n/LLn)LLn.

Then we have

limsupllS, ll/c, <® a.s.,

if and only if
(2.8) {S,/c,} is bounded in probability
and
(2.9) Y P{IXI > ¢,} < .
n=1

COROLLARY 1. Let B be a type 2 space and assume that X is as in Theorem
1. Let {c,) be a sequence of positive real numbers satisfying (2.7),

(2.6) ¢,/Vn is nondecreasing
and
(2.6") ¢,/n is nonincreasing .

Then we have

limsupllS,l/c, <® a.s.,

n—w
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if and only if

Y, PlIXI > c,} < .

n=1

REMARK 1. A straightforward application of the closed graph theorem
shows that if condition (1.3) is satisfied we have o2 := sup{ Ef(X)?% || fll < 1} <
o, It thus follows from (2.4) that K(n) < oVn . Applying Theorem 1 with

. = ovnLLn , we obtain (1.1) for all random variables satisfying the (optimal)
conditions (1.2)-(1.4).

RemaRk 2. If X satisfies assumption (1.6), it follows that
(2.11) E|S,II~a,EIZ|| asn — c.

Recalling (2.5), we readily obtain Theorem B from Theorem 1.

REMARK 3. A closely related result is Theorem 3 of Kuelbs and Zinn (1983).
This result, however, is only applicable to sequences satisfying

¢, > K(n/LLn)LLn.

In view of (2.2) this is a more restrictive assumption than (2.7). As a matter
of fact, in many cases of interest one has K(y)/K(y) —» « as y — «. An ex-
amplezof such a situation is given by random variables satisfying (1.3) and
E|X|* = .

Our next result is to demonstrate that we have LIL behavior with respect to
the sequence {K(n/LLn)LLn}, thereby showing that condition (2.7) in Theo-
rem 1 is sharp.

TueoREM 2. Let X be a B-valued random variable with 0 < E|| X|| < « and
EX = 0. Then we have

(2.12) limsupllS,|l/K(n/LLn)LLn = V2 a.s.

n—ow

Combining Theorem 1 and Theorem 2, we find that if X is a B-valued r.v.
satisfying

(2.13) Y P{XIl> K(n/LLn)LLn} < ®
n=1 v,
and
(2.14) {Sn /K(n/LLn) LLn} is bounded in probability,

then we have LIL behavior.
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To be more specific, we have in this case
(2.15) V2 < limsupllS,|l/K(n/LLn)LLn < » a.s.

n—o

REMARK 4. Applying Theorem 2 to iid real-valued mean zero random
variables, we see that we always have

Y ¢

Jj=1

lim sup /K(n/LLn)LLn > V2 as.

n— o

Thus we can get a better lower bound in the above two-sided situation than in
the one-sided LIL result of Klass (1976), where the constant 1 is optimal.
From the subsequent Theorem 3 it will also follow that the upper bound 1.5 in
Theorem C, which is optimal in the one-sided case [see Klass (1984)], can be
replaced by V2 in the two-sided case. This shows that we always have in this
situation the same constant as in the Hartman-Wintner LIL.

Given Theorem 2, it is natural now to ask whether one can say more about
the value of the lim sup in (2.15). In general, this is a very difficult problem
which is still unsolved in the classical situation (dealing with the norming
sequence VnLLn). However, as in Theorem 5.1 of Ledoux and Talagrand
(1990), one can determine the exact value of the lim sup for random variables
satisfying a somewhat more restrictive condition than (2.14).

THEOREM 3. Let X be a mean zero random variable with 0 < E|| X|| <
satisfying (2.13) and
(2.16) S,/K(n/LLn)LLn —p 0.
Then we have
limsup||S,|l/K(n/LLn)LLn = V2 a.s.

n-—o

COROLLARY 2. Let B be a type 2 Banach space, and let X be a B-valued
mean zero r.v. with 0 < E|| X|| < ». Then we have

limsupllS, ||/K(n/LLn)LLn = V2 a.s.

n—ow

if and only if
Y P{IXIl> K(n/LLn)LLn} < o.
n=1 s
Our last result in this section is to demonstrate that in any infinite-dimen-

stonal Hilbert space there exist random variables with the properties (1.9) and
(1.10). -

THEOREM 4. Let H be an infinite-dimensional Hilbert space with scalar
product (-,-), and let a > 1/2 be fixed. One can find mean zero random
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variables X: ) — H such that
(2.17) 0 < limsupl|S,|l/Vn (LLn)* < » a.s.

n—wo

and, at the same time, for anyy € H,

(2.18) (S,,y)/Vn (LLn)* - 0 a.s.

The remaining part of the paper is organized as follows. Theorem 1 will be
proved in Section 3. We shall first establish an infinite-dimensional
Fuk-Nagaev type inequality (see Theorem 5), which might be of independent
interest. Our proof makes use of some of the ideas developed by Ledoux and
Talagrand (1988). It is based on a randomization argument in combination
with a refinement of a classical martingale argument due to Yurinskii (1976).
But given the recent work of Talagrand (1989) and Ledoux and Talagrand
(1989), we can now use a randomization by Rademacher random variables
rather than a Gaussian randomization. Making appropriate use of some of the
basic properties of the K-function, we can then infer Theorem 1 from our
Fuk-Nagaev type inequality via Borel-Cantelli. The proof of Theorem 2 will
be carried out in Section 4. As we are now dealing with a two-sided situation,
we can give a much easier proof than that of Klass (1977) for the correspond-
ing lower bound in Theorem C. In order to prove Theorem 3 in Section 5, we
use a similar argument as in Theorem 5.1 of Ledoux and Talagrand (1990).
But employing a double truncation argument will enable us to utilize an
entropy argument based on a randomization by Rademacher random variables,
thus avoiding the somewhat less natural Gaussian randomization. Section 6 is
finally devoted to the proof of Theorem 4.

3. Proofs of Theorem 1 and Corollary 2.

3.1. A Fuk-Nagaev type inequality in Banach space. The purpose of this
part of the paper is to prove the following result.

THEOREM 5. Let Y,,...,Y, be independent B-valued random variables
such that for some p > 2, E||Y,||” <, 1 <j <n. Then fort > 0,

P{ Yy, ZY}

< 16exp(—t?/144A,) + C, ¥ ElY;|I” /2®,
j=1
where A, = sup{X;?:lEfz(Yj):‘IIfll < 1} and C; is a constant depending on p
only.

>t + 3TpE

A related inequality if p = 3 is due to Yurinskii [(1976), Theorem 5.1]. The
main advantage of the above inequality is that the exponential term is defined
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in terms of the weak second moments rather than the strong second moments.
This improvement will be crucial for the applications we have in mind. Our
proof will decisively use the Ledoux and Talagrand (1988) refinement of
Yurinskii’s martingale argument [cf. Proof of (3.7)]. Let us also mention that
there is an entirely different (and somewhat easier) method available for
proving analogues of Theorem 5 in Hilbert space (see, e.g.,, Lemma 6 of
Einmahl (1991)].

In order to prove Theorem 5, it is enough to show that if Z,,...,Z, are
independent mean zero random variables, then

P{
(3.1)
< 16exp(—t2/144A,) + C, ¥ ElZ|I? /¢*,
=1

j=

n

Xz

j=1

>t + 18p2E

n
Lz
j=1

where A, = sup(X?_,Ef%(Z): || fll < 1} and C, is a constant depending on p
only.
To see this, note that if we set Z, =Y, — EY,, 1 <j < n, we have

n n
P{| L Y;|>t+3Tp%E ZYJ.}
j=1 j=1
n n n
sP{ Y Z|+E| Y Y| >t+3Tp’E ZYj}
j=1 j=1 j=1
n n
sP{ Y Z|=¢t+18p%E| ¥ Z; }
j=1 j=1

where we use the trivial inequality E|X7_,Z;|l < 2E|X"_,Y;l. Taking into
account that /~\n <A, and EIIZjIIP < 2PEIIYJ~IIP, we readily obtain Theorem 1
from (3.1). Thus, it remains to show (3.1).

For convenient reference later on we now state a number of results which
we need for the proof of (3.1). We shall assume from now on that ¢;, 1 <j <n
are independent Rademacher random variables which are also independent of

the Z’s.

Facr 1 [Talagrand (1989)]. Let z,,..., 2z, be points in B. Then we have

>t + 2E

n n

32) P £:2; Y e.2;||} <4exp(—t2/802(2y,...,2,)),
= 5% = 5%
j= -

where 02(zy,...,2,) = sup{Z7_, f%(z,): | fll < 1}.
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Fact 2 [Ledoux and Talagrand (1990)]. Let z,,..., 2z, be points in B. Then
forp>1,

E| sup | X &;f%(z)) ) <67E| ) £,lizllz;
IAl<1flj=1 : -1
Facr 3. Forp>1,
n P n P n P
j=1 j=1 j=1

Fact 3 can be easily inferred from Corollary 4.2 of Hoffmann-Jgrgensen
(1974).

Fact 4 [Hoffmann-Jgrgensen (1974)]. Let X,,..., X, be independent sym-
metric B-valued random variables. Then for p > 1,

—
Y X[ <2- 3"E(1max 1X,17) + 2(38)",
j=1 <J=<n

where ¢, = inf{¢: P{IL"_, X;ll = ¢} <1/(8 - 37)}.

In particular for p > 1,

L X

Jj=1

(3.4) E

p

(35) E ) .

Next we need the following simple symmetrization inequality, the straight-
LEmMmA 1. Fors > 0,

forward proof of which is omitted.
Pl ¥ z <4P i
. > —).
i1 ) 2

In the sequel the distribution of (Z,, ..., Z,) will be denoted by @,, and we
write z for n-tuples in B with z;, 1 <j < n denoting the components of z.
Constants which depends on p only will be denoted by C;, i > 1. Finally, set
T, =X}_1Z;

Using Lemma 1 in conjunction with Fubini’s theorem, we readily obtain
that

< 2 3PE max || X;|I” + 2(24 - 3P)"(E
l<j<n

X X;
j=1

n

Xz

Jj=1

>s+ 2K

n
) &,2;
Jj=1

P{IT,Il = ¢ + 18p°EIT, )

t
> 5+ (9% - 1)EIITnII}

n .
Y &;Z,
j=1

=4/P{

< 4P{

> % + (9p7 - 1)EIITnII}Qn(dZ)~

n
)y £;Z;
j=1
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Consider the events

F,=={zcB"E
" {z 12

t
< 4p%E|T,|l + —},

n
Zngj
1

G = {z € B": max ”Zj” < t/16pz}’

" 1<j<n

and set H, = F, n G,.
Then it is obvious that the foregoing probability is bounded above by

n n
4.[an{ jglstj §8jzj

In view of Fact 1, it is clear that this term is

6 (¢ + EIT, )’ a0 He
= anexp _720-”2(21,“.’2'1) Qn( Z) Qn( n).

t
> - +2E
— 3

+(p? - 1)EIIT,,II}Q,,(dz) +4Q,(HY).

We set Z; == Z;1{llZ;|l < t/16p?}, 1 <j < n, and we denote the distribution
of (Z3,...,Z) by Q,.
It is plain that

’

02(z1,...,2,) <N, + sup
Ifll<1

where A, = sup{E}Ef*(Z)): || fll < 1}.
Thus, using the trivial inequalities

s s s s y\?
exp(—x+y) Sexp(—é;-) +exp(—§—§) Sexp(—g) +C3(;) ,

s, x,y > 0, we finally obtain
P{IT, Il = t + 18p2E|T, )
< 16 exp(—#%/144A,,)

E(2(:) - B4(2))

¥4
+ C,E sup /(¢ + EIT, ) + 4Q,(HY).

Ifll<1
We now claim that

L{r(z) - r7(z)

(3.6) E sup f}{f?(z;) — Ef*(Z))}| =< Cs(t+ E[ITnII)piEIIZjII‘”
Ifll<1l 1 ' 1

and .

(3.7) Q.(H;) < C; ¥ EIlZ,|I7/e7.

Jj=1

Combining the last two relations with the above inequality, we obtain (3.1)
and consequently Theorem 5. It thus remains to prove (3.6) and (3.7).
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Proor oF (3.6). We first note that one can show by using the same
argument as in the proof of Fact 3 that

P P

E sup | ¥ {f¥(2;) - Ef*(Z})}| <2PE sup
Ifll<1]j=1 . lfll<1

Using Fact 2 in conjunction with Fubini’s theorem, we see that the last term
equals

n

X ejfz(Z;)

Jj=1

n

Z f(Z)

Jj=1

2PfE sup (dz)

Hfil=1

Q.(dz)

g;llz;llz;

<12PfE
Jj=1

n p

¥ 1211z

j=1
We now apply inequality (3.5) with X; = ¢,l1Z}l|Z}, 1 <j < n. It follows that

I

= 12°E

p

< C7E( max [1Z] ||2P) + C4|E

l1<j<n

¥ &1Zi1Z;

j=1

n
Y &2

Jj=1

E

Since we trivially have
E( max |1Z; ||) <t Y ElZ,|P,
l<j<n j=1
it remains to show that

n
PR VAVA
j=1
Using Fubini’s theorem in combination with Lemma 4.1 of Hoffmann-
Jgrgensen (1974) (where we set a; = IIz-II X; = ¢;2;), we find that

) - f5 Qi(d2)

E| Y ¢
< ( max ||z, HEI%

n 1/p
(3.8) E < Cy(t + EIIT,,II)( Y E||zj||P) .

j=1

! !
NZNZ; |z~||ejzj

n(dz),

Jj=1
l<j<n
which is, on account of the Hélder inequality,

p/(p—D) PP
(E max |1 Z; np) )

1<j<n

n
Y&Z;
1

p/(p- 1)) p=1/p

n 1/p
< ( r Ellzju") E
j=1
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Using inequality (3.5), we get

p/(p-D\ P~ D/P
E )

n
Z ejZJ’-
j=1

|

We see that (3.8) holds true, and the proof of (3.6) is complete. O

fo-1) PP
< Cyo{ (B max 1Z)17/"~?) +E
1<j<n

n
)y &,2Z;
j=1

< Cw{t +E

} < 2Cy,ft + EIT,I}.

n
Y €,Z;
j=1

Proor oF (3.7). By Markov’s inequality, we have
Qu(G5) = O T EIZ,17/27
j=
Noting that @, (F; N G,) < Q.,(Fy), it is clear that it suffices to show
(3.9) @(F;) 5 Cuw T BNZIP /0.
j=

In order to prove (3.9), we need the following lemma.

LeEmMA 2. Ifs > t/16p2, we have

2
. } .
The proof of Lemma 2 is very similar to that of the Hoffmann-Jgrgensen

inequality and it is therefore omitted.
Let m be the unique integer satisfying

> 33} < Q;{z €B™ E

n
Z Ejzj'
Jj=1

Q;{z eB™ E

n
Z 8ij
j=1

(3.10) 2m-l<p—1<2m,

Note that (3.10) implies that 3™ < (4/3)p2. We thus can apply Lemma 2 m
times and we obtain

2m
> 3" (4p2EIIT, |l + t/12)}

' (FY) < Q;,{z €B": E

n

) £;2j
j=1
(3.11)

p—1
< Q;,{z €B": E > 3E|T,I + t/16p2} .

n
Y £z
j=1
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Recalling Fact 3, it is easy to see that

E ZstJf <E Zstj < 2E|T,|
=1 =1
and we can infer from (3.11)
(FY) < Q;{z €B™E| Y gz;| — E Y §Z;
j=1 j=1

(3.12) i bt

> 3E| X £,Z; +t/16p2} .

j=1

Put h,(zy,...,2,) = E|IL}_¢;2l, z € B", and set
d;=E[h(Ziy...., ZINF | - E[ho(Zi,..., Z)NF_y], 1<j<n,

where %, = {¢, Q) and & =0{Z;,...,Z}},1<j<n.Thend;1<j<n,isa
martingale difference sequence, and we obtain from (3.12)

n n p-1
"(F°) < P{ Y. d;>3E| ¥ &Z;|| + t/16p2}
i=1 =1
(3.13) ! !
n p-1 n 2p=2
st( ZEdf) (E Zst} +t) .
j=1 j=1
Eul‘ther, Set le(zl, “ ey zn) = E”ZZ=18kzk” - E||Zk¢j8kzk||, fj =
hi(Z,...,Z}),1<j<n.
Observing that
(3.14) 0 <f; <lZl
and
(8.15) d,=E[fi|F | -E[flF_.], 1<j<n,

we easily get from the Hélder inequality

Y. Ed? < Y Ef?
j=1 j=1

n (p-2/(=1/ , 1/(p—1)
< ( z Eﬂ) (ZEMZ;MP) :
Jj=1 1
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Moreover, it is obvious that

n n n
5 B, - Z{E ¥ 52| - B zskz;}
j=1 j=1{ lle=1 k#j
<nE| ¥ 6,2, -E| T ¥ 2,
k=1 J=1k+#j
=E Zekz;e .
k=1

Recalling (3.13), we readily obtain (3.9), thereby establishing (3.7). Theorem 5
has been proved. O

3.2. Conclusion of the proof of Theorem 1. Using Ottaviani’s inequality
[see, e.g., Lemma 6.2 of Ledoux and Talagrand (1991)], we immediately obtain
the following maximal inequality from Theorem 5.

Lemma 3. Let Yy,...,Y, be independent B-valued random variables such
that for some p > 2, E|IY,||” < », 1 <j < n. Suppose that
n
LY,

Jj=k

(3.16) E <b,, l1<k<n.

Then we have, fort > 0,

>t+ 38p2b,,}

n
< 22exp(—t2/144A,) + 5C, ) E|Y;|I7 /¢P.
j=1

The next lemma easily follows from Lemma 4.4 of Berger (1991). It will
come in handy when checking the above condition (3.16).

Lemma 4. LetY,,...,Y, be independent B-valued random variables satis-
fying
(3.17) IYll<B,, 1<j<n
and
m 1
. Y| = < —, 1 <
(3.18) P &Y >, T <k<m<n

Then we have

(3.19) E <8B,+Ty,,” l<k<m<n.
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Notice that in the two above lemmas we do not assume that EY; =0,
l<j<n.
We further need the following simple, but nevertheless very useful lemma.

LemMMA 5. Let & Q — [0,%) be a random variable such that
(3.20) Y P{¢>c,) <o,
n=1

where {c,} is a sequence satisfying (2.6). Then we have:
(@) T2 EEP1E < ¢,)/c? <
provided that p > a™ .
(b) X2 _,P{é > ec,} <», &> 0.
ProoOF. (a) can be shown by a standard argument as used, for instance, in

the proof of Lemma 1 of Einmahl (1988). Part (b) follows from (a) by the same
argument as in Lemma 1 of Einmahl (1989). O

We finally record an additional property of the K-function, which one can
obtain from its definition via integration by parts.
For any functional f < B* with E|f(X)| > 0,

K3(y) = yE(f(X)"1{If(X)] < Kx()})

+yK () E(IF (X)IL{If (X > K(9)})-
Relation (3.21) trivially implies the following two inequalities:

(3.21)

(3.22) Ef(X)"1{If(X)| < K;()} < K2(y)/y
and
(3.23) EIf(X)IL{f(X)l > K ()} < Kp(3) /.

We are now in a position to prove Theorem 2. It is trivial that conditions
(2.8) and (2.9) are necessary. Thus, we need only to show that these conditions

are also sufficient.
Set X=X jl{IIX jll <c j}, Jj = 1, and denote the corresponding partial sums

by S,,n > 1.
On account of (2.9) we have

0

(3.24) Y P(X,+ X} <o,

n =’1

which trivially implies

(3.25) f) (X; - X;) =0(1) as.
j=1
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Thus, it is enough to show

(3.26) lim supl|S,|l/¢c, <~ a.s.

n—oo

Let ¢, > 0 be chosen in a way such that

n
Y Xl = tocn} <1720, n=>1.
j=1

(3.27) P{

Define the subsequences {m}, {n,} as follows: m; = 1, m, := min{m > m,_;:
Cp=2c, hLk=22,n,=mu,,—1%k=>0.
We now claim that

(3.28) k¥1P< max IS, - S, > Ecnk} < o,

m,<n<n,

where C = (266¢, + 308)2 + a~1)2.
Using the Borel-Cantelli lemma and the definition of the sequence {m ,}, we
readily obtain from (3.28),

limsupllS.li/c, < 4C a.s.,

n— o

which of course implies (3.26) and consequently Theorem 2.
In order to prove (3.28), we first note that for m, <m <n <n,, if & is
large enough,

P{IS; = S,.Il > toc,,}
SP{ Z Xj

m+1
sP{

where we use (3.24) and the fact that {c,} is increasing.
We now can infer from Lemma 4 that

(3.29) E|S,, — S,.ll < 8c,, + Ttge,,, my <m < ny,

el

> tocnk} + ) P{X;#X}}
J

.=mk

> tocn_m} +1/20 < 1/10,

n—m
r X
j=1

provided % is large enough.
Applying Lemma 3 with p = 2 + a™, we obtain for large enough &,

P{ max |8, -5, > Ce,,|

g mp<n<n,

(3.30) 6 o

< 22exp(———c,2,k/20-jz) +Cic,? ¥ EIXIP,
my -~ j

9 J=my

where o? = sup{c?(f): IIfll < 1}, o®(f) = EfA(X)H|IXll < ¢,}, f€ B* and

J
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C, is a positive constant. Thus, in order to prove (3.28) it is enough to show

o n
(3.31) D ( Y EIIXJ’-IIP)/cf,’k < o,
k=1 \j=m,
o ny
(3.32) kzl exp(—ch,zlk/9Zof) < o,
- m,

Relation (3.31) follows from Lemma 5(a). As to (3.32), note first that for
functionals f € B* with ||f|l < 1 and E|f(X)| > 0,

af(f) < Ef3(X)1{f(X) < K;(j/LLj)}
+ EfA(X)1{If(X)| > K,(j/LLj), IXIl < c;}
=v; (f) +v;a(f).
Inequality (3.22) now implies
(3.33) v, (f) <KX(n,/LLn,)LLn,/n, < c2,/(n,LLn,),  j<n,.

On the other hand, using inequality (3.23) in combination with the Hélder
inequality, we get

Vj’z( f) = (E’f(X)Il{If(X)I > Kf(j/LLj)})(P*m/(p_D(E'”Xj{llp)l/(})—l)
< (Kf(j/LLj)LLj/j)(p_z)/(p_1)(EIIXJ’.IIP)I/(p_D
< c?j(2—~p)/(1’—1)(E”X}”p/c;,)1/(p—1).

Combining this last bound for »; ,( ) with (3.33), and again using the Holder
inequality, we find that

n ny (P-2/(p-1 5, 1/(p—1)
2 2 -1 f—1

Zaj <cy |(LLn,) =~ + Yj ) (ZE||X}||p/C§’)

my my, my

n n 1/(p-1)
-1 k _
<ci |(LLn,) ™" + ;T(ch ”EIlX}II”) .
my

k

Noting that on account of (2.6)

a
n, c
(2] <o s,

mk cmk

we finally obtain

-1 < VD
(LLn,) "' + 21/w( zc;PEuX;uP) .

my

ng

2 2
Z O.J < cnk
my
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Using the trivial inequality
exp(—s/(x +y)) <exp(—3s/4x) + exp(—s/4y), s,x,y>0,
we can conclude

np
exp( —160,2%/92032)

my

n, 1/(p-1)
< exp(—4LLn,/3) + exp —%21/"‘( ZcJT"E”XJ'-“p) )

my

np
< (Lny) ™" + C, L ¢;PEI X\,
my

where C, is a positive constant. If ©5_,(Ln,) %3 < «, relation (3.32) immedi-
ately follows from (3.31). But since it can happen that the foregoing series is
divergent, we have to use a slightly different argument.

To that end, set N, = [k > 1: n, < 2*/2}, N, := N — N,. It is easy to see
that if || Il < 1, then

ng ng
Y o?(f)/ch, < LEIXIP/c,
my mp

< nkEIIXII/cnk.
Noting that ¢, > 2*~lc,, it is plain that the last term is
<C27*? ifkeN,,

where C; is a positive constant.
We now obtain, for an appropriate choice of %,

Lol

ny
Yy exp( —16¢c2, /9 Zojz)
my

k=kqg

< ¥ exp(-16-2t/2/9C,) + ¥ (Ln,) **+ C, ¥ ¢;PEIX;IIP,

keN keN, j=1

where all series are convergent. Theorem 1 has been proved. O
3.3. Proof of Corollary 1. It is enough to prove the following lemma.

LEMMA 6. Let X be a mean zero random variable taking values in a type 2
Banach space. Let {c,} be a sequence of positive real numbers satisfying

(3.34) c,/Vn 2
and
(3.35) c,/n is nonincreasing.
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Assume that
(3.36) Y. PlIXI > c,} <.
n=1

Then ‘
ElS,l/c, > 0 asn — .

Proor. Let X be the symmetrization of X, and let X'n, n > 1 be indepen-
dent copies of X. From (3.36) and Lemma 5(b) it is immediate that we also
have

(3.37) f P{IXll = c,} <.
n=1

Setting Y;" := le{lllel <c,}, 1<j<n, and T = Y7 ,Y", we have by
(1.5), ,

E”Tnn“ < (E”Tnn”2)1/2 < Cl/2n1/2(E”Ynn“2)1/2’

If we set p, = P{c;_; < 11X < ¢;}, j = 1, where ¢, = 0, then (3.37) clearly
implies

0

(3.38) Y jp; < .

Jj=1

Using (8.34), we then can infer

n o
nE|Y{?/c2 < n Y piet/cl < nek /e + Y jp;.
Jj=1 J=Jo

Choosing j, in a way such that X7_; jp; < e2/C, it is plain that for large
enough n,
(3.39) E|T! < 2ec,,.

Setting S, = Z;?:lf( » we trivially have for large enough n,

E|S,| < 2ec, + EIS, — Tl < 2¢c,, + nEIIX'IIl{IIX'II > cn}.
Recalling (3.35) and using the subsequent Lemma 7, we finally obtain, for
large enough n,

E|S, | < 3ec,,.
Noting that E||S, || < E|IS, |, we see that the assertion of Lemma 6 is true. O

LEMMA 7. Let & Q — [0, ) be a random variable satisfying

oo

Y P(¢>d,} <o,

n=1
where {d,} is a sequence of positive real numbers such that d,/n is nonin-
creasing.
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Then we have
nE¢{¢é>d,} =o(d,) asn — .

Proor. Set q;=Pld;_; <¢<d}}, j =1, where d, = 0. Then it is obvi-
ous that ' '

Z Jq ;< o
j=1
Furthermore, it is easy to see that

n+1
< quj—>0 as n — o,
n+1
where we use the fact that
d; <jd,/n, j=n. O

4. Proof of Theorem 2. In order to prove Theorem 2, it is enough to
consider random variables satisfying the two additional assumptions

(4.1) i P{llX|l> K(n/LLn)LLn} < o
n=1
and
- (4.2) lim sup P(|lS,|l = V2K(n/LLn)LLn} < 1/2.

For if (4.1) were not true, it would follow that

lim suleSnll/I{'( n/LLn)LLn = » a.s.,
which trivially implies the assertion of Theorem 2. To justify the additional
assumption (4.2), note that if this were not the case, we would have

P{ lim supllS, /K (n/LLn)LLn > V2 }

n—o

> limsup P(||S, |l > V2K (n/LLn)LLn} > 1/2.

n-—o

Then by the 0-1 law of Hewitt—Savage, it would follow that
lim sup HS,JI/K"( n/LLn)LLn > V2 a.s.

n—o
This shows that Theorem 2 is trivially true if either of the conditions (4.1) or
(4.2) fails. So from now on we may and actually do assume that these two
conditions hold. Our proof is divided into several steps.
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SteP 1. Let m; » » be a subsequence of N such that for some constants
a;, a,>1landall j>1,

(4.3) a; <mj;,/m;<a,.

We shall show, for any 0 <& < 1/4,

(4.4) i P{IISmJII > (V2 - e)K(mj/LLmj)LLmj} s
j=1

To that end, pick a functional f; with [ f;ll = 1 such that
K (m;/LLm;) = (V2 - €)/(V2 = 2/2))K(m;/LLm))
and set B, == Kfj(mj/LLmj)LLmj, j=1

It is obvious that

p{usmjuz(fz‘ - k| 2 )LLmj}

LLm ;

J

(4.5)
> P{Ifj(S,,,J)I > (ﬁ — %)Bj}, Jj>1.

To further simplify the notation, set
Y, =f(X,), Z,,=Y, 1Y, <28} n=Ll

Then it is clear that

P(If(Sn,) = (V2 - £/2)8;)

> P{ Y z,,;=(2- 5/2)31'} - m;P{Y, ;| > 28}

(4.6) |
=#| T 2.2 02 - o/28)
n=1

— m,;P{|X|| > R(m,/LLm;)LLm}.
Recalling (4.1) and (4.3), it is easy to see that

(4.7) ¥ m;P(IXI| = K(m,/LLm,)LLm} < .

Jj=1

’f‘hus, in order to verify (4.4), it is enough to show

P Z Z, ;> (V2 —¢/2)B;| = .

(4.8)

i0s
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SteP 2. Applying Lemma 7 [with £ = [ X||, d; =.I€(j/LLj)LLj], we can
find a j, = j,(¢) such that for j > j,,

~ mj
(4.9) ijIIXIII{IIXII >K(LLm )LLmj} <

j .
and we can infer that

€
(4.10) m,EZ, ; <m; EIXIIXI = 28;} < 78, J =Jo

Setting Z, ;= Z, ; — EZ, ;, 1 <n < m;, we get for j > j,,

(4.11) P{ Z Z, ;> (V2 - s/z)Bj} > P{ Z Z,;=(2 - 8/4)Bj}-
n=1 n=1

Using a well-known nonuniform bound on the rate of convergence in the
central limit theorem [see, e.g., Theorem 13 on page 125 of Petrov (1975)], we
obtain

Z, ;> (V2 - 8/4)@}

>1— q)((\/z— - 8/4)31'/\/;17%) - AijIZLth'f/ﬁf,

where ®(#), —® < t < , is the distribution function of a standard normal r.v.,
of = Var(Z, ;) and A is an absolute constant.
We now claim

(4.13) ‘E m;E\Z, ;I>/B3 < =
j=1
and
(4.14) T (1-0((V2 - e/4)8,/\m; ;) = .
j=1

In view of (4.8), (4.11) and (4.12), it is clear that (4.4) follows from (4.13)
and (4.14).

SteP 3 [Proof of (4.13)]. First note that by the c,-inequality,
EZ, ;,’ <8EIZ, |°.
Recalling the definition of Z, ;, we can conclude
EIZ, ,* < Elf( X)PL{IX)| < K(m;/LLm ;) LLm )
: + Elfy(X)P1{If{(X)| < 28;, I XIl > K(m,/LLm ;) LLm )}
(5£35) SE||X||31<||X“ sK(mj/LLmj)LLmj}

+ 8B3P(IXI| > R (m,;/LLm;)LLm,}.
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Employing a similar argument to that of the proof of Lemma 7.1 of Pruitt
(1981), one can infer from (4.1) that

(4.16) Y. m,EIXI*1{| Xl < R (m;/LLm;)LLm ;} /B2 < .
j=1 ‘
Using the above bounds for E IZI’ J.|3 in conjunction with (4.7) and (4.16), we
readily obtain (4.13).

STEP 4 [Proof of (4.14)]. We first derive a lower bound for o-J Set a;
K f( m; /LLm ;). Then, using (4.10) and the property (3.21) of the K- functlon
we get for j > j,,

o? > EfA( X)LIf;(X)| < a;) + EfF(X) e, < If;(X)| < 28,} — £2B2/16m?2
> alLLm;/m; — o, EIf;( X)IL{If ( X)| > a;}
+ ajElfj(X)u{aj <Ifi(X)l < 2B;} — £?B3/16m?
= B}/m;LLm; — o,;EIf,( X)I1{If;( X)| > 2B,} - £°B}/16m’
> B?/m;LLm; — eB?/4m ;LLm ; — £*B%/16 m?
> (1—¢/3)B%/m,LLm;.
Using the fact that
1 - ®(x) ~ exp(—x%/2)/x/2m as x - o,
we obtain for large enough j,
= @((V2 — ¢/4)B,/\m;0;) = {(LLm,)"*(Lm,) "
In view of (4.3) it is now clear that the series in (4.14) is divergent.

Step 5. Let 0 <& <1 be fixed, and set n, = Lk _ym;, where m; :=[(1 +
3¢72)), j > 1.
Consider the events

F, = {IS,, = S,, |l = (V2 — &)R(m,/LLm,) LLm,}
and
= {IS,,, I < eR(my/LLm,)LLm,}, k=1.
Then we have for large enough Z,
(4 17) P(G,) = 5.
To prove (4.17), note that by the definition of n,,
m,>38m,_,/e?>3(1 —e?/3)n,_,/e* > 2n,_ /e
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Recalling (2.4), we obtain
P(G) < P(IS,, I = V2R (n,_/LLm,)LLm,}

< P(IS,,, Il = V2R(ny_1/LLn,_,)LLn,_.},

where the latter inequality is true on account of n,_; <m, and (2.3).
Recalling assumption (4.2), we get (4.17).
Next note that on account of (4.4),

Y P(F,) ==

k=1
We are now in a position to apply Lemma 3.4 of Pruitt (1981), and we find that
(4.18) P(F, N G, infinitely often) = 1.

Since, by the definition of n,,
n,<my(l- 82/3)_1,
we obtain from (2.3)
F,0 G, c{IS,II = (V2 - 2¢)K(m,/LLm,) LLm,}
c {IS,,ll 2 (V2 - 3¢)R(ny/LLn,) LLn,}.

This means, in view of (4.18),

(4.19) limsupllS,|l/K(n/LLn)LLn > V2 — 3¢ a.s.

n-—ow

Since ¢ can be made arbitrarily small, the last relation clearly implies Theo-
rem 2. O

5. Proofs of Theorem 3 and Corollary 2.

5.1. A double truncation argument. We set

z; = X1{IX,| < v,/ (LL)?),  Z) =2} - EZ,

~

zy = XA{y,/(LL)* <Xl <},  Z) =2 - EZ],
zy = XXl > v}, Zf =2z} - EZ],

where y; == K(j/LLj)LLj, j > 1.
The purpose of this subsection is to prove the following:

LEmMA 8. Under the assumptions of Theorem 3, we have

n

Y (XJ- - Z})/yn -0, a.s.

Jj=1
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Lemma 8 then enables us to reduce the proof of Theorem 3 to studying the
(bounded) sums X%_,Z’, n > 1 (see 5.2).
In order to prove Lemma 8, we need some further lemmas.

LEMMA 9. Under the above assumptions, we have the following:

(@ EIS,l/y, > asn — .
() ElZ}.1Zjll/y, = 0 as n — .
(© EIZ}_1Z]ll/y, = 0 as n — .

ProoF. Recall that assumption (2.15) implies by Lemma 5(b) and Lemma
7, for any £ > 0,

(5.1) nP{|X|l > ey,} >0 asn -
and
(5.2) nE| XII{IX] > ey,}/y, > 0 asn — .

Thus, setting S, , = T4 X, HIX | <ev,}, 1<k <n, S;, =0, we have
for 0 < £k < m < n and large enough n,

P{lSy,n = Skl = £7,}
< P{lS,, — Sl = ey,} + nP{IX|l > ev,}
= P{lIS,._;ll = ev,} + nP{IIX|l = ey,} < 15.
This implies via Lemma 4
(5.3) E|S, .l < 15¢y,.
Combining (5.2) and (5.3), we obtain for large enough n,
E|S,Il < E|S, I + nEIXIL{IXI]l > &v,}
< 16¢vy,.

This shows that (a) is true. In order to verify (b), note that by symmetrization
and (3.3),

n n

E| ¥ Z)| <2E| ¥ ¢,Z;
j=1 j=1
j=1
< 4E|IS,|

so that (b) follows from (a). The proof of (c) is similar. O
LEMMA 10. Under the above assumptions we have

n
(54) Yy Z}”/yn -0 a.s.
j=1
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Proor. Note that by assumption (2.15) and Borel;Cantelli,

n
(5.5) Yy Z7=0() as.
j=1
Furthermore, it is easy to see that for 1 <m < n,

n

<mEIXI+ ¥ EIXI{IXI=y).

m+1

Y EZ}
j=1
Recalling (5.2), we can find for any 8 > 0 an m = m(§) such that the last term
is bounded above by

mEIX|+8 ¥ v,/i,

m+1
which in turn is

n
<mE|X| + Byn( Zj‘l/z)n‘l/z
j=1
< mE|X| + 26y,

where we have used the fact that v,/ \/j is nondecreasing.
We can infer that

(5.6) limsup|l Y. EZ}| /v, < 28.
n-— o J =1
Since 8 can be made arbitrarily small, we obtain (5.4) from (5.5) and (5.6).

O

LeEmMMA 11. Under the above assumptions we have

n

(5.7) YZ/y,~0 a.s.

Jj=1

ProoF. Set m, =21 n,=2%—1 k> 1
Using relations (2.3) and (2.4), it is then easy to see that it is enough to
prove

(5.8) f}P{ max fzj

k=1 m<ms=<n, my

= synk} < oo,

Noting Lemma 9(c), a straightforward application of Lemma 3 yields, for
large enough %, '

P{ max ZZJ” zgynk}
mp<m=<n, m,
—szyz 256
<22 LI C.e %A,
exp(5762';,gekaj2 3 “1f T
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where o2 = sup(Ef(Z)): IIfll <1}, and A, =% EIZ/I°/y2, k> 1. We
have by Lemma 5(a)

(5.9) Y A, <o,
k=1
Thus, it remains to be shown that

© ny
(5.10) Y exp(—s2y3k/(576 Zajz)) < o,
k=1 my
Note that we trivially have
ng
(5.11) Y 0?/v2 < Ay(LLny)?
mp

and also by the proof of Theorem 1 (where we set ¢, = v,, p = 3),
g

(5.12) Y0P /e, < (LLny) ™" + A - A2,
my

where A > 0 is an absolute constant.
Relation (5.12) in particular implies that for large enough k,

. nh
(5.13) Yol /yE <1
my

Using the same argument as in the proof of (3.9) of Einmahl (1989), we get
from (5.11)-(5.13) for large enough Z,

I
exp( —szyfk/576 20}2)

my

ny ng
-2 2|, -2 2.2 2
< 1152¢ (Z(TJ- )Yn,, exp(—s ynk/115220'j
my

my
ng
< 11523—2( }:af)y,;f exp(—&2/(1152(LLn,) ' + AAY?))
mp

< 11526 %A, (LLn,)?(Ln,) /2% + 115262 exp( —s2/2 AAY?)
<C,-A,.

In view of (5.9), it is now clear that (5.10) and consequently Lemma 11 hold
true. O

Combining Lemma 10 and Lemma 11, we obtain Lemma 8.

5.2. Conclusion of the proof of Theorem 3 and Corollary 2. As in Ledoux
and Talagrand [(1991), page 199], let D be a countable subset of the unit ball
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of B* such that
lxll = sup{lf(x)I: f € D}.

Following their proof of Theorem 8.2, we shall use a finite-dimensional approx-
imation argument which in combination with an appropriate entropy argu-
ment will enable us to prove Theorem 3.

To that end we set for any f, g € D,

m, 1/2
d3(f,g) = (LLmn)”z{ Y E(f- g)z(Z;)} /Y,

i=1

where m, ~ p”, and p > 1 is fixed.
Finally, put «, == E|L~e, Z!|/ Yrm,» and recall that, on account of Lemma

9(b) and (3.3),
(5.14) a, >0 asn—>

From property (8.21) of the K-function, we can infer that for large n,

(515)  E(f(Z}) <y /m,LLm,,lIfl<1, 1l<i<m,.

Using (5.14) and (5.15), it is fairly easy to modify the proof of Lemma 8.3 of
Ledoux and Talagrand (1991), so as to obtain, for ¢ > 0 and large enough n,

(5.16) N(D,d3;¢e) < exp(a,LLm,),

where N(D, d%};¢) is the minimal number of functionals g in D such that for
any f in D there exists a g with d}(f, g) <e.

Let now D, be a subset of D with cardinality N(D, d};¢), which has the
above property. We then can find for any functional fe& D a functional
g,(f) € D, such that

(5.17) dz(f.8.1)) <.
Setting D, = {f — g,(f): f € D}, it is plain that
(5.18) Y Zi| < sup | ¥ g(Z;)|+ sup | ¥ A(Z))].
j=1 geD,|j=1 heD, |j=1

Because of (5.17) we have
mn
sup Y. Ehz(Z}) <e?y2 /(LLm,).
heD, j=1 " '

Noting that the proof of- Lemma 3 also applies to the seminorm
suby, < p, |h(-)| and recalling Lemma 9(b), we readily obtain

5 1(2)

j=1

= 13symn} < oo,

(5.19) ZP{ max sup
n=1

1<k<m, pep),
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where we use the fact that

0 m,
(5.20) L v22 X EIZIP < w.
n=1 Jj=1
Relation (5.20) easily follows from Lemma 5.
Using, for example, Lemma 1.6 of Ledoux and Talagrand (1991) (with
a =2y, /(LLm,)* and b* = y2 /LLm,), we obtain for any g in D,

'zig(zf)

p{_

provided ~n is large enough.
This last inequality in conjunction with (5.16) and Ottaviani’s inequality

clearly implies

> (\/2_ + E)Ymn} < 2exp(—(1 + ¢)LLm,),

¥ ¢(Z)

j=1

> (\/5 + 28)'ymn} < o,

(5.21) iP{ max sup

n=1 lskSmngEDn

Combining (5.18), (5.19) and (5.21), after an appropriate choice of p > 1, we
get

i Z|| /v, < (V2 + 16¢) as.

Jj=1

lim sup

n—o

Recalling Lemma 8, we readily obtain the assertion of Theorem 3. Corollary 2
immediately follows from Theorem 3 via Lemma 6. O

6. Proof of Theorem 4. Let {¢,} be a sequence of independent random
variables satisfying for 2 > 1,
P{&, = +exp(exp(k?))} = czk? exp(—2exp(k?))/2,
P{fk = iexp(exp(mz))} = cgm ™2 exp(—2exp(m?))/2,
m=k+1,k+2,...,
P{&, =0} =1 — czk?f exp(—2exp(k?)) — ¢4 % m~? exp( —2 exp(m?)),
m=k+1

where B := 2a — 1 and cz > 0 has to be chosen in such a way that
(m}flkaB exp(~2exp(k2))) + Y m2exp(—2exp(m?)) < 1/c,.
m=2

“Let {e,} be a complete orthonormal system in H, and consider the random
variable X = X} _,£,e;. Let {X,} be independent copies of X.
We first note that

(6.1) EIXI?/(LLIXI)**"" < o,
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To see (6.1), observe that

EIXI?/(LLIXIV®*! < ¥ Ee2/(LLIE,))°*"
k=1

=cﬁ2{k‘2+ y m—<4+2/3>}
k=1

m=k+1

0 o
-2 —(3+2
Scg Xk P4cy Y mmeT < oo,

k=1 m=2
Next we claim that
(6.2) K(n) = Vn(LLn)*”? asn — =.
That is, for some positive constants p,, p,, \
(6.3) 1iﬂi£f1€(n) /Vn (LLn)?"? > p,
and
(6.4) limsupK(n)/Vn (LLn)?"? < p,.

n-—>o0

From (6.1) and (6.2) it is easy to see that
(6.5) L. P{IXll = K(n/LLn)LLn} < w.
n=1
Using Corollary 2 in conjunction with (6.2), we get (2.17). From (2.17) and

Kolmogorov’s 0-1 law we can infer that there exists a positive constant K such
that for the sums S, = X"_,X;, n > 1,

(6.6) limsupllS,ll/Vn (LLn)® < K a.s.
This in turn implies, for any z € H,
(6.7) limsup|(S,, 2)l/Vn (LLr)* < K|lz|| a.s.

If now y = X%_,y,e; is a fixed vector, we can find for £ > 0 an N such that

N o0
y= Zyjej+ > yie;=ynt 2y
Jj=1

j=N+1
and
. lzyll < e/K.
" In view of (6.7) we have
(6.8) lim sup|(S,,, zN)I/\/E\(LLn)a <e as.

n—oo

On the other hand, noticing that E¢2 < o, 1 <k < N, we can infer from the
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(6.9) limsup|(S,,yy)|/VRLLn < © a.s.
Combining (6.8) and (6.9), we obtain
(6.10) limsup|(S,,y)l/Vn(LLn)* <¢ as.,

thereby establishing (2.18).
Thus, it remains to prove (6.3) and (6.4).

Proor oF (6.3). Let G¢(-) be the G-function [see (1.11)] corresponding to
the random variable ¢ = f(X), f € H*. Then using integration by parts, it is
easy to see that

Gy(t) = t?/(H(2) + Ms(t)), t>0,
where
Hy(t) = Ef(X)*I{If(X)| < t},
M (t) =tEIf(X)I{If(X) >¢t}, ¢>0.
Further set for 2 > 1,
Hy(2) = Eg1{ig,] < t},
M, (t) = tEI&,1{l&,] > ¢},
Gy(t) = t3/(H,(t) + My(t)), ¢>0.

By definition of the random variables {£,}, we have

0, 0 < t < exp(exp(k?)),
cghk®®, exp(exp(k?)) <t < exp(exp((k + 1)2)),
Hy(¢) = \ mo \ )
cg| B+ X j7%|, exp(exp(m®)) <t< exp(exp((m +1) )),
j=k+1
m=k+1,k+2,....

This implies in particular,
Hy(t) = 4 Pcy(LLt)®,  exp(exp(k?)) <t < exp(exp((k + 1)%)), k = 1,
from which we can infer A

inf Gy(t) < infG,(t) < 4Pt /(LLt)?, t=>e.
Ifll<1

Since we have, for any functional f in H* with || f|l < 1,

G/(K(n)) = Gf(kf(n)) =n,

s
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we obtain for large enough n,
n < 4BcEII€(n)2/(LLI€(n))B.
The last inequality immediately implies (6.3). O

ProoF oF (6.4). Let y = L} _,y,e, be a vector in H such that IIyII2 =

F-1Yr < 1.
Then we have

E(X,y)"1{I(X,y) < ¢
< Y, VREE{lE <t/lyl}

k:y,#0
< ¥ cy2LL(t/ly,) + X 12P(£, # 0} = Ty(2) + To(t),
keK 1+1

where K ={k e (1,...,1}: y, # 0} and [ :=[¢] + 1.
Using the fact that the function (LLu)?, u > u g, is concave, where u, > e°
is a constant, and recalling that |y,| < 1, we get for ¢ > u,,

1 B
T(¢) < cBLL( Y kalt) <cgLL(t* + 1)’ < cs(LLt)".
k=1

From the definition of the random variables ¢, it follows that
P{¢, # 0} = P(l¢,| = exp(exp(%?))}
< cjk®® exp(—-2exp(k?)), k=1.

It is easy now to see that

0

To(t) < cjpt® ). kP exp(—2exp(k?))
k=l+1

< cjt®F+% exp(—2exp(t?)) < ps,

where p, is a positive constant depending on B only.
Combining the two above bounds for T,(¢) and Ty(¢), we find that for some

constant p, > 0,

(6.11) sup H,(t) < py(LLt)".
Ifll<1

Next note that
El,| = cgk? exp(—exp(k?)) + cg 3, m™~? exp(—exp(m?))
g C R+l
< psk? exp(—exp(k?)),

and also observe that for m > &,

Elg,|1{l¢,] > exp(exp(m?))} < pgm 2 exp(—exp((m + 1)%)).
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This immediately implies
(6.12)  Elg,|1{&,) > ¢t} <p,(LLt) 't™%, ¢ > exp(exp(k?)),
and also

(6.13) El&,I1{g,] > ¢t} < pg(LLt)Pt™Y, ¢ < exp(exp(k?)).
Let now y = L5_,y,e, be a vector in H such that [y|| < 1. We then have

E|(X, y)I{I(X, )l >t}
t t
< 3E|(X, x,)ll{l(x, x,) > 51} + 3E|§mt|1{|§mll > -5}

+ 3E|( X, z,)ll{I(X, z,)l > %} =:Ty(t) + Ty(t) + Ty(2),

where x, = X" 'y;e;, 2, = L%, ,1Y,¢;, and m, will be specified later.
We now derive upper bounds for the functions Ti(¢), i = 3,4,5. Setting
M, = MaxX, _ ; ., &7, it is easy to see that
Ty(t) < 3ml/2En/1{n, > 12/9m,)
m,—1
<3mV? ¥ Elg1{igl > t/3m}?).

j=1
Letting m, = min{m: 3Vm exp(exp(m?)) > t} < (LLt)"/? and recalling (6.12),
we obtain

(6.14) Ty(t) < pom2t Y (LLt) ™" < pgt™ 1.
Further note that on account of (6.12) and (6.13),
(6.15) T,(t) < pyo( LLt)Pt~1.

Finally observe that

m,+1
<ps L J* exp(—exp(j?))
m,+1
< pym2f exp(—exp(( m, + 1)2))
< pym?® exp(—exp(m?))’
< 9p,;m2B+172 < 9p, (LLt)P V%2

by definition of m,.
It is now clear that

(6.16) sup’ M,(¢) < pyp(LLt)".

N Ifll<1

Combining (6.11) and (6.16), we find that, for some positive constant p,3,
(6.17) inf G(t) = pyst?/(LLt)".

IIfll<1
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Using a similar argument as in the proof of (6.3), we obtain (6.4) from
(6.17). O
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