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ERGODICITY OF CRITICAL SPATIAL BRANCHING
PROCESSES IN LOW DIMENSIONS

By MAURY BramsoN,! J. T. Cox? AND ANDREAS GREVEN®

University of Wisconsin, Syracuse University and
Universitdt Gottingen

We consider two critical spatial branching processes on R%: critical
branching Brownian motion, and the Dawson-Watanabe process. A basic
feature of these processes is that their ergodic behavior is highly dimen-
sion-dependent. It is known that in low dimensions, d < 2, the unique
invariant measure with finite intensity is §,, the unit point mass on the
empty state. In high dimensions, d > 3, there is a one-parameter family of
nondegenerate invariant measures. We prove here that for d < 2, § is the
only invariant measure. In our proof we make use of sub- and super-solu-
tions of the partial differential equation du /3t = (1,/2) Au — bu?.

1. Introduction and main results. Critical branching Brownian mo-
tion and the Dawson-Watanabe process are two closely related models of
random motion and branching. The basic ergodic theory for these processes is
the same as that of a wide class of processes on R? and Z¢. This class includes:
the voter model ([2], [4], [16]), branching random walks and general cluster
models ([9], [19], [20], [22]), interacting diffusions ([3], [29]), generalized pot-
latch and smoothing [17], coupled random walk models [25], the binary contact
path process [15] and the “linear” processes of Chapter 9 of [24]. For these
processes, the long-term behavior differs sharply in low and high dimensions.
(For models with ‘‘nearest neighbor interactions” low means d < 2 and high
means d > 3.)

In high dimensions, each process has a one-parameter family of invariant
measures, indexed by the ‘“intensity’”’ or some preserved quantity of the
system. The situation is different in low dimensions. In this case, the only
extremal invariant measures for the voter model and the interacting diffusions
of [3] are “degenerate’ ones, point masses on traps. This is also true, subject to
certain side conditions, for the other models listed above. These side condi-
tions are used to overcome the fact that for these models, either the coordinate
functions or the number of particles in bounded sets can be unbounded. (In
contrast, the voter model and the diffusions of [3] have state space 1%, I
compact.) Nevertheless, it has been conjectured for most models (see, e.g., [5],
[7], [10], [17], [23] and [24]) that in the low dimensional setting there are no
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nondegenerate invariant measures, with or without side conditions. In this
paper we resolve this question for the two processes we consider here. We
begin by defining them.

Critical branching Brownian motion 7, is a system of particles which
undergo random motion and branching on R according to the following rules.

» Each particle lives an exponentially distributed lifetime with parameter 2b.

« At the end of its lifetime, a particle disappears and is replaced by zero or two
particles, each possibility occurring with equal probability.

« During its lifetime, a particle moves according to standard Brownian motion.

« All particle lifetimes, motions and branching are independent of one another.

The parameter b is a positive, finite constant. It is convenient to view 7, as a
measure on R?. Thus, if the particles of 1, are located at t,(¢), ty(¢),...,then

Jf(x)m(dx) = Tf(x(t)).

For x € R?, let n* denote the process starting from a single particle at x at
time zero.

A construction of the ‘““single ancestor” processes n; can be found in [11].
Systems of infinitely many branching Brownian motions are constructed by
superposition. A formal treatment can be found in [8]; see also [9]. For our
purposes, the following informal description will suffice. Let { be a configura-
tion of particles in R?, with particle locations {r;}. We assume that initial
configurations ¢ are locally finite, which means that for every compact K c R¢,
{(K) < ., Given ¢, with particle locations {r;}, and a family of independent
single ancestor processes {n}:}, we define ¢, the process with initial configura-
tion ¢, by

(1.1) nf = Lmi.
i

This also works if ¢ is random: We simply require that { and the family {n;:}
be independent. [Note that if {(K) = » for some compact K, then P(n}(U) =
) =1 for all £ > 0 and open sets U.]

The Dawson-Watanabe process 1, is the ‘“‘diffusion limit” of critical
branching Brownian motion obtained by speeding up the branching rate,
decreasing the mass of particles and packing more particles into less space. If
we let "7, denote branching Brownian motion with lifetime parameter 2bn,
and suppose that (1/n)("n,) converges to a measure 7, as n — o, then
(1/n)X"n,) converges to a measure-valued diffusion 7,, the Dawson-Watanabe
process. We will not give the details of this construction, but refer the reader
to [26], [5], [6] and [18] for extensive treatments of the construction of 7,. In
Section 2, we will give the Laplace functional of 7,, which is enough to justify
the calculations we need to make.

Before proceeding further, we review the basic ergodic theory of n, and 7,.
Let | - | denote Lebesgue measure, .7 ‘denote law, and = denote weak
convergence. A measure u has finite intensity if there exists 6 < « such that
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JU{E)du({) < 0|E| for all measurable E c R%. Let ¢, be either n, or #,.
A measure u is an invariant measure for {, if it is concentrated on locally
finite configurations (measures) and has the property that .#({,) = u implies
() =mp for all ¢ > 0. Let 8, denote the unit point mass on the empty
configuration or measure. : :

THEOREM 0. (a) Assume d < 2. If £({,) has finite intensity, then
(1.2) L) = 6, ast— x.

(b) Assume d = 3. There is a one-parameter family of invariant measures
{vy, 0 < 0 < }. The measures v, are translation invariant, [{(K)dv,({) =
0|K|, and for compact K, K,, [{(K){(x + K,) dvy({) — 6%|K,| |K,| as x — o.
Moreover, if -£({,) is translation invariant, ergodic and E{(K) = 8|K]|, then

(1.3) ZL({) = vy ast > o,

Proofs of the various statements in Theorem 0 can be found in [8], [9] and
[12] for m,, and in [5] and [6] for 7,.

It follows easily from (1.2) that for d < 2, if u is an invariant measure with
finite intensity, then necessarily u = §,. However, this does not rule out the
possibility of an invariant measure with infinite intensity. For instance, it is
conceivable that the tendency toward local extinction might somehow be
balanced by a densely populated initial configuration, resulting in a nondegen-
erate invariant measure. (See [28], where this actually occurs for a subcritical
model in which branching and spatial motion are highly dependent.) This
question was explored (but not settled) for 4, in [7]. Theorem 3.1 in [7] says
the following for d = 1 and 1, a stable random measure with exponent vy,
0 <vy<L1lIfy>1/2, then 4(E) >, 0as t — o for every bounded Borel set
E, whereas if y < 1/2, f(E) >, for every open set E. (-, denotes
convergence in probability.) If y = 1/2, then 4(E) -, 7(E) as t — =, where
P(n{E) =0) = P(n(E) = ») = 1/2 for bounded open sets E. This shows
that no (hypothetical) nondegenerate invariant measure for 7, can have a
stable random measure in its domain of attraction.

To state our results we use the following terminology. A finite ball B c R®
is a ball in the Euclidean norm of finite, positive radius; we reserve B for such
a ball. The family {{,(B)} is stochastically bounded as t — » if
lim sup, _,, P({(B) > M) - 0 as M — «. Moreover, we say that:

« {, becomes extinct if for every B, {(B) -, 0as t - o;
« ¢, is unstable if for every B, {{,(B)} is not stochastically bounded as ¢ — ;
« ¢, explodes if for every B, {(B) —,» as ¢t - .

[If {(B) = at some s <, then the same is true at all ¢ > s, so this
possibility is included in the above scheme. There is an interesting remark on



LOW DIMENSIONAL CRITICAL BRANCHING 1949

page 794 of [26] concerning this phenomenon.] Also, define

1 (——xz)
— exp R d=1,
1.4) o(x,r) = : ]
( * ’ 1 _|x|2 d 2
rlogreXp r |’ -

We will show that no matter what the initial state, extinction and instability
are the only possibilities. Hence, there can be only one invariant measure, the
degenerate one concentrated on the empty state. We also give a necessary and
sufficient condition for {, to explode.

THEOREM 1. Assume d < 2, and {, is either critical branching Brownian
motion or the Dawson—Watanabe process. The following dichotomy holds: If

(1.5) fq&(x, r)io(dx) »,0 asr— x,

then {, becomes extinct; otherwise {, is unstable. Furthermore, {, explodes if
and only if

(1.6) f¢>(x,r){0(dx) —>,% asr -,

COROLLARY . For d < 2, 8, is the only invariant measure.

The proof of Theorem 1 for both processes centers around analyzing the
~ heat equation given in (2.1) below. The solutions of (2.1) correspond in a
simple way to the Laplace functionals of 7, and 4,. In Section 2, Proposition 1
gives sub- and super-solutions for (2.1). In Section 3 we derive the proof of
Theorem 1 using the estimates of Proposition 1. We note that although only
binary critical branching Brownian motion is considered here, Theorem 1
holds just as well when the branching mechanism has a finite second moment
(and is critical). The argument remains the same, although the estimates in
Section 2 become somewhat less explicit. Also note that a simple computation
using Theorem 1 exhibits the three types of behavior produced by the initial
stable random measures treated in [7].

2. Probability and pde estimates. In this section we consider the finite
processes n¢ and 77, and concentrate on obtaining useful estimates of their
Laplace functionals. Fundamental for each process is the partial differential
equation

2.1 A
(2.1) 57 = g Au —bu.

For critical branching Brownian motion, the function u(x, t) determined by
(2.2a) Eexp(—Anf(B)) =1 —u(x,t), A €[0,),
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is the solution of (2.1) satisfying

(2.2b) u(x,0) = (1 —eMig(x), xR

(As before, B denotes a finite ball.) For the Dawson-Watanabe process, the
function u(x, t) determined by

(2.3a) E exp(—AA7(B)) = exp(—u(x,t)), A €[0,»),
is the solution of (2.1) satisfying
(2.3b) u(x,0) =Alg(x), xeR%

These facts are well known (see [5], [6], [11] and [18]).

We obtain estimates of the functions u(x,¢) by utilizing the standard
method of sub- and super-solutions. This technique has been used to study the
asymptotic behavior of u(x,?) in both probabilistic ((21]) and analytic ([1], [13]
and [14]) contexts. Sub- and super-solutions to (2.1) are given in Lemmas 1
and 2, and are combined in Proposition 1 to provide the fundamental estimates
we will use to prove Theorem 1. We start with super-solutions.

LEmMMA 1. Let A be a constant, A > 2e*/b, and set

A —x?
TBXP{ 4¢ } d=1
(2.4) u(x,t) = A 1\ Il
tlogteXp{—(1 - logt)%}’ d=2
Then
ou 1
(2.5) o~ 3 AT+ bE =0

forall x € R? and t > e*.

Proor. Suppose that d = 1. Direct computation yields

om 1 3 x2 bA
— - AT+ =U|—— + = + —e T /M.
o 2T T Ty T T ¢
By considering separately the two cases x? > 8¢ and x2 < 8¢, and using the
fact that A > e2/b, it is easy to see that the right-hand side above is always

nonnegative. Now suppose d = 2. Direction computation yields
ou 1

AT 4 b2
2 2 Au + bu
B 2 lx|2(1 — 2/log t) bA 1\ Ix?
B =u|- + 3 + exp{ — |1 — -
tlogt 2t log ¢ tlogt logt | 2¢

\%
|

( 2 |x|2 bA

_ + + ‘—|x|2/2t,
tlogt 4t%logt tlogte
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where we have used the assumption ¢ > e?. Again, considering separately the
cases |x|> > 8t and |x|? < 8¢, using the assumption A > 2e*/b, we find that
the right-hand side above is always nonnegative. O

The argument for sub-solutions is even easier, so we omit the proof of the
following: ‘

LEMMA 2. Let a be a constant, 0 < a < (2b)7!, and let

a —x? Je1
TP\ T -
(2.6) u(x,t) = 2
: =l d=2
tlogt P\ 79y [© 7%
Then
2.7 ou 1 A bu?<0
) —— = + <
(2.7) o g luTH

forall x € R® and ¢t > 1.
Proposition 1 is the main estimate. Recall that ¢ is defined in (1.4).

ProPOSITION 1. Assume u(x,t) solves (2.1) in d = 1,2, with u(x,0) =
rlg(x), and r > 0. Then there are positive finite constants a, A depending on r
such that

(2.8) ad(x,t) <u(x,t) <Ap(x,8t)

for all x € R? and t > e*.

Proor. The upper bound. Let u(x,t) be as in Lemma 1, with A large
enough so that

u(x,0) <@(x,e*).
By Lemma 1 and a standard maximum principle (see [27]), it follows that
u(x,t) <u(x,t+e?), xRy, t>0.

For t > e*, this implies (2.8).

The lower bound. Consider 17, and let A = —log(1 — (r A 1/2)). Up until
the death of the original particle, n; consists of a smgle Brownian motion W
starting at x. Furthermore,

u(x,t) =1 — Eexp(—Ani(B)) = (r A 3)P(nf(B) = 1)
> (r A 3)e”®'P(W7 € B).
So for u(x,t) defined as in Lemma 2 With‘a > 0 small enough,
(2.9) u(x,4) > u(x,2), x € Re,
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Together with Lemma 2 and the maximum principle., this implies that

u(x,t) =z u(x,t—2), x € R t>4.
For ¢ > 4, this implies (2.8). O
There is a trivial upper bound 6n the functions u(x,t) which is use-
ful. Suppose u(x,?) solves (2.1) with u(x,0) =rlg(x), and r €[0,1], A =
—log(1 — r). Then u(x,t) = 1 — E exp(—An*(B)), and so

(2.10) u(x,t) < P(nf(B) > 0) < P(n7}(R?) > 0) =

1+bt°

We also recall the formulas for the first two moments of 7,(B) and 7,(B)
(see [6] and [12]). Let p,.x,dy) denote the transition kernel of standard
Brownian motion, let

t
m(%,B) = [ [ pi_i(x, dy)pi(y, B) ds,

and let {, be either n, or 7,. Then

(2.11) E{7(B) = p/(x, B)
and
(2.12) E{F(B)® = p2(x, B) + bm,(x, B).

We will need the following modest extensions of (2.11) and (2.12). If A is an
event depending only on ¢, then

(2.13) E4(B)1y = ELy [ pi(, B){o(dx)

and
(2.14) Ezt(B)21A=E(1A( f dpt(x,mzo(dx)) + 01, [ m(x, B)lo(dx) |-

3. Proof of Theorem 1. We begin by observing that independence allows
us to compute Laplace functionals of the infinite process in terms of the
Laplace functionals of the finite processes. Consider branching Brownian
motion n,, with initial random particle locations {r,}. Using (1.1),

E exp(—An,(B)) = Eexp(—A Zm‘"(B)) = E[1E[exp(—Anj(B))|no]
=E[I(1.—u(r;,t)) = Eexp} log(1 — u(r;,)),
where u(x, ¢) satisfies (2.1) and (2.2b). Thus,

(3.1) E exp(—An/(B)) = E exp [ log(1 — u(x,))no(dx).
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A similar formula holds for the Dawson-Watanabe process (see [5] and [6)):
(3.2) Eexp(~xi,(B)) = Eexp( - [u(x,t)o(ds),

where u(x, t) satisfies (2.1) and (2.3b).

In order to treat m, and 7, simultaneously, we establish the followmg
notation for the remainder of this section. B is a finite ball, A € (0, ), ¢,
denotes either of 7, or 4,, u(x, t) is the solution of (2.1) satisfying either (2.2b)
(for ¢, = m,) or (2.3b) (for ¢, = 4,), and v(x, ¢) is given by

v(x t) - _log(l_u(xyt))’ §t=nt’
’ u(x,t), ¢ =N,

With these definitions we may combine (3.1) and (3.2) into
(3.3) E exp(—A{,(B)) =Eexp(—fv(x,t)§0(dx)).

Note that (2.10) and the inequality s < ~log(1 — s) < 2s for small positive s
imply that for large ¢,

(3.4) u(x,t) <v(x,t) <2u(x,t), x<R

We break the proof of Theorem 1 into three parts, those of extinction,
explosion and instability.

Extinction of {,. If [¢(x,t){,(dx) —, 0 as ¢ — o, then {, becomes extinct.

Proor. By Proposition 1 there exists A < « such that
u(x,t) <Ad(x,8t), x € R9,
for all large ¢. From this and (8.4) it follows that
fv(x,t){o(dx) < 2Af¢>(x,8t){0(dx) —,0 ast— o,
By (3.3), E exp(—{,(B)) — 1. This shows {, becomes extinct. O
Explosion of {;. {, explodes if and only if [¢(x, £){((dx) —,® as t — .
Proor. ¢, explodes if and only if E exp(—{(B)) — 0 as t - «. By (3.3),

this is equivalent to [u(x, £){,(dx) -, ® as ¢ - ». But Proposition 1 and (3.4)
imply that for some 0 < a, A< o, for all large A

a[$(x,t)do(dx) < [v(x,t)go(dx) < 24 [¢(x,8t){o(dx).

This implies the above equivalence. O
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Instability of {,. If [¢(x,t)(dx) +, 0 as t — o, then ¢, is unstable.

SteEP 1. If [¢(x, 2){,(dx) is not stochastically bounded as ¢ — o, then {; is
unstable.

Proor. Let T(M) = {[¢(x,t){,(dx) > M)}, M > 0. By assumption there
exists & > 0 such that for every finite M,

limsupP(T,(M)) = 6.

t—o

By Proposition 1 and (3.4) there exists a > 0 (depending on A), such that
v(x,t) = ad(x,t), xe€R?

for all sufficiently large ¢. For such ¢,

Eexp(—fv(x,t){o(dx)) < Eexp(—a[¢(x,t)§0(dx))

<1-P(I(M)) + e “MP(T,(M)).
From this and (3.3) we obtain
liminfE exp(—A{,(B)) <1 -6 +e M
t—>

Let M — « and then A — 0 to conclude that {, is unstable. O

Now let I(¢) = {x: |x|® < ¢}. We note that Step 1 implies that if there exists
e > 0 such that for all N < «,

lim supP(fIc(Nt)qb(x,t){O(dx) > e) >,

t—>

then ¢, is unstable. This follows from the observation that ¢(x,2t) >
(1/4)eN"?¢(x,t) for x € I°(N¢t) and ¢ > 2, and hence

[o(x,2t)¢0(dx) = §eN/2jIc(Nt)¢(x,t)go(dx).

So we can assume that for every ¢ > 0 there exists an N < « such that

<e.

lim supP(];c(Nt)(l)(x, t)io(dx) > ¢

t—o

Th;1s, the proof of the instability of ¢, will be complete with the following:

Step 2. If for some finite N, [;n:®(x, )o(dx) +, 0 as t — =, then {, is
unstable.
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Proor. Let G(t) =t for d = 1, G(¢) = t logt for d = 2. Note that
(8.5) e N <o(x,t)G(t) <1, x€I(Nt).
Also, set
A, = {eG(t) < {(I(Ne)) < eT1G(¢)}.

On account of Step 1, we may assume [¢(x, £){o(dx) is stochastically bounded
as ¢t — . Plugging the upper and lower bounds from (3.5) into
Jined(x, )o(dx), one therefore has, for appropriate ¢ > 0 and #(n) — <,
inf, P(A,,,) > 0. Now define the family of processes {{,; t =0}, s>0,
branching Brownian motion or the Dawson—Watanabe process, by setting the
initial states equal to £, o(*) = {o(* N I(Ns)). [This simply ignores the initial
particles or mass of {, not in I(Ns).] Set Z, = £, A B)1,, and observe that for
any K,

(3.6) P({(B) =2 K)=>P({, (B)=K)=P(Z,=2K).

The point of this construction is that we can now show ¢, is unstable by
showing Z, is not stochastically bounded as ¢ — «, which we do with moment
calculations.

Indeed, we will show there are constants 0 < ¢, C <, depending only on
B, such that for ¢ > 1,

3.7 EZ > cet/?P(4A,), d=1,
(3.7) = \ece(logt)P(4,), d=2,
and

Ce™2%tP(A,), d=1
(3.8) EZ} < )

Ce ?(logt)"P(4,), d=2.

To make use of these estimates we apply the inequality, easily derived with
Hoélder’s inequality,

. (EX)’
EX?% "’
where X is nonnegative. Substituting (3.7) and (3.8) into (3.9) yields

(3.9) P(X=>rEX) > (1-r)

<r<l,
1 2Zgt
P(Zt > —Z'EZt) > —‘L'EP(At).

Since inf P(A,,,) > 0, (3.6) implies that
lim inf P (¢, B) = (1/2) EZy,) > 0.

But (3.7) shows EZ,,, — ® as n = ®, 80 {; is unstable.
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The proofs of the moment estimates are as follows. From (2.13) and the
definition of A,,

EZ, = E{(B)1,,
= E1,,[  p(x, B){o(dx)
I(Nt)
= E[IA,fo( I(Nt))] xelll'.(lflllt)pt(x, B)
>¢eG(¢)P(A,) inf p(x, B).
xeI(Nt)

From this it readily follows that (3.7) must hold for some positive ¢, Similarly,
using (2.14),

EZ? = E{(B)"1,,
2
- E(lAt(f pi(, B){O(dx)) +bl,, [ m,(x, B)L(dx)
I(N?) I(Nt)

2
< (e‘lG(t) supp,(*, B)) P(A,) + e~ 'G(t) P(A,) supm,(x, B).
Furthermore,

t
m(x, B) < [ [ s, dy)Pi(y, B) suppy(z, B) ds

t
= p,(x, B) fo supp,(z, B) ds,

from which it follows that for some finite C and ¢ > e,

C, d=1,
m(x, B) < {Ct‘llog t, d=2.

Using this bound in the above estimate for EZ? yields (3.8). O
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