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INTEGRATION BY PARTS ON WIENER SPACE AND THE
EXISTENCE OF OCCUPATION DENSITIES

By PETER IMKELLER! AND DaviD NUALART ?
Math. Institut der LMU Miinchen and Universitat de Barcelona

We present a general criterion for the existence of an occupation
density, which is based on the integration by parts formula on Wiener
space. This criterion is applied to two particular examples of anticipating
processes. First we discuss the case of Brownian motion plus a nonadapted
absolutely continuous drift, and second we consider the case of a Skorohod
integral process. Finally a version of Tanaka’s formula is proved for the
Skorohod integral process.

1. Introduction. An extension of the Itd stochastic integral for processes
which are not necessarily adapted to the Brownian motion was introduced by
Skorohod in [12]. The Skorohod integral shares some of the probabilistic
properties of the It6 integral and, on the other hand, it has a more analytic
flavor because it can be regarded as the adjoint of the derivative operator.
Recently, a stochastic calculus for Skorohod integral processes has been devel-
oped in [9] and a version of the change of variable formula (Itd’s formula) for
Skorohod integral processes has been established. A crucial point in the
derivation of this formula is the fact that Skorohod integral processes possess
quadratic variations which are given in the same way as for their It6 counter-
parts and consequently are nontrivial. That is, the trajectories of these pro-
cesses are continuous, but highly irregular. This observation leads us to
investigate their occupation densities or local times.

Different methods have been used so far to study the occupation densities of
anticipating processes. Berman’s idea to employ Fourier analysis (see [2]) has
been applied by Imkeller in [6, 7] to find integral criteria for the existence of a
square integrable local time for a Skorohod integral process which belongs to
the second Wiener chaos. A more stochastic approach has been presented in
[8], again for processes living in the second Wiener chaos (although this
method can be generalized to deal with more general processes). Its main idea
is to represent the Skorohod integral process we are dealing with as the
composition of a Gaussian semimartingale depending on an infinite dimen-
sional parameter with a Gaussian vector, and to use an infinite dimensional
generalization of Kolmogorov’s continuity criterion in order to find the local
time of this composition.
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In this paper we present a new general approach which can be used to show
the existence of a square integrable occupation density for a wide class of
anticipating processes. The starting point of our method is a sufficient crite-
rion for the existence of an occupation density established by Geman and
Horowitz in [4]. We combine it with the technique of integration by parts on
Wiener space in order to deduce several sufficient criteria for the existence of
occupation densities with respect to Lebesgue measure as a scale for measur-
ing occupation. This is the content of Section 2. The main criteria are given by
Theorems 2.2 and 2.3. These criteria are rather general and can be applied to
different situations. Two applications of the local criterion presented in Theo-
rem 2.2 are discussed in Sections 3 and 4.

In Section 3 we consider a nonadapted process of the form

(1.1) X, =W+ [u,ds, 0st<1,
0

where u belongs to the space 1%2. It is proved (see Theorem 3.1) that X
possesses a square integrable occupation density.

Section 4 is devoted to showing the existence of a square lntegrable occupa-
tion density for a Skorohod integral process of the form

(1.2) X, = [u,dW, 0<t<l.
0

Some smoothness and integrability hypotheses on the process u are required
(see Theorem 4.1) and, furthermore, we need a nondegeneracy condition of the
form

(1.3) E(fllutl_y dt) < o for some suitable y > 0,
0

which is natural in the chosen framework.

The continuity of the occupation density for the processes (1.1) and (1.2)
under more restrictive assumptions will be discussed in a forthcoming paper.
On the other hand, we believe that the local time for processes of the form
(1.2) with respect to a scale measure like u? ds (instead of Lebesgue measure)
may exist without the hypothesis (1.3). But the criterion presented in Section
2 does not seem to be a convenient tool to deal with this problem.

In Section 5 we present a version of the Tanaka formula for the indefinite
Skorohod integral, which is obtained as a consequence of the previous results.

2. Criteria for the existence of occupation densities. In this section
we will present some criteria for the existence of occupation densities, all
of which are based on the technique of integration by parts on Wiener space.
We will only discuss occupation densities with respect to Lebesgue measure,
denoted by A, as scale for measuring occupation.
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For a measurable function x: T — R, T a Borel subset of [0, 1], we set

pr(¥)(C) = [1e(x,) ds,  Ce BR),

and we say that x has an occupation density on T if up(x) < A. Moreover we
call dup/dA the occupation density of x on T. If T =1[0,1], we omit the
reference to T and simply speak about occupation densities. An occupation
density of x is called square integrable if it is in L%(R, A).

Consider a probability space (Q, %, P). If X is a continuous stochastic
process indexed by [0,1] and A € %, we say that X has an occupation density
on (T, A) if for almost all w € A, X(w) has an occupation density on T. If
T =[0,1]and A = Q, we omit the specification (T, A) and simply speak about
occupation densities.

In our analysis we will consider occupation densities on subintervals T of
[0,1] and on sets A < ), and we would like to patch them together to obtain
occupation densities on [0, 1] and Q. The following proposition is a basic tool
for this procedure.

ProposiTioN 2.1. (i) Let & > 0. Suppose that x: [0,1] - R has a (resp.,
square integrable) occupation density on T for any subinterval T of diameter
less than 8. Then x possesses a (resp., square integrable) occupation density.

(ii) Let X be a continuous stochastic process. Suppose that (5,), cn IS @
sequence of positive real numbers, and (A,), <y IS a sequence of Fmeasurable
subsets of Q such that A, 1Q a.s. If X has a (resp., square integrable)
occupation density on (T, A,) for any subinterval T of [0, 1] of diameter less
than 8,, for all n € N, then X has a (resp., square integrable) occupation
density.

This proposition is an immediate consequence of the preceding definitions.
In the sequel we will make extensive use of the ‘‘localization” principle
inherent in Proposition 2.1. On the other hand, the main tool in proving the
existence criteria of occupation densities will be the following result by Geman
and Horowitz [4], which we will now state.in its ‘“local”’ form.

ProprosiTiON 2.2. Let T be a Borel subset of [0,1], A€ & and X a
continuous process. Then

(@) if liminf, ((1/e)[p P(A N{|X, — X,| <€D ds < », foralmostallt € T,
X possesses an occupation density on (A, T).

(ii) The process X possesses a square integrable occupation density on
(A, T) if and only if

1
luerlll()nf;foTP(A NA{IX, — X,| <e&})dsdt < ».

Proor. We may assume P(A) > 0, and then it suffices to apply Theorems
(21.12) and (21.15) of Geman and Horowitz [4] to the probability space
(A, F, P(-|A)) where %, is the restriction of & to A. O
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In the sequel we will assume that (Q, &, P) is the canonical Wiener space.
That is, Q = C,([0,1]) is the space of continuous functions on [0, 1] which
vanish at zero, and P is the Wiener measure. The canonical process W,(w) =
w(t), 0 <t <1, will be a standard Wiener process. Let us recall some basic
facts about Malliavin’s calculus. We will denote by D the derivative operator,
which is defined on a smooth random variable F = f(W,, ..., th), f € Cp(R™),
t,...,t, €10,1], as follows:

n 3 f
(2.1) D,F = ‘Zl o Weis s W ) L0,1,(8).
i= i

For each p>1, re N, D?" will represent the Banach space of random
variables on the Wiener space which is defined as the closure of smooth
random variables for the norm

”F”p,r = ”F"p + Z ”DiF”LP(Q;Lz([O, 114)»
i=1
where D’ denotes the ith iterated derivative. If H is a real separable Hilbert
space, D "(H) will denote the corresponding Banach space of H-valued random
variables. In particular we will denote by H the Hilbert space L*[0,1]), and
we will denote by ¢ -, - ) and || - || its scalar product and norm. We will make
use of the notation D?"(H) = L»",

The adjoint in L2%(Q)) of the derivative operator D is called the Skorohod
stochastic integral and will be denoted by §. It holds that for any process
u € 1!, uly , belongs to Dom 8, the domain of §, for any ¢ € [0, 1], and we
can define the indefinite Skorohod integral as

t
X, =8(uly,,) = [Ou dw,.

The duality relation between the operators D and § is expressed by
(2.2) E(F5(v)) = E({DF,v))

for any F € D%! and v € Dom 8. We will need the following extension of this
duality property.

LeEmMMA 2.1. Let F € DV be a bounded random variable and h € H. Then
(2.3) E(Fs(h)) = E({DF, hY).

Proor. We can find a sequence of smooth random variables F,, n € N,
which converges to F a.s. and in D", and such that sup, [|F,,[l. < . For each
n we have

E(F,5(h)) = E((DF,, 1)

and the result follows by letting n — «. O
We refer the reader to Nualart and Pardoux [9] and Watanabe [14] for a

more detailed presentation of these notions. The construction of the spaces
D?" for p = 1 can be found in Shigekawa [11].
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The following lemma is a consequence of the duality relation, and it will be
used in Section 3.

LEmMA 2.2. Let F € D*! be a random variable such that E(|F|™2) < o,
Then P{F > 0} is 0 or 1.

Proor. Let ¢_: R — Rbe a function such that ¢ (x) = x /x|, if [x| > €, and
¢(x) = x /¢, if |x| < e. Then ¢ (F) belongs to D>, and by the chain rule we
have

1
Dl¢.(F)] = ¢.(F)DF = ~lyri<q DF.
Let u be a bounded process in Dom 8. The duality formula (2.2) implies

1
E[0/(F)5(u)] = E| ~ 14z <o DF, u)

< lull.(E(IDFI?))"*e1(P(IFI < €})'/?,

which converges to 0 as € | 0, due to the condition E(|F| %) < . O

We will denote by L = —8D the generator of the L2(Q)-valued
Ornstein—Uhlenbeck semigroup. The operators D and § satisfy a local prop-
erty which says that DF [resp., 5(v)] vanishes a.s. on the set {F = 0} (resp.,
{llvll = 0}) for any F € DP! (resp., v € LP1), p > 1. This allows us to introduce
the spaces Df;/ and L{;; of random variables and stochastic processes which
are locally in D?" and L?”, respectively. In order to deduce a version of the
Tanaka formula for the indefinite Skorohod integral we have to deal with
Hilbert-valued processes which are locally Skorohod integrable but are not in
13- A suitable class of locally Skorohod integrable processes can be introduced

by means of the following local property, which has been proved in [3].

LEMMA 2.3. Let H be a separable real Hilbert space. Suppose that u is an
H-valued measurable process such that [{llu,llh dt < » a.s., and let F € D21,
Suppose that Fu € (Dom 8)XH), and E([llu,llulD,F|dt) < «. Then §(Fu) = 0
a.s. on the set {F = 0}.

Now we can introduce the following notion (see [3] Definition 2.4).

DEerFiNiTION 2.1. We define (Dom ), (H) as the set of H-valued measurable
processes u satisfying [¢llu,llg dt < « a.s., such that there exists a sequence
{F,, n > 1} c D*>! satisfying the following properties:

@D {F,=11Qas.and |[F,| <1forall n > 1.

(i) E( follu,llulD,F|dt]?) < o for all n > 1.
(iii) 1 ,)F,u € (Dom 8)H) for all n > 1 and ¢ € [0, 1].
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Let us now establish two propositions, which are also consequences of the
duality formula, and which will be basic tools in the derivation of the criteria
for the existence of occupation densities.

PropPOSITION 2.3. Let U € D%2 h € H and let F € DV1. Suppose that

(DU,h) >0 a.s.on {F # 0}
and let f € C7(R). Then
|6(kR)F| +|{DF,h)| |F(D2U,h ® h)l

(24) |E(f(UYF)| <IIfl.E DU T T DUy

ProoF. Suppose first that the random variable F is bounded. We have
D[ f(U)] =f'(U) DU

and hence

(D[ f(U)],h> =f"(U)DU,h).
Consequently,
5 DU B +ef W) e

(DU, h) + ¢

for any ¢ > 0. The hypotheses of the proposition imply that the random
variable f(U)F/({(DU, h) + ¢) belongs to the space D"!. Therefore, Lemma
2.1 yields

f(U)F [ F(U)F5(h)
(26) E(<D(<DU,h>+8)’h>)‘E(<DU,h>+e)'
From (2.5) and (2.6) we obtain

r(u)F

(DU hy +¢ +E[f(U)G.],

E[f/(U)F] =8E(

where
B 8(h)F — (DF,h) B
G =" DU Ry e ~ K(D[((DU, k) + &) "], ).

Consequently we have

B gt
(DU,h) + ¢
2.7) <IIfI.E(G.))
<lfl.E |3(h)F| +|<DF, k)| .\ |F(D2U,h & h)| ‘
(DU,h) + ¢ (DU, hy + 2)
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By a monotone convergence argument, the inequality (2.7) still holds for an
arbitrary random variable F in the space D¥!, which is not necessarily
bounded. Finally, in (2.7) we let ¢ tend to zero and we get (2.4). Notice that the
right-hand side of the inequality (2.4) can be infinite if the random variable F
is not bounded. O

PropPOSITION 2.4. Let U € D%2 and f € C5(R). Then

ILU| + 2| D2U|
(2.8) |E[ ' (U)ypuy>q)| < ||f||mE( )

IDU|I?

Proor. We proceed as in the proof of Proposition 2.3 with F = 1 and with
DU replacing h. That means, we first write

(D[ f(U)],DU) + & f(U)
IDU|? + &

for any £ > 0. The random variable f(U)/(|DUI?® + ¢) belongs to the space
D21, Therefore, by the duality formula (2.2) we obtain

(2.10) E(@(ﬂ DU>)=E(M]
' IDUI? +¢)’ IDUI?> +¢ |

(2.9)

=f'(U),

From (2.9) and (2.10) we get as in the proof of Proposition 2.3,

£ rv) IDU|?
IDU|I® + &
(2.11)
|sDU| 2|{D2U, DU ® DU )|
<Ifl-E 3 + 5
IDUII" + & (IDUI? + &)

Notice that here we do not need the fact that || DU]| > 0. Applying the
Cauchy-Schwarz inequality and letting ¢ | 0 we obtain the result. O

Observe that by the local property of the operators D and L we have
{ILU| + 2|D?*U|| = 0} o {|IDU|| = 0}, and in the formula (2.8) we set by con-
vention 0/0 = 0.

The preceding proposition can be used to derive criteria for the existence of
occupation densities for processes on Wiener space. We will make use of the
following criterion.

THEOREM 2.1. Suppose that {X,, t € [0, 1]} is a continuous process such
that X, € D*2 for all t €[0,1). Let F € D' be a bounded random variable.
Assume that there exist a constant a > 0, a subinterval T c[0,1] and a
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bounded and measurable function B: T — R, such that:

@) (DX, - X),Bl, ) 2alt —s)on {F #0}as., foralls <t s,t€T;
(i) i¢ holds that

Gi,) [rE([!B,D,Fdr|/|t — s ds < », and

Gi,) [rE(F[}!B8,B,.D,D(X, — X )dudrl/lt —s|®)ds < o,

fora.e teT.

Then X possesses an occupation density on ({(F # 0}, T). Moreover if in (ii) the
double integrals over T X T are finite, the occupation density is square inte-
grable.

Proor. Choose a nonnegative function & € CG(R) such that

él[—1/2,1/2]
For ¢ > 0 set h (x) = (1/e)h(x/e), x € R. Then for ¢ > 0

1
oo liezem < he < “lic

<h<1_qq

For ne N let now A, ={F > 1/n}. We w111 show that X possesses an
occupation density on (A, T) for all n € N. Since A, 1{F # 0}, this will imply
the first assertion. By the choice of A, &> 0, (i) of Proposition 2.2 is
equivalent to

(2.12) 11m10nf E(1, h (X, - X,))ds <
el T

for almost all ¢ € T. By definition 1, < nF, hence (2.12) follows from
(2.13) hmlnff E(Fh (X, - X,))ds <,

for almost all ¢ € T. In order to verify (2.13), integration by parts is brought
into play. Fix s,t €T, s <t, ¢ >0, and set g.(x) = [*_h(y)dy. Then by
Proposition 2.3 applied to & = Bl ,;, f=g., U = X, — X, we deduce, taking
into account conditions (i) and (ii),

supr(Fh (X, —X,))ds <

>0
for almost all ¢ € T, which implies (2.13). Also, the extension to square
integrable occupation densities is clear. This completes the proof. O

Theorem 2.1 provides a local result on the existence of the occupation
density. In this context, Proposition 2.1 can be used to formulate a global
existence result:

THEOREM 2.2. Suppose that there exist sequences {F,, n > 1}, a, > 0,
8, > 0, and a measurable and bounded function B: [0,1] = R, such that for
each n > 1, the hypotheses of Theorem 2.1 are satisfied for any interval T of
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length less than §,. Moreover, assume that U (F, # 0} = Q, a.s. Then the
process X possesses an occupation density [which is square integrable if we
take double integrals in (ii)).

We could also deduce global results like the following one, which in the
Gaussian case reduces to a well-known criterion.

THEOREM 2.3. Let X = {X,, t €[0,1]} be a continuous process such that
X, € D*2 for all t € [0, 1). Suppose that

. [ L(X, - X)) )
(1) E ;
fo ID(X, - X))
y L 1D%(X - X)) |
(i) E ds <, fora.e.t<[0,1],
A ID(x, - X))
(iii) [D(X, - X,)|| >0 foralmostall (s,t, o).

Then X possesses an occupation density. If we replace the integrals appearing
in conditions (i) and (ii) by double integrals over [0, 1] with respect to ds and
dt, the occupation density is square integrable.

Proor. The proof is analogous to that of Theorem 2.1, but using Proposi-
tion 2.4 with U = X, — X_, instead of Proposition 2.3. O

CoOROLLARY 2.1. Suppose X is a continuous process in the first chaos.
Suppose that

[ID(X, - X)| ds < forae.teT.
0

Then X possesses an occupation density. If the double integral over [0,1]? is
finite, the occupation density is square integrable.

Proor. In the underlying case the condition X, € D*2, ¢ € [0, 1], is auto-
matic. Moreover, D(X, — X,) is deterministic, so that D*(X, — X,) = 0. Fi-
nally, L(X, — X,) = —(X, — X,) and

E(X, - X,|) <(D(X, - X,), D(X, - X,))'/*.

These remarks reduce the stated criterion to the criterion of Theorem 2.3. O

REMARKS. The criterion of Corollary 2.1 is well known (see Geman and
Horowitz [4] and Pitt [10]).

3. Occupation densities of the perturbed Wiener process. In this
section we will apply the results of Section 2 to the perturbed Wiener process.
More precisely, for some u € L% X [0, 1]) we will consider the process X, =
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W, + [§u,ds, t €[0,1]. In case u is adapted, it is well known that X has an
occupation density.

We start by presenting some inequalities for convex functions that will be
useful in this section and in the following one.

ProposiTiION 3.1. Let g: R, — R, be an increasing and convex function,

and let a > —2. Then there exists a constant c, such that for any 0 < ¢ €
L(o, 1D,

j:folg([x\;yﬁo(u)du)h -y dxdy < cag(j:qo(u) du).

XN

PrOOF. Suppose first a« # — 1. By symmetry, it is enough to show

1008 [oto) do)(y = )" dedy < e, [ o) du).

We have for x <y,

g([:'(p(u)du) - j;yf([:qo(u)du)qo(z) dz,

with a suitable increasing function f. Hence

g([xygo(v) dv) < [xyf(foz(p(u) du)«p(z) dz.
This yields

folfollto,yl(x)g(fxyqo(u) du)lx — yI* dxdy

= '/;)lfoll[o,y](x)fxyf([:@(u) du)qo(z) dzlx — y|* dxdy

j:f(j()z(p(u) du)¢(z)(j;lf()z(y _x)a dxdy) dz
‘= Llf(jjgp(u) du)(p(z) 1 1a 5 .]|-_a [(1 _ z)a+2 14 z"‘”] dz
1 1
1+ al 2+
1 1
BT mg([ol<p(u)du),

which is the desired result.

<3

aj:f(j:qo(u)du)go(z) dz

If « = —1, we have to replace
(1-2)""2+20%2 -1
by
—zlnz - (1-2)In(1 -2)
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in the above computations. But z » —z1ln z — (1 — 2)In(1 — 2) is bounded on
[0, 1]. Therefore the result follows. O

We can improve Proposition 3.1 a little bit in the special case where ¢ is
more than just integrable.

PrOPOSITION 3.2. Letq > 1, a > —2 — (q — 1)/q. There is a constant c,, ,
such that for any 0 < ¢ € L9(0, 1)),

11| rxvy o 1 4 1/q
fofo(f ¢(u)du)lx—y| dxdysca,q(foqo(u) du) .

XAy

ProoF. Suppose a # —2. In case a = —2 only a slightly modified argu-
ment is needed. As in the proof of Proposition 3.1, we get

[olfollto,yl(x)(fxydu) du)lx — y|* dxdy

1 1
11+ al |12 + al

Sjolqo(u) [(1 = u)®™ + u?*e — 1] du.

We now apply Hélder’s inequality and we have

j;1¢(u)u2+“ du < (folgo(u)q du)l/q(fol(u““)q/(q_l) du)

The second factor will be finite if @« > —2 — (¢ — 1)/q, and this was our
assumption on a. O

1-(1/q)

We can now proceed to prove the main result of this section which states
the existence of an occupation density for the perturbed Wiener process.

THEOREM 3.1. Let u € 1[*? and consider the process X defined by X, =
W, + [{u, ds. Then X possesses a square integrable occupation density.

Proor. We will apply Theorem 2.2. Notice first that X has continuous
paths and X, € D*2 for all ¢ € [0, 1]. Choose s, ¢ € [0, 1] such that s < ¢. Then
for r € [0, 1],

t
D.(X, - X,) =1, 4(r) + fDruO o,
S

hence

(D(X, - X,), 1) =t — s+ [ ['Du, drde.
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By the inequality of Cauchy-Schwarz we have

1/2
< (¢ —s)(j;tj;t(Drue)zdrdf)) , 0<s<t<l.

(3.1 |[['Du,drdo

Now define for n > 1,

Y, = sup (flf(D Uy) drdo)

1<i<2®

where

i—1 i+1
1= :
[ 2n ’ gr
and take a function ¢ € C3(R) satisfying ¢(x) = 1if |x| < 1/4 and ¢(x) = 0 if
lx| > 1/2. Set F, = ¢(Y,). Next observe that if |t — s| < 27", then (3.1) yields

n[o,1], 1<i<z2",

(3.2)

[fD uodrdol <Lt -5, on{F,+0}.
Hence condition (i) of Theorem 2.1 is satisfied with B8 = 1, a =1 /2, that is,
from (3.2) we deduce
(D(X,-X,), 1) = 3(t—s) on{F,#0},ifls—¢ <27

We will next prove that F, € D*!. Since the function (x,...,xy) —
Sup; .; con l%;| is Lipschitz, with a derivative bounded by 1, we have, for
a €[0,1],

271
ID,Y,| <2
i=1

-/;‘-/;‘DaDrusD,us drds|.

This implies by Cauchy-Schwarz

IDY, || < z[[ol( y

i=1

1/2

j[D D.u,D,u,drds

2
)da

on 1/2
.on/2 1 2
<2-2 [Elfoflifli(pap,us) drdsdaYn]

< 4-2"/2|D2y|lY M2,
So we obtain
(3.3) E(|IDY, g, (Y)[*) < =

and F, belongs to D**.
Finally, it suffices to check conditions (ii;) and (ii,) in Theorem 2.1 (with
double integrals and B = 1). Note that

(DY,,1,.,) <IDY,lt - s*/%
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Hence (ii,) follows from (3.3). In order to show (ii,), note that by definition
t
D? (X, - X,) = j;DBDau,,dB, a, B €[0,1].
Hence

(DX, - X,),1,,°%)| = [ [1Ds Dol dB dado.

s§"s°"s

Therefore we can apply Proposition 3.2 with ¢ = 2 and a« = —2 to

<p(a)—ff (1D, Dyu,l) do dp,

and we obtain the result. O

Observe that the conclusion of Theorem 3.1 still holds if u = {ut, 0<t<1}
belongs to the space 1%2.

4. Occupation densities for the Skorohod integral process. In this
section we will consider u € L%(Q X [0, 1]) satisfying some smoothness and
integrability conditions, and we will study the occupation density of its Skoro-
hod integral process

X, = fotus daw,, te]o,1].

In order to take into account small values of u we have to consider the
following localizing variables.

PROPOSITION 4.1. Forq > 1, u € 121, let
1 1
Zq = j;) st.

Suppose there exist a, B > 1 such that 1/a + 1/8 = 1 and

@ E(folu |~@*D gs) < oo,
Gi) E(fHIDu I dv) < .

Then Z, € DL L.

Proor. For r € [0, 1] we have

D.Z, = (- q)f qu sgn(u,)D,u, ds.
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Hence

1 1 1/2
DZ,, DZV? < 1——( Du 2dr) d
< q q> qj(; j‘;( r s) S

+1
lue |7

1/8

1/a
11 1
- B
< q(fo [0 ds) (j; | Du || ds)

Hence (i) and (ii) imply the assertion. O

ProposiTiON 4.2. Forp > 2, m > 0, such that p/2 —m — 1> 0, let u €
%3 satisfy:

@ E(f4/¢|D,u P drdv) < o,
() E(fq/o(Jq(D,D,u,)?da)?/?drdv) < o,
(i) E(fof3(/d/d(DyD.D,u,)* dB da)?/? drdv) < .

Let

[EXIDu, dW, [
Ym,p=f01[01[01| Ala:—yl"‘” dxdydr.

Then we have

(v) X, € D®>2 for any t €[0,1], and the process X, has a continuous
version,
W (DY, ,, DY, My .)€ LP/XQ, F,P) and Y, , € LXQ, F, P),
neN.
PrROOF. Statement (iv) is clear from the hypotheses and from Theorem 5.2
of [9]. We will have to prove the first part of (v). To abbreviate, let
NID.u,dW, x,y,r €[0,1]. Then for a [0, 1]

XAy
1

1,1 .
0 j;) Wp sgn(gx,y,r)lgx,y,rlp Da§x’y’, dxdydr

§x,y, r =

DY, , =j

Hence by Cauchy-Schwarz and Holder’s inequalities we have

(DY, ,,DY,, >

m,p?

1 v

P L sy [0

1

1,101 1 9 p/2
2y 2(1-1/p)
<p?Y2L p[[o[o[oﬁlx—ylm” (fo (Duks s ) da) dxdydr]

2 2
dx dy dr}

2/p
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It is enough to prove that

jf o l’””([ (D&, ) da) dxdydr € L\(Q, &, P).

Now
Daé:x,y,r = l[x/\y,xVy](a)Drua + nx,y,r,a’
where

xXVy
Neyira= | DyDu,dwW,.

XAy
Hence (4.1) will follow, once we have proved
p/2

(4.2) jjol |m+2(fxvy(pua) da) dxdydr € L\(Q, &, P),
X —

1,1 1 9 p/2
4.3 S — o da) dxdydr € L'(Q, &, P).
@) [ ([ ydr e 10, %, P)
To get (4.2), apply Holder’s inequality and Proposition 3.1 with g(x) = x,

¢(a) = E(fg|D,u I dr), integrable by (i), and we obtain a constant ¢, not
depending on u such that

E jlfl 1 (foy(D )2d )P/2d dvy dr
——— u a X
070 lx —y" 2 \xny T Y

< E(folfolfollx =027 [P D, dadrdy dr)

XNy
< clE(foljoﬂD,uaP drda), if% -m-1>0.

To get (4.3), we apply the L%([0, 1])-valued version of the LZ-estimate for the
Skorohod integral (see Proposition 4.1 in [5]), followed by Hélder’s inequality.
For x,y € [0, 1] we obtain a universal constant c, such that

E(( RO, da)m)

/2

p
< ¢l —yl("/2)_l[flvy(j:[E(DaD,uv)f da) dv
XAy

+E(j’“vy(jj(p ,uv)zdadﬁ)p/2dv”.

XAy

1 rxVvy 2 p/2
[ ) P1E(D,Du,)]*dvda
0 “xAy

+E

1 rxvy 1 2 p/2
f [ (DyD,D,u,)* dB dvda)
0

xAy 70
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To integrate this result in x, y, r, we apply Proposition 3.1 again, this time to
the function

p/2
o) = [ [1ED.Du) da)  ar

1f r1 1 2 p/2
[0([0[0(1),31)“1),%) dadB) dr),

which is integrable due to (ii) and (iii). The integral in x, y is then finite due to
p/2 — m — 1> 0. This proves (4.3). Finally, the claim that Y,, , € LXQ, &, P)
is proved in the same way as (4.1). We first have to replace (/3(D,£, ,, ,)* da)'/?
by &, , , itself, which actually leads to simpler arguments. O

+E

THEOREM 4.1. Suppose that u € 123 and consider the process
X,=f0‘usdws, 0<t<l1.

Suppose further that for some p > 4 we have:

() E(f}/LIDu P drdv) < o,
(i) E(f§/H{J{D,D,u)*da)?’?drdv) < «,
(i) ECfe(HD, D D,u,)? da dB)P/2 drdv) < =,
Gv) E(fq1/lu,l"dr) <o for y=@p —4)p/(p — (p — D).

Then X possesses a square integrable occupation density.

Proor. We will apply Theorem 2.2. In order to define the localizing
random variables {F,, n > 1} we choose m > 1 such that (p/2) —m - 1> 0
and let ¢ = 2p/(p — 4), which implies ¢ > p/(m — 1). Set Y=2,+7Y,, ,
where Z, and Y,, , are the random variables introduced in Propositions 4.1
and 4.2, respectively.

Let ¢: R - R be an infinitely differentiable function such that ¢(x) = 0 if
and only if x| > 1, ¢(0) =1, and 0 <¢(x) <1 if 0 <x < 1. Set ¢,(x) =
¢((lx| — n)*). Define F, = ¢,(Y). From Propositions 4.1 and 4.2 it follows that
F, e D%! and U {F, # 0} = Q, a.s. In fact, the hypotheses of Proposition 4.2
are contained in (i)-(iii). On the other hand, choosing B8 =p, a =p/(p — 1)
the hypotheses of Proposition 4.1 are satisfied because

(q+1)p=( 2p +1) p _ @Bp-Yp .
-1 p—4 p—-1 (p—4)(p-1)
For r € [0, 1], s < t, we have

a(g+1) =

Dr(Xt _Xs) = l[s,t](r)ur + /tDruOdw,O'
s

Observe that y > 3. Hence condition (iv) implies, by Lemma 2.2, that for all
t € [0,1], a.e., the probability P{u, > 0} is zero or one. Therefore there exists a
measurable function g: [0, 1] — {—1, + 1}, such that B,u, = |u,l, for almost all
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(¢, ). We are going to apply Theorem 2.1 with this function B. Let us show

the inequality (i) of Theorem 2.1. We claim that there exist constants «, > 0,
8, > 0 such that

<D(Xt - Xs)’ Bl[s,t]> = Olnlt — sl

(4.4) on{F,+ 0}as.foralls <¢, [t —s|<$,.

Proor orF (4.4). We have \

(45)  (D(X, - X,), Bl ) = [lu,ldr +[‘([tB,D,u0dm)dr.

By Hoélder’s inequality we obtain

/(qg+1)
It —s] < (ftlurl dr)q ! (ft]ur]'q dr)

Consequently, we have

1/(g+1)

-1/q
¢ 1+1/f (1 1 _ 1+(1/q)p -
(4.6) [slurldrzlt—-sl q(j;wdr) =t —s|'" qul/q.

Let us apply Hoélder’s inequality twice, and the lemma of Garsia, Rodemich
and Rumsey (see Barlow and Yor [1], page 203) to the second term on the
right-hand side of (4.5) to get a universal constant c¢; such that

ft(ftB,D,u,, dm) dr

D 1/p
dr)

»
- 11 1| JENIDu, AW, |

<c |t —s|tA/PHm/P) dxdydr

! j;) j; j;) lx —y|™*2

1/p

Now, from (4.6) and (4.7) it is clear how the required sequences «, and §, are
constructed because ¢ > p/(m — 1) and m > 1.

We now have to verify the integral criteria (ii) (with double integrals) of
Theorem 2.1. This will be done in two steps.

Step 1. We show that

1 1 E(( DY, B1,, ) |14,
Ppsacsmiy

dsdt < «,

for all n > 1, where A, = {Y < n}.



486 P. IMKELLER AND D. NUALART

Since A, c{Z, < n}N{Y__ < n}wehave

m,p =

KDY, B1, )|1a <IDYI(¢—s)"?1,
< (IDZ,ll + IDY,, Iy, ) (t—s)">
Hence the assertion follows from Proposition 4.1 and 4.2.
StEP 2. We show that
Ik
070

For a, r €[0,1] and s < ¢ we have

[ [B.B.D.D.X, - X,) da dr <pn(Y))|t — s/ %dsdt < o.

D,D,(X, - X,) = 1y 4(r) D, + 1, y(@) Do, + [ DDy, dW,.
S
Consequently,

/ t / '8.8,D,D,(X, - X,) da dr

—2["['.B,Du, dadr + ftft(ftBaB,DaD,uo dW(,) dadr.

In order to prove the assertion we apply Proposition 3.2 with &« = —2, ¢ = 2,

.

Notice that from the isometry property of the Skorohod integral we have
¢ € L%([0, 1]), because u € 1*2. This completes the proof of the theorem. O

o(r) = fol{zE(lDau,I) + sup E(

O<s=<t<l1

/ '‘D,D.u,dW,

REMARK. By choosing p large, we can make vy arbitrarily close to 3. On the
other hand, making p close to 4 drives y to infinity, according to (iv).

5. Tanaka’s formula for Skorohod integrals. Suppose that u =
{u,, 0 <t < 1} is a stochastic process in the space 172 with p > 4. We know
(see [9]) that the Skorohod integral process defined by

t
X, = fo u, dW,
possesses a continuous version. For any ¢ > 0 we introduce the functions

1
Je(x) = %1[—9,6](‘*:)’

@) = [ ([ ke dz) oy
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We can apply the change of variable formula (Theorem 6.1 of [9]) to the
function f, and the process X. Observe that the second derivative of f, is not
continuous at the points x = +¢ but we can approximate j, by a continuous
and bounded function and it is not difficult to see that the change of variable
formula still holds for f,. In this way we obtain that

t
Fl X, = x) = (=) = [ (X, = x)u, dW,
(5.1)
4 ” 1 $
+ff£ (X, —x)us[gus + [ Dsu,dW,] ds.
0 0
Now we want to take the limit in the above expression as ¢ | 0. The left-hand
side clearly converges to [ X, — x]*—[—x]". Define v, = u J3u, + [{Du, dW,],
0 < s < 1. Suppose that the process u satisfies the hypotheses of Theorem 4.1,
and denote by L(<J, x) the local time of the process X on the Borel subset ¢ of

[0, 1]. We can find a version of the local time which is a measure in the variable
J and such that

5.2 L(ds,x)e(x) dx = X,) ds,
(5:2) [ [ L(ds, x)o(x) dx = [¢(X,)
for any bounded and measurable function ¢: R — R. Set
A t
(5.3) L(t,x) = [v,L(ds, ).
0

Then L(t, x) is the local time of the process X if we take v, ds as a scale to
measure the occupation time.
Using (5.2) and (5.3) we can write (5.1) as follows:

(54) £u(X,—x) —fi(~2) = [FU(X, —x)u,dW, + [ f/(y = 2)L(t,y) dy.
0 R
Observe that
t A 1 X+E A
[fiy=x) bty dy = o [ L(t,y)dy.
0 €x—¢

Therefore, by the Lebesgue differentiation theorem, for almost all (x, w) we
have that

1 X+E A el0 A
(5.5) 52]_ L(t,y)dy =5 L(t,x).

This also implies the almost sure convergence of the first summand in the
right-hand side of (5.4).

The following lemma will be a basic ingredient in the proof of Tanaka’s
formula.
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LEMMA 5.1. Let u €123 be a stochastic process satisfying the following
assumptions:

@ [E(u )®)dr + X3. o, i+1E(D}u, [*)drdz < w, for some p > 4.
(i) E(]Ol(l/lu 1°)dr) < w, for 6 =4@p — 4)/(p — 4).

Then there exists a sequence of bounded random variables {F,, n > 1} c D!
such that U {F, # 0} = Q a.s. and

2
(5.6) suij[F,f ['fr(X, = x)v,dr }dx < o,
€ R 0

forall n > 1.

Proor. Notice first that the hypotheses (i) and (ii) imply conditions (i) to
(iv) of Theorem 4.1. Let F, be the random variable introduced in the proof of
Theorem 4.1. Then F, is bounded and we have to show that it belongs to D% 1.
We have

DF, = ¢,(Z,+ Y, ,)|DZ, + D(Y,, ,)],

and we claim that this derivative is square integrable. Indeed, taking into
account that p > 4, Proposition 4.2(v) implies that ||DY,, III(Y <n+1) is in
L%(Q, &, P). On the other hand, for the term IIDZ I we have using the
estimations appearing in the proof of Proposition 4.1 w1th B =p,

E(IDz, %)

(5.7 ) “p-V/p [ a/p1/2
< q? E(j’ |us|p(q+1)/(1—p) ds) E’(f | Du 1P ds) )
0 0

The second factor in (5.7) is finite by condition (i), and for the first one we use

the fact that
E(fllusl_‘“q“) ds) <o,
0

which follows from (ii) because 4(q + 1) = 4(8p — 4)/(p — 4) = 4.
We know that there exist constants «, and §, such that (4.4) holds with
B: = sgn(u,). In order to show (5.6), it suffices to prove that

2
['f1(X, - x)v.dr

dx < o,

(5.8) sup [ E[F,?
e 'R
for all 0 <s <t < 1 such that |t — s| < §,. Using the inequality

1
ff"(a—x)f"(b—x)dx< — 1y peng @ DER,
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we obtain
2
[E [Ff ] dx
R

= [ [ =0 200 ) | ara

[F(X, - x)v, dr

trt 1
< j;j;E[F"Zlv’volEzl(er—Xngs)] drde

< 4/ [‘B[F2vvlh, (X, - X,)] drdo,
s s
where %, is the function introduced in the proof of Theorem 2.1. Now we are
going to use Proposition 2.3 with U=X, - X,, 6 <r, h = Bl, ., and F =
F?|v,vyl. Note that for almost all r, 6 € [s, ¢], the random variable F belongs

to D! due to our hypotheses. Taking into account the inequality (4.4) we
obtain

[ [ E[F2o,0,h (X, ~ X,)] do dr
r 1
W=

¢, 1 r
+ff mEHLﬁUDU[Fnzlvrvel] dO‘H dédr

Frtzvrvofrﬁa dWo
7]

]dﬂdr

s s

t T 1
+'/;'/; allr - OIZE[F’?

=a; ta,+a,.

UrvofrfrBaBg'DaDor(Xr - X,)dodo'||dOdr
0 7o

We have to show that the terms a,, a, and a; are finite.

Estimation of a;. Using the Cauchy—Schwarz and Hoélder inequalities, we
obtain

r 1
=

< [tfrlr - 0!"1/2(E[|v,v0l2])1/2 dodr

v, fo '8, dW, ] do dr

1/8

= ([tfr(E[fvrvo|2])a/2 do dr)l/a(ftfr(r — 0)—3/2 d6 dr ’

where 1/a + 1/B = 1. The second factor in this last expression is finite
provided 8 < 2. The first factor is also finite if a > 2 is close enough to 2. In
fact, using the assumptions on the process u, and the definition of v, we can



490 P. IMKELLER AND D. NUALART

write

1 1
E Z“d]s E[ ,4°‘d]+E
{folv,l r ca{ folul r

which is finite due to condition () if 2a < p.

[01|us|2°‘ fOstu, dw,

.

Estimation of a,. We decompose the term a, into two summands, accord-
ing to the formula

D,[F2lv,v4l] = D,[F2]lv,v,l
+ Fnz[IUOISgn( Ur) Do-vr + Ivrlsgn( UG) DUUG] .
Using the definition of F, and the Cauchy-Schwarz inequality we obtain
1

fstfsrlr — 6 E[([;' D,[F;] ld")lvrvel} dodr

< 2[t[r|r — 0|“1/2E[IIDFn|| lv,v,l] d6 dr.

By Hoélder’s inequality the above expression can be bounded by
1/

(f:fsr(E[IlDFnH lv,uel])" 6 dr)l/a(f:fsrlr P NERT) dr) ,

where 1/a + 1/B = 1. The second factor in the above expression is finite
provided B < 2, which leads us to choose « > 2. We have

(Ellv,v,l1DF, )" < (E[lv,u,2] )" (E[IDF,IP])

a/2

< E[lv,5,1"] (E[I1DF,I7])*",

which is finite if 2a < p because F, € D1,
The second component of the term a, can be estimated as follows:

f:[srﬁE(f;IvoDavJ do’) dodr
< [[r o[ (BluDp) ao)  avar

t T _
< [sjslr— 01~ 2E (|| Dy, |l lv,|) d6 dr.

By the same arguments as above, this last expression is finite provided for
some a > 2 we have

folfOlE(IIDv,H"‘Ivol"‘) d6 dr < .

This follows from property (i) if 2a < p.
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Estimation of ag. Applying Hélder’s inequality with three factors we ob-
tain

j:j:lr - 0|"2(]:j:E[|vrv9D0Da/(X, - X0)|] dada') dodr

= ./:,/; E[|v’v‘9| ”DZ(Xr - Xy) ”Lg([r,o]z)hr —6|"*do dr

\
1/8

< ca(fst[s"E[lv,vop] do dr)l/“(f:fer[“Dz(Xr - X,) l[is([,ﬂz)] de dr) ,

with a constant ¢, depending on «, provided a > 2. We have already checked
that the first factor in the above expression is finite if 2a < p. Hypothesis
(1) implies that the second factor is also finite, and this completes the proof of
the lemma. O

Now we can establish Tanaka’s formula for an indefinite Skorohod integral,
provided the integrand satisfies the assumptions of the previous lemma.

THEOREM 5.1. Let u be a process which satisfies the hypotheses of Lemma
5.1. Suppose that u is a finite measure on the real line which is absolutely
continuous with respect to Lebesgue measure and has a bounded density.
Then, the stochastic process {1 x . u,, s €[0,1], x € R}, regarded as a
LA(R, w)-valued random process is locally Skorohod integrable in the sense of
Definition 2.1, and we have

t
(5.9) (X, =2)" =(=2)" = [x,s o, dW, + L(2,2),
for all t € [0, 1], where L(¢, x) is the local time defined in (5.3).

Proor. First we have to introduce a sequence of localizing random vari-
ables. For each n > 1, define G, = ¢,(Y + [ju? ds), where ¢, and Y = Z_ +
Y, , have been introduced in Theorem 4.1 and in Lemma 5.1. As for the
random variables F, appearing in Lemma 5.1, we have G, € D>'. On the
other hand, the inequality (5.6) of Lemma 5.1 still holds if we replace F,
by G,.

We claim that the random variables G, and the LR, u)-valued stochastic
process {1y . .u, s € [0, 1]} satisfy the assumptions of Definition 2.1. In fact,
it is clear that {G, = 1}1 Q, a.s., and |G,| < 1. Using the fact that the measure
w is finite and that f[ju2 ds is bounded by n + 1 on the set {G, # 0}, we have

5.10 E
(5.10) ( [,
Finally we have to check that the L%(R, u)-valued process

{Gnusl(Xs > x}l[O,t](s)}

1
fo udy > DG, dt

Z,U,(dx)) < o,
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belongs to the domain of § for all ¢ € [0, 1], and for all » > 1. The family of
processes G,uf!(X.— x)1y ,; converges to G,ulix. 41, in L(Q X R, P X
), as € tends to zero. The Skorohod integrals of those processes satisfy

[Gou, (X, - x) AW, = G, [‘u, f(X, - x) dW, - [‘u,f/(X, - x) D,G, ds
0 0 0
- G (X, =) ~ (=) = [F(X, = v, ds

_ftusfs/(Xs - x)Dan ds,
0

and this is bounded in L%Q X [0,1] X R, P X dt X u), uniformly in e, as
follows from (5.10) and (5.6). This implies that G,ulx . 1y, belongs to
(Dom 8 LA(R, w)), and its Skorohod integral is the limit, in the weak topology
of L%(Q X R, P X w), of the right-hand side of the above expression.

We have seen before that G, (f.(X,—x) — f.(—x) — [{fI (X, — x)v, ds)
converges for almost all (x, w) to G, L(t, x) as € tends to zero. This family of
random variables being bounded in L% Q X R, P X w), we have that the
convergence is in L9(Q) X R, P X w), for any q < 2. Therefore, we obtain

f(jGnusl<Xs>x, dW, = G,((X, - x)" —(~x)" ~ L(t,x))

_f(:usl(xs>x}Dan ds,

for all n > 1. This implies the desired formula because the sets {G, = 1}
increase to (), a.s., as n tends to infinity. O

Notice that for all x € R the Skorohod integral [§1 y . .,u, dW; exists as an
element of D% ~1, that is, as a distribution on the Wiener space. Using this
remark one can write a version of Tanaka’s formula in the distribution sense
(see Ustunel [13]). However, we do not know if the hypotheses of Theorem 5.1
imply that for all x € R (almost everywhere) the process [j1x - ,u,dW,
belongs locally to Dom §. For this reason, the Skorohod integral appearing in
Tanaka’s formula (5.9) has to be understood in a global sense, that is, as the
integral of an L%(R, u)-valued process.
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