The Annals of Probability
1994, Vol. 22, No. 2, 995-1025

STRONG DIFFERENTIAL SUBORDINATION
AND STOCHASTIC INTEGRATION!

By DONALD L. BURKHOLDER

University of Illinois

This paper contains sharp norm, maximal, escape and exponential
inequalities for stochastic integrals in which the integrator is either a
nonnegative submartingale or a nonnegative supermartingale. Analogous
inequalities hold for Ité processes and for smooth functions on Euclidean
domains.

1. Introduction. How does the size of a stochastic integral vary with the
choice of the predictable integrand and the semimartingale integrator? One of
our goals here is to throw new light on this question, especially in the case that
the integrator is not necessarily a martingale but belongs to some other class
of semimartingales. :

Consider first the case in which the integrator X is a nonnegative submartin-
gale and Y is the integral of a predictable process H with respect to X:

Yt =HOX0+ Hsts.
0,1¢]

The underlying probability space (2, ¥, P) is complete and is filtered by (F;);>o,
a nondecreasing right-continuous family of sub-o-fields of F, where F, contains
all A € ¥ with P(A) = 0. Both X and Y are adapted right-continuous processes
on [0, co) and have limits from the left on (0, co).

If1 < p < 00, let p* be the maximum of p and g, and let p** be the maximum
of 2p and q, where ¢ = p/(p — 1). Set | X||, = sup,> | X¢||p-

THEOREM 1.1. Let 1 < p < oco. If X is a nonnegative submartingale and Y
is the integral of H with respect to X as above, where H is a predictable process
with values in [—1,1], then

(1D Y1, < (p™ = DIIX]|p.
Strict inequality holds if 0 < || X||, < co. The constant p** — 1 is the best possible.
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996 D. L. BURKHOLDER

The last sentence is to mean that if 3 < p** — 1, then there is a probability
space and X, Y as above such that |Y||, > 8| X],. Note that p** = 2p if p > 3,
and p** =qifp < % So p** > 3 with equality holding only for p = 5

Inequality (1.1) should be compared with the analogous inequality in which
Xis amartingale that is not necessarily nonnegative. Then || Y|, < (p*—1)|| X||,
and p* — 1 is the best constant [2]. In fact, the constant p* — 1 is already the
best possible for the smaller class of nonnegative martingales. In the martin-
gale case, strict inequality holds if 0 < || X, < oo and p # 2; see [4]. If p = 2,
equality can of course hold: take H = 1. However, for nonnegative submartin-
gales, equality does not hold in (1.1) for any p € (1, c0) unless the right-hand
side of (1.1) is zero or the left-hand side is infinite. Another contrast is that
duality as used in [4] is not available in the submartingale case

Here is a simple consequence of Theorem 1.1. If 1 < p < , then p** = p*;
so if H is a predictable process as above and X is a nonnegatlve submartingale
with 0 < || X]||, < oo, then there is a nonnegative martingale with the same
norm as X and a predictable process with values in [—1, 1] that yield a strictly
larger stochastic integral.

Theorem 1.1 is a special case of Theorem 3.1 to be proved in Sectlon 3. Later
sections contain a number of other sharp inequalities for stochastic integrals.
Section 5 contains sharp maximal and escape inequalities for integrals with
respect to nonnegative submartingales. Section 7 contains, among other things,
a sharp exponential inequality. Sections 9 and 11 contain such inequalities for
integrals with respect to nonnegative supermartingales.

REMARK 1.1. All of these results carry over to the local case provided the
norm || - ||, is replaced by the norm ||| - ||| , defined by || X, = sup || X+ | », where
the supremum is taken over all bounded stopping tlmes 7. So, for example, if
X is a nonnegative local submartingale, then the analogue of (5.1) is

(1.2) AP(Y* > ) < AP(sup (X; +Ys]) > /\> < 31X,
t>0

where Y* denotes the maximal function of Y: Y*(w) = sup,> |Y:(w)|. Of course,
if X is a nonnegative local supermartingale, then || X|||, = | X]|; = EX, and (9.1)
is unchanged.

One reason for including the middle part of (1.2) is that the inequality on the
right implies that

b—-a

(1.3) AP(Y* > ) < 3( )|||X|||1,
where @ < 0 < b and the size condition on H is ¢ < H < b. This follows as in
the martingale setting; see the proof of Theorem 3.7 in [8].

We shall also compare the norms of two adapted sequences f and g of in-
tegrable functions, where the difference sequence of g is dominated both con-
ditionally and unconditionally by the difference sequence of f. To be precise,
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let d, and e, be F,-measurable and integrable on a probability space (9, ¥, P)
filtered by (), > . Consider the following two conditions:

(1.DS) len| < |dn| if n>0,
(1.CDS) |E(en|Fn-1)| < |E(dn|Fn_y)| if n>1.

(If d,, is viewed as the net gain from game n of someone playing a sequence of
games that are not necessarily fair, then e, can be viewed as the net gain of a
more cautious player who is playing fairer games.) If the sequences f and g are
given by

n n
fn=2dk and gn=zeka
k=0 k=0

and (1.DS) is satisfied, then g is differentially subordinate to f. If (1.CDS) is
satisfied, then g is conditionally differentially subordinate to f. If both of the
conditions (1.DS) and (1.CDS) are satisfied, then g is strongly differentially
subordinate to f or, more simply, g is strongly subordinate to f. Of course, if
f and g are martingales, then both sides of (1.CDS) vanish and (1.CDS) is
trivially satisfied.

It will be convenient to allow g to have its values in a space of possibly more
than one dimension. So we assume throughout the paper tht g has its values
in R”, where v is a positive integer. The Euclidean norm of y € R” is denoted
by |y| and the inner product ofy and 2 € R” by y - &.

Under the further assumption that f is either a nonnegative submartingale
or a nonnegative supermartingale, sharp inequalities for g are obtained in Sec-
tions 2, 4, 6, 8 and 10. These are used to prove the corresponding inequalities
for stochastic integrals but are of interest in their own right. Their proofs are
fairly easy once certain special functions are found. These special functions are
upper solutions to some nonclassical boundary value problems (see Section 12)
and can also be used to compare the sizes of smooth functions on Euclidean
domains (see Section 13). They also play a key role in the size comparison of It6
processes (Section 14).

2. Asharp norm inequality for a strong subordinate of a nonnegative
submartingale. Set ||f||, =sup, > |/l

THEOREM 2.1. Let 1 < p < oo. If f is a nonnegative submartingale and g is
strongly subordinate to f, then

(2.1 gl < (2™ = DIIfllp-

Strict inequality holds if 0 < || f||, < oc. The constant p** — 1 is the best possible
and is already the best possible constant if v = 1 and g is a +1-transform of f,
that is, if e, = epdy, where €, € {1,—1},n > 0.
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If e, = H,d,, where H, is an F, _ ;-measurable function (¥;-measurable if
n = 0) with values in the closed unit ball of R”, then g is strongly subordinate to
f. In this case, (2.1) follows from Theorem 3.1. However, strong subordination
is less restrictive and leads to a wider class of applications (for the martingale
case, see [5] and [8]). In fact, Theorem 2.1 will be used to prove Theorem 3.1.

Proor oF THEOREM 2.1. To prove (2.1), we can assume that || f||, is finite.
So every d}, belongs to L?, and, by (1.DS), so does every e;, hence every g,.
Define V:[0,00) x RY — R by

2.2) Vix,y) = |y|? —(p** — 1)PxP.
Then EV(f,, &) = || gxll5 — (p** — 1| f,]|5 and (2.1) follows from
2.3) EV(fn,81) < 0.

Let ap = p(1 — 1/p**)P~1. To prove the inequality (2.3), we shall show that the
function U: [0, ) x R” — R defined by

2.4) Ulx,y) = op [| 3] — (p** — D] (x+ |y))" "
satisfies
(2.5) EV(f.,8,) < EU(fy,8,) < -+ < EU(fy,80) < 0.

To see that EU(f, g¢) < 0, use | go| = leo| < |do| = |fo| = fo to obtain
(2.6) U(fo,80) < —ap(p™ —2)fy < 0.

The inequality EV(f,, g,) < EU(f,, g,) follows from
@.7) V(x,y) < Ulx, y).

The latter inequality holds if x + | y| = 0, so we can assume that x +|y| > 0 and,
by homogeneity, that x + | y| = 1. Accordingly, set |y| = 1 — x in the expressions
on the right-hand sides of (2.2) and (2.4) and consider their difference given by

(2.8) F(x) = 0p(1 — p**x) — (1 —x)? + (p™* — 1)Px?.

We need to show that this is nonnegative for x € [0, 1]. It is easy to check that
F(0) > 0, an inequality equivalent to

(2.9) liogli =Dy, P
p p p p*—-1

<0,

since, by the strict concavity of the log function and Jensen’s inequality, the
left-hand side of (2.9) is less than

1 p_l p**
lo [—+
Blor" o p o1

] <logl=0.
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It is also easy to check that F(1) > 0, F(1/p**) = 0, F'(1/p**) = 0 and F"'(1/p**)
> 0. Furthermore, F”’ has at most one zero in [0, 1] so there is an interval I
containing 1/p** and one of the endpoints of [0, 1] such that F is convex on I
and is concave on J = [0, 1] \ I. Therefore, F is nonnegative on I. For p # 2, the
set J is nonempty and F is positive at its endpoints, hence also positive in the
interior of J. This completes the proof of (2.7).

It remains to prove that

(210) EU(fnvgn) SEU(fn—hgn—l)?

for all n > 1. The first step in the proof'is to show thatifx > 0,x+k > 0,y ¢ R,
k € R”, |k| < |h| and |y + k| > O for all ¢ € R, then

(2.11) Ulx+h,y+k) < Ulx,y) + Uslx, y)h + Uy(x, y) - k,

where the partial derivatives U,(x,y) and U,(x, y) are given by
Us(x,9) = =0 [(p** = Pyl +p(p™ — 1] (x + )",
Uy(x,9) = o [ply| = {(p = Lp™* —p}x] (+ |31) """

Throughout the paper ¥’ = y/|y| provided that |y| is nonzero, as it is here.
Note that

(2.12) Uyl < =Us,
and the function G defined on {¢ € R: x + ht > 0} by
G@)=U(x +ht,y +kt)
is infinitely differentiable. The inequality
G(1) < G(0)+ G'(0)

is equivalent to (2.11) and follows from the concavity of G, the proof of which
can be reduced by translation to showing that G"(0) < 0. However, G"(0) < 0
follows from

G"(0) = —a,(A+B +C)(x+|y)" >,
where
A={(p—1p™ —p}yI [k - (& - BP] (x +|5)’
is nonnegative by the Cauchy—Schwarz inequality and the inequality p** > g,
B=(p—1p*(h® - |k[*) (2 +]y])

is nonnegative by the condition |k| < |A|, and

C=(p- D™ -yl +{(p — Vp™ — p}a|lh+y -k
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is also nonnegative by the definition of p**. This completes the proof of (2.11).

To prove (2.10), we can assume that there is a proper subspace M of R
such that g,(w) belongs to M for all w € Q and n > 0; otherwise replace R” by
R¥*! to make this possible. Choose a in the orthogonal complement of M with
0<|a| <1.Theny =a+g,_1(w) and & = e,(w) satisfy |y + kt| > |a| > O for all
t € R.Letf2 = |a| +f» and g2 = a + g». Fix n > 1. Using (1.DS) and (2.11), we
have that

U(f:,gff) < U(f:-l’gff—l) + Ux(f:—pgz—l)dn + Uy(f:-lagff-l) “€n.

Each of these four terms is integrable and the conditional expectation with
respect to F,_; of the sum of the last two terms is

Ue(f2 1,85 1)E(dn | Fao1) + Uy (Fi1,80_1) -E(en | Fnz1)-

Because f is a submartingale, E(d, | F,—1) > 0 and the product on the left is
nonpositive. Using the Cauchy—Schwarz inequality, then (2.12) and, finally, con-
dition (1.CDS), we see that the last sum above is nonpositive. This implies that

E[U(f2,88) | Fa-1] SU(FE1,851).

Now let @ — 0 and use the dominated convergence theorem for conditional
expectations to obtain

(2~13) E[U(fnagn) | ?n—l] < U(fn—lagn—1)~

Taking expectations of each side gives (2.10) and completes the proof of (2.1).

Strictness of the inequality. Suppose that 0 < || f||, < co. Let m be the least
integer n such that || f,||, > 0. Then, with probability 1, |gn| = len| < |[dn| =
|fin| = fm so that, if n > m, then, by (2.10) and the analogue of (2.6) for the
pair (fin, &m),

EV(fn,8n) < EU(fr,8n) < EU(fin, 8m) < —0p(p™ = 2)||fmll5 <O

Since ||gx||p = 0if 0 < k < m, this implies that

lglly < (™ = DPIFIE — cp(p™ = 2 fmllp

and gives strict inequality in (2.1).
The constant is the best possible. To prove this, we shall use the follow-
ing lemma.

LEMMA 2.1. Letl <p < ocoand S = {(x,y) € R%: x +y > 0}. Suppose that
B € [1, 00) satisfies

gl < Bl flls

for all pairs (f,g), where f is a nonnegative submartingale on the Lebesgue
unit interval and g is a +1-transform of f. Then there is a biconcave function
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u: S — R that is nonincreasing in x and y separately, such that v < u on S,
where v is defined on S by

_o|P P
ey =[1g] -0 (5)

The proof is a slight modification of the proof of the “only if” part of
Theorem 2.1 in [8] and is omitted (but see Section 12).

To show that 3 > 2p — 1 and 8 > ¢ — 1, which imply that g > p** — 1, we
can assume that u satisfies the same homogeneity condition that v satisfies: if
A > 0, then

(2.14) u(\x, \y) = MPu(x, y).

Note that if  does not already satisfy this condition, it can be replaced by the
function (x,y) — infyso z(Ax, \y)/AP, which does. Let w be the nonincreasing
concave function defined on [—1, 0c0) by w(y) = u(1,y), and let yo = (1—8)/(1+ ).
Then yo € (—1,0] and w(yo) > v(1, y0) = 0 so, by the concavity of w,

w(y) —w(-1) S w(yo) —w(-1)
y—(-1) — yo—(-1)

S (- D—2 = Pt
y — 2

D*w(-1)= lim
(2.15) n-

The function u(-,—1) is nonincreasing on [1,00) so, for x > 1, u(1,-1) >
u(x, —1). By (2.14), this is equivalent to w(—1) > xPw(—1/x), which in turn
is equivalent to

xP -1 _qw(—1/x) —w(-1)
—wD T 2 T e T
Now let x| 1 to obtain
(2.16) —pw(-1) > D*w(-1).

By (2.15) and (2.16), —pw(—1) > —w(-1)3 + 1)/2; but w(-1) > v(1,-1) =1, so
p < (B8 +1)/2, which implies that

(2.17) 8>2p—1.

To prove 8 > q—1 we can assume that u, like v, is symmetric: u(x, y) = u(y, x).
Symmetry and homogeneity imply that, for y > 0,

w(y) =yPw(l/y).
This implies that if 0 <y < 1, then

w(l) —w(y) _

—wizy? _ p1w/y) —wd)
1-y l-y

1/y)-1
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Now let ¥ 11 to obtain D~ w(1) = pw(1)—D*w(1). Note that w(0) < 0. Otherwise,
asx — oo,

u(0,0) > u(x,0) = xu(1,0) = x’w(0) — oo,

which contradicts that u(0,0) € R. Therefore, w(1) < —w(-1) + 2w(0) < —1.
Again, by concavity,

pw(®) = D~ w(1) +D*w(l) < 25(1%—?(_%)
—Jo
@ g+1
<2 _ua
~ 1=y w(l) g’

sop > (B + 1)/B, which gives 8 > q — 1. This, with (2.17), gives § > p** — 1 and
completes the proof of Theorem 2.1.

A related inequality. Theorem 2.1 leads to the following variation.

THEOREM 2.2. Let 1 <p < oo. Iff and g are sequences given by

(2.18) fn= de+zak,
k=0 k=0

(2.19) gn=) er+y bi
k=0 k=0

where d and e satisfy (1.DS) and (1.CDS), f is a nonnegative submartingale,
ag = 0,by = 0 and, for all n > 1, the functions a,: Q — [0,00) and b,: Q — R
are ¥, _1-measurable and integrable with

(2.20) |br| < @n,
then
(2.21) lgll, < (@™ = DIfllp-

Strict inequality holds if 0 < || f|| p < oo. The constant p** — 1 is the best possible.

Note that |e, + b,| < |d, + a,| need not hold. Theorem 2.2 implies Theorem
2.1: take @ = 0 and b = 0. On the other hand, Theorem 2.2 can be proved
using Theorem 2.1 by introducing a new filtration and new adapted sequences
F and G.

PrOOF oF THEOREM 2.2. Let Gy, = Gopns1 = Fn, Do, = du, Dons1 = anaa,
E,, = e, and Ey, .1 = by, for all n > 0. It is easy to check that D and E are
adapted to (S,),>0 and satisfy (1.DS) and (1.CDS) with E(D, | F,.1) > 0 for all
n > 1. Let F have D as its difference sequence and G have E. Then Fy, =f, > 0
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and Fy,,1 = Fy, +a,.1 > 0, so F is a nonnegative submartingale and G is
strongly subordinate to F. Therefore, by Theorem 2.1,

(2.22) IGllp < (™ = DIF||p.
Since F is a nonnegative submartingale,

(2.23) I£llp = sup ([ fallp = SUp [Fznllp = 1 F]l .
n>0 n>0

Also,

l&llp = sup || gnllp = sup [|Ganllp < |Gl -
n>0 n>0

Inequality (2.21) now follows from (2.22). If0 < || f||, < o0, then strictinequality
follows from (2.23) and Theorem 2.1 applied to F. The constant p** — 1 is the
best possible since it is already the best possible in the special case a = 0 and
b=0. .

REMARK 2.1. With e = 0 and b replaced by (|bx|)>0 in (2.19), inequality
(2.21) gives

(2.24) < (@™ = D|fllp-

p

S 14l
k=0

IfE(dy | Fr—1) = Ofor all & > 1, that is, if the sequence M defined by M, = ¥} _,dp
is a martingale, then condition (1.CDS) implies that N defined by N, = ¥} _, e
is also a martingale. So, by Doob’s inequality for the maximal function N* of N,
and by (2.21) in the case b = 0,

(2.25) IN“Il» < qliNllp < q(p™ = DIIfllp-

The special cases (2.24) and (2.25) imply that if g is given by (2.19) and M is a
martingale, then

(2.26) Ig"llp < (@ +1)p™ — DIfllp-

In particular, if g is the transform of a nonnegative submartingale f by a pre-
dictable sequence with values in the closed unit ball R”, then (2.26) holds: use
the Doob decomposition of f in (2.18) and note that with the natural choice of
the e, and b;, in (2.19), the pair f and g satisfies the conditions of Theorem 2.2.

REMARK 2.2. As the interested reader can see, Theorems 2.1 and 2.2 carry
over to the case in which g has its values in a real or complex Hilbert space H.
In the proofs H can be taken to be the real Lebesgue sequence space ¢2. This is
also true for the other theorems in this paper.
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3. A sharp norm inequality for an integral with respect to a nonneg-
ative submartingale. We shall now prove Theorem 1.1 and a little more.
Here Y has its values in R”.

THEOREM 3.1. Let 1 < p < oo. Suppose that X is a nonnegative submartin-
gale and Y is the integral of H with respect to X, where H is a predictable process
with values in the closed unit ball of R”. Then

(3.1) 1Y, < (™ — DIIX]|p.
Strict inequality holds if 0 < || X||p < oo. The constant p** —1is the best possible.

Proor. To prove (3.1), we can assume that ||X||, is finite. Consider the
family Y of all Y of the form

3.2) Yi=HoXo+» hu[X(Ty At) - X(Tj_1 AD).
k=1

Here n is a positive integer, the coefficients 4, belong to the closed unit ball of
R?, the stopping times T}, take only a finite number of finite values, 0 = Ty <
... < T, and X(¢) = X;. Consider the nonnegative sequence

f=(XTo),...,X(Ty),X(Ty),...)

and let g be its transform by (Hy, h1,...,k,,0,0,...). By Doob’s optional sam-
pling theorem, f is a submartingale. By Theorem 2.1, if T, is bounded from
above by ¢, then Y defined by (3.2) satisfies

3.3) I¥ellp = | 8nllp < (P™* = Dl fall p < (p™ = DI Xellp-

For v = 1, an immediate consequence of Theorem 2.1 is that X and H satisfy
the conditions of Proposition 4.1 of Bichteler [1]. So, by (2) of that proposition,
if Y is the integral of H with respect to X as in the statement of Theorem 3.1
but with v = 1, then there is a sequence Y/ € Y such that
(3.4) Lm(Y’ -Y)* =0 as.

Jj—oo
Using the additivity of the integral, we see that (3.4) holds for » > 1. By (3.4)
for this case and Fatou’s lemma, the inequality | Y|, < (p** — 1)||X¢||, holds
for all Y as in the statement of the theorem. Take the supremum of each side
with respect to ¢ € [0, 00), to obtain (3.1).

REMARK 3.1. There is an analogue of (2.26) for the maximal function of Y

(3.5) Y|, < (g +1)p™* — DI X]|p-

By Remark 2.1, the inequality (3.3) can be replaced by

(3.6) sup [Y(TW)| =1&"ll, <(g+1)(p™ — D|X],.
0<k<n »
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Without loss of generality, the stopping times T,{, 0 <k < n(j), corresponding
to Y7/ can be chosen so that, for all w € , the sequence of sets

{TIw),..., TS w)}

converges upward to a dense set of [0,00) as j{oo. The inequality (3.5) now
follows from (3.4), (3.6), Fatou’s lemma and the right-continuity of Y.

The constant in 3.1 is the best possible. This is an immediate consequence of
the last statement in Theorem 2.1.

Strictness of the inequality. Assume that 0 < || X||, < oo. Then, by Doob’s
maximal inequality for nonnegative submartingales and (3.5), both || X*||, and
|Y*|| » are finite. This implies that the process W defined by

(3.7 W:=UX;,Yy)

satisfies EW* < oo. Since U, defined by (2.4), is continuous, W is right-
continuous with left limits. We shall now show that W is a supermartingale.
Let 0 <s <t Then

(3.8) E(W; | F5) < Wy,

as can be seen as follows. Choose the stopping times associated with Y/ e€Yso
that T,J,( H=t and T;I( H=$ for some m(j) < n(j). This can be done so (3.4) is also
satisfied. Then, by the discrete-time analogue of (3.8) that is implied by (2.13),

E[U(X,Y/)| %] <U(X,,Y2).

As j — o0, the right-hand side converges almost surely to W,. The integrand
on the left is bounded from below by the integrable function —o,(p**X;)P: if
U(x,y) <0, then |y| < (p** — 1)x. An application of Fatou’s lemma for condi-
tional expectations gives (3.8).

Let to = inf{¢ > 0: || X¢||, > 0}, a number in the interval [0, c0). If || X, || , > 0,
then the strictness of the inequality (3.1) follows as in Section 2. So we can
assume throughout the remainder of the proof that X;, = 0 and, without loss of
generality, that ¢y = 0. Thus, X, = Yy = 0 but || X;||, > 0 for¢ > 0.

Let v be the function defined on [0, 00) by v(¥) = EV(X;, Y;), where V is given
in (2.2). By the dominated convergence theorem, v is right-continuous with
left limits. Using (2.7) and the supermartingale property of W, we have that
v(t) < EW; < EW, = 0. This implies that v(t—) < EW;_ < 0 for ¢ > 0. By Doob’s
submartingale convergence theorem, the finiteness of | X|| , implies that almost
surely lim;_,,, X; exists and is finite. Denote this limit by X .. Since p > 1, it
is easy to see that the almost sure limit of Y also exists: use the Doob—Meyer
decomposition X = M + A and the inequality ||N|, < (p* — 1)||M||p, where N
is the stochastic integral of H with respect to the martingale M. In fact, the
existence of both X, and Y, can be seen also as an immediate consequence
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of Theorem 5.2. Therefore, by the dominated convergence theorem, v(co) exists
and satisfies v(co) < EW, < 0. If £ > 0, then, as we shall prove,

3.9 v(t—) Vu(t) Vu(oo) < 0.

This implies that strict inequality holds in (3.1). To see this, choose § > 0 so
that, for ¢ < 6,

[¥ell p < (0™ = DIIX|p — &

Such a number § exists by the right-continuity of ||Y;||, in ¢. Let v = —sup, > 4
v(t). By (3.9), since v is right-continuous with left limits, v > 0. Therefore,
fort > 6,

I%]2 = (o™ — D21 X2 + v
< (p™ — DP||X|| - 7.

Accordingly, strict inequality hods in (3.1). A
Turning to (3.9), we note that to prove v(co) < 0 it is enough to prove that

(3.10) P(|Yo| # pXso) > 0,
where p = p** — 1: by the proof of (2.7),
(3.11) Vix,y) < Ulx, y) if |y| # px,

s0 (8.10) implies that v(co) = EV(X o, Yoo) < EU(X o, Yoo) = EW, < 0.

Suppose that (3.10) is not true. Then P(W, = 0) = 1. Since W is a uniformly
integrable supermartingale starting at 0 and, in fact, is dominated in absolute
value by an integrable function, P(W = 0) = 1 or, equivalently,

(3.12) P(|Yy| = pX, for all £ > 0) = 1.

(To see that P(W = 0) = 1, note that the nonpositive supermartingale (W;A0); > ¢
satisfies P(W > W A 0 = 0) = 1, which implies that AP(W* > \) < EWy =0.)

A simple argument shows that X is almost surely continuous, hence also Y.
The right-continuity of X implies continuity at ¢ = 0, so assume that ¢ > 0.
Since p > 1, the conditionsx > 0,x+k > 0,y e R¥,y+k € R, |[k| < |h|, |y| = px
and |y + k| = p(x + k) imply that 4 = 0, where x represents X;_(w), h represents
AXj(w) = Xy(w) — X;_(w) and so forth. We assume that w belongs to the set of
full measure where W(w) = 0 and |AY(w)| < |[AXy(w)|. If x = 0, then y = 0, so
h # 0 leads to the contradiction |k| > |k| = p|h|. If x > 0, then y # 0 and with y’
denoting y/|y| as before so that here y = pxy’, the inequality 2 # 0 again leads
to a contradiction:

272 2 '
_ p°h® + |k|* — 2phk - y
x+h-—x[ 2RI TRP

plh| - |k|]
< —x|————| <0.
: [p|h|+|k|
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Therefore, we can assume in the following that X and Y are everywhere
continuous and, by a stopping time argument, that X has its values in [0, 1].
Using the Doob—-Meyer decomposition X = M + A, It&’s formula, and (3.12), we
have that almost surely

0=|Y:|* - °X7
- /(0 (20X, + 2H, - Y,) dM, + /(0 (20X, +2H, Y,) dA,
)t N

. / (=2 + |HL %) dIM, M1,
0,%

where [M,M] is the quadratic variation process of M. Taking expectations of
both sides and using |H; - Y;| < |Y;| together with (3.12), we obtain

0<—2p(p—1DE | X,dA;—(p*> — DE[IM,M]; <0.
(0,4
The inequality on the right follows from the nonnegativity of both E[M,M];
and E f(o, 4 XsdAs. So the inequality on the left implies that both of these ex-
pectations must vanish. But if E[M,M]; = 0, then X, = A, for all s < # almost
surely, so

0=E | X,dA,=E | A,dA,=EA?/2=EX?/2.
0,t] 0,¢

This contradicts the inequality EX? > 0, which holds for all ¢ > 0. So (3.10)
must hold and, therefore, v(co) < 0. The proofs of the two other parts of (3.9)
are similar.

4. A sharp maximal inequality for a strong subordinate of a nonneg-
ative submartingale. The maximal functiongisdefined byg* = sup, >0l &nl
Recall that here g, has its values in R".

THEOREM 4.1. Iff is a nonnegative submartingale and g is strongly subor-
dinate to f, then, for all A > 0,

(4.1) AP(g* > )< AP(sgg (fa+lgnl) 2 A) < 3Iflh.

Strict inequality holds on the right if || f||; > 0. Even for AP(g* > )\) < 3|/fl1,
the constant 38 is the best possible and is already the best if v = 1 and g is a
+1-transform of f.

If f is a martingale that is not necessarily nonnegative, one that can even
have its values in R, where y is a positive integer, then AP(sup,>o(|fn|+| gn|) >

A) < 2||f|l; and AP(g* > ) = 2| f|l; > 0 can hold [6]. As we shall see in Section
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8, the best constant in the nonnegative supermartingale setting is also 2. These
maximal inequalities imply escape inequalities; see [7] for the martingale case
and the proof of Theorem 5.2.

REMARK 4.1. Theorem 4.1 also holds for f and g satisfying the conditions
of Theorem 2.2: if F and G are as in proof of Theorem 2.2, then || f||; = ||F||; and

sup (fn + |gn|) = sup (Fan + |Gan|) < sup (Fy +|Gl).
n>0 n>0 n>0

PRroOF oF THEOREM 4.1. To prove (4.1), we can assume that || f||; is finite.
A stopping-time argument leads to a further reduction: it is enough to prove
that if n > 0, then

(4.2) P(fn +|gn| > 1) < 3Ef,.
Here let U and V be defined on [0, c0) x R” by
Ux,y)=(ly| —2x)/x+[y], V@xy=-3x ifx+|y/<];
U(x,y)=1— 3x, Vix,y)=1—-3x if x+|y| > 1.

On the set where x + |y| < 1, the function U above is simply the function U of
(2.4) in the special case p = % but without the factor aj.

Inequality (4.2) is equivalent to EV(f,, g») < 0. The latter inequality follows
from V < U and U(fy, go) < 0, both easy to check, and from

(4~3) EU(fnagn) SEU(fn—hgn—l)a

which holds for all n > 1. To prove (4.3), let S be the set of all (x,y) with x > 0
and 0 #y € R”. Define ¢ and ¢ on S by

6x + 3|y| 3y

o, y)=— v Yy =———— ifx+|y| <]
2y/x + |y 2+/x+ |y|
p(x, y) =3, Y(x,y)=0 if x+ |yl > 1.
The condition (x,y) € S and the further condition that x + |y| # 1 imply that
(4.4) Ui(x,y) = p(x,y) and Uy(x,y) = ¢(x,y);

see Section 2. Also, note that || < —¢, an inequality analogous to (2.12).
We shall show that ifx > 0,x + » > 0, y € R”, k € RY, |k| < |h| and
|y + kt| > 0for all ¢ € R, then

(4.5) Ux+h,y+k) < Ulx,y) + p(x, y)h + p(x,y) - k.

The inequality (4.3) follows from (4.5) in the same way that (2.10) follows
from (2.11). To prove (4.5), we can assume that & # 0 as well as the condi-
tions on (x, y, h, k) given above. We define Gon I = {t € R: x + ht > 0} by G(¢) =



STRONG DIFFERENTIAL SUBORDINATION 1009

U(x + ht,y + kt). The function G is concave on I. To see this, let G; and G5, be
defined on I by

G1(t) = [|y + kt| — 2(x + ht)] /7 (2),
Go(t) =1 — 3(x + ht),

where r(t) = x + ht + |y + kt|. Both G; and G, are concave on I. In fact, G is a
positive multiple of the function G of Section 2 for the special case p = 3 . Also,
G1(t) < Go(#) if r(#) < 1. So, using the definition of U, we see that G is concave
Therefore, (4.5) must hold since, by (4.4), the inequality (4.5) is equivalent in
the case x + |y| # 1 to

(4.6) G(1) < G(0) + G'(0),

a consequence of the concavity of G, and the case x +|y| = 1 follows by replacing
x by x + 277 in (4.5) and taken taking the limit of both sides as j — oo. This
completes the proof of (4.1).

Strict inequality follows as in the proof of Theorem 2.1.

To see that 3 is the best possible constant, consider Example 2 of [9], which
shows that 3 is the best possible constant in the analogous inequality for It6
processes X and Y. Let N be a positive integer. Example 2 of [9] implies the
existence of a nonnegative submartingale f and a transform g of f by a pre-
dictable sequence that takes its values in {1, —1} such that P(g* > 1) = 1 and
IfllL =1/3+1/6N. An application of the ideas on page 60 of [8] gives a nonneg-
ative submartingale F' and a +1-transform G of F such that ||F||; = ||f||; and
g* < G*. This completes the proof of Theorem 4.1. O

5. Sharp maximal and escape inequalities for integrals with respect
to nonnegative submartingales. Recall that Y* = sup,,|Y;|.

THEOREM 5.1. If X is a nonnegative submartingale and Y is the integral of
H with respect to X, where H is a predictable process with values in the closed
unit ball of RY, then, for all A > 0,

(5.1) AP(Y* > ) < )\P(sup(Xt +|YH]) > /\) < 3| X1
t>0

Even for the inequality A\P(Y* > )\) < 3||X||1, the constant 3 is the best possible.

The proof of (5.1) follows from (4.1) in virtually the same way that (3.1) follows
from (2.1). Here approximation is possible because the finiteness of || X||;, which
we can assume, implies, by (4.1), that X is an L1 integrator in the sense of
Bichteler [1].

Theorem 5.1 implies an inequality for C.(Y), the number of ¢-escapes of Y.
Here ¢ > 0 and C.(Y) is the number of nonnegative integers j satisfying 7, < oo,
where

7o =inf{t > 0:|Y;| > €} and 7y =inf{t > 7: [V - ¥y| > e}



1010 D. L. BURKHOLDER
Note that Y converges a.s. if and only if P(C.(Y) = co) =0 for all ¢ > 0.

THEOREM 5.2. If X is a nonnegative submartingale and Y is the integral of
H with respect to X, where H is a predictable process with values in the closed
unit ball of R, then, forall j > 1,

(5.2) P(C.(Y)>)) < 31X |11 /(™).
Both the constant 3 and the exponent % are the best posstible.

Proor. Fix j > 1. Consider the predictable process K defined by K; =
(Vtth)OSi<j’ where V? =1 (0 S t S 7'0) and th =1 (Ti—l <t< Ti) if1 S i <j.
The process K has its values in the closed unit ball of the jv-dimensional
Euclidean space

K={x=(x°,...,xj‘1):xieR"if 0<i<j},

where the norm of x € K is given by |x|x = (X2, |*|»'/2. The integral Z of
K with respect to X has its values in K and, on the set where C.(Y) > j and
t 2 7:] -1

j—1 1/2
1Z|& = (|Y7'o|2 + Z Yr, — YT.'_1|2>

i=1
Z €j1/2.

Consequently, by (5.1),
P(C(Y) > j) < P(Z* > ejY/?) < 8||X]|1/(5 /2.
To see that the constant 3 is the best possible, observe that, for ¢ < ),
PY* >\ <P(C.Y)>1) <3| X]y/e

and use the fact that 3 is the best constant in P(Y* > \) < 3||X||1/A.

To see that the exponent % is the best possible, consider Y = X, where X is
the nonnegative martingale satisfying X; = f,, ift € [n,n +1) and f is the simple
random walk started at 1 and stopped at 0. There is a number « > 0 such that,
for allj > 1,

P(C1(Y) > j) =P(f, > 0for 0 <n <j) > oj /2.

6. A sharp exponential inequality for a strong subordinate of a non-
negative bounded submartingale. Suppose that ® is a nondecreasing con-
vex function on [0,00) with ®0) = 0 and [;° ®(t)e~*dt finite and positive.
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Suppose also that & is twice differentiable on (0, c0) and &' is convex on this
open interval with ®'(0+) = 0.

THEOREM 6.1. If f is a nonnegative submartingale bounded from above by
1, and g is strongly subordinate to f, then

(6.1) supE<I><|g"|> < —2—/ d(t)etdt
n>0 2 3 0

and the bound on the right is the best possible and is already the best if v = 1
and g is a t1-transform of f.

For example, if ®(¢) = 2PtPe?*, where 0 < 8 < 1 and 2 < p < oo, then

22*10(p + 1) 1
3 (1 —28)P*1

(6.2) sup E| gn|Pexp(B|gnl) <
n>0

and the bound on the right is the best possible. As is true throughout the paper,
the best possible bound does not depend on the dimension v of the Euclidean
space in which g, has its values.

REMARK 6.1. The above theorem also holds for f and g satisfying the con-
ditions of Theorem 2.2: if F and G are as in the proof of Theorem 2.2, then the
assumption here that f is a submartingale with its values in [0, 1] implies the
same for F, and, as in the L? setting of Section 2,

sup E® 18] < sup E® |Gnl .
P 2 P 2

n>0 n>0

PROOF OF THEOREM 6.1. Let S = {(x,¥): 0 <x < 1landy € R”}. Here U
and V are defined on S by V(x,y) = ®(|y|/2) and

2
UG, )=+ 5 (1] - 22)Vx+ o], x4y <1,
=(1—x)A(%> +x3(%), x+ |yl > 1,

where o = [;° ®(t)e~*dt and, for all £ > 1,
At) = et/ B(s)e™°ds and B(¢) = & —1).
t

Note that A(1) = a and B(1) = 0 so U is continuous. Let F = A — B. Then, on
(1,00}, F=A'"and F' = F — B'. If t > 1, then F(¢) > 0, F'(¢) > 0, F"'(¢) > 0 and
tF'(t) > F(¢).
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Define ¢ and ¥ on S by (0, 0) = 4(0,0) = 0,

a 2x +
1 x+|y|+1 X+ |yl +1
= 2':F(’T + xF T s x+|y|>1a
a
¢(x,y)=§ xilyl, 0<x+|y|S1,
1 1
=% F(’“_——‘“';“ )—xF’(x———+l‘;|+ )ly’, x+|y|> 1.

Note that x + |y| > 1 implies that y # 0, soy’ =y/|y| is well defined. Also note
that ¢ and ¢ are continuous and |¢)| < —p on S.
We shall show that if (x,y) and (x + A,y + k) are in S, and |k| < ||, then

(6.3) Ul +h,y+k) <Ux,y) + o(x, y)h + p(x,y) - k.

This and the strong subordination of g imply that EU(f,,, g,) < EU(f,_1,8n-1)
as before. The integrability follows from the boundedness of f,_; and g,_; al-
though, of course, g need not be uniformly bounded. Note that (6.3) gives V < U:

Vix,y)=U1,y) =U(x+ (1 —x),5) < Ulx,y) + plx, y1 — x) < Ulx, y).

Inequality (6.3) and the definition of U imply that if | y| < x, then (x/2)+|y/2| <
x<1and

3/2
x y 20 afx
L)y =_Z(Z .
6.4) U(x,y)SU(2,2>_ . 3(2)

The inequality (6.1) holds if ||f|l; = 0, so we can assume that Efg 2 5 0.
Then, by (6.4), EU(fy, 80) < 2a/3 and (6.1) will follow [see (2.5)] once we have
proved (6.3).

By the continuity of U, ¢ and 4, it is enough to prove (6.3) for |k| < |k| with
x and x + h in (0, 1). Let G(¢) = U(x + ht, y + kt). Then G has a continuous first
derivative on an open interval containing [0, 1], and (6.3) is equivalent to

(6.5) G(1) < G(0) + G'(0).

However, (6.5) follows from the fact that G’ is noincreasing on (0, 1). To see
that G’ is nonincreasing, let r(¢) = m(¢) + N(¢), where m(¢) = x + ht and N(¢) =
|y + kt|, and

I={te1:r@® <1} and J={te(0,1):r) >1}.
A number ¢ € (0, 1) satisfies r(¢) = 1 only if it is a zero of the polynomial

[(1—%)—ht]® — |y + k2 = (B2 — [k2)E2 4.
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Here A% — |k|2 > 0 so the complement of I U<J with respect to (0, 1) is finite and
it will be enough to show that G’ is nonincreasing on each component of I U J.

On I, the second derivative G exists and satisfies G < 0, as can be seen in
Section 4. The second derivative exists on J also since N(¢) > 1 — m(¢) > 0 for

allt€J.Ond,
r+1 r+1

and NN” = |k|2 — (N")?, so that

4G" = — [2(h® - |BP?) + (2] (’ : 1)

()

—m( X PF (ﬂ)

2
The first term on the right-hand side is nonpositive: F/ > 0 and |k| < |h|. The
third term is nonpositive since F” > 0 and m(¢) € (0,1) for all ¢ € (0,1). The
second term is also nonpositive: by the triangle inequality, N is convexso N” > 0

onJ, and
ST+l r+l_,/r+1 r+l1
> > — .
’F(2)— 2F<2 =F{ =3
Therefore, on each component of I U, the derivative G is nonpositive and G’
is nonincreasing. This completes the proof of (6.1).
We shall now describe an example showing that the bound on the right is

the best possible. It is Example 6.3 and will be constructed using the following
two examples.

S

EXAMPLE 6.1. Suppose that m is a positive integer divisible by 3. Then
there is a nonnegative submartingale F' that is bounded from above by 1, and
a transform G of F by a predictable sequence that takes its values in {1, -1}
such that

1 1

P(F,, =0, Gm—l)—§—ﬁ,
1 1

P(F,, =1, Gm—l)—§+%,
1 1

P(F,, =0, Gm——l)-§—4—.

This follows at once from Example 2 of [9].

ExAMPLE 6.2. Ify > 0 and € € {1, -1}, then there is a nonnegative sub-
martingale F starting at 0 and bounded from above by 1, and a +1-transform
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G of F, such that

Gn ® _
(6.6) supE<I><|i+2——|) >/ d(t)etdt — 7.

n>0 0

It is enough to show this for e = 1. Let 0 < § < %, and let (d,), >0 be an
independent sequence of random variables such that dy = 0 and, for alln > 1,
don-1=96,

P(dy,=1-6)=6 and P(dy,=-86)=1-24.

Let d;; = supy< <, |di|, and let F be the submartingale with the difference
sequence D defined by Do = dp and D,, = 1(d};, _; < 6)d, for n > 1. Define G by

n
Gn =) (-1F7ID,.
k=0

It is easy to see that 0 < F,, < 1 for all n > 0 with probability 1 and that the
distribution of the almost everywhere limit of 1 + G is given by

P+ Goo = 2k8) = 6(1 — 61, E>1.

Therefore, by Fatou’s lemma,

-~

supE® (M) > Eo( 1 0l) _ S~ aeapsi1 - o4,
n20 2 2 P

but the right-hand side exceeds

o ké
>
k=1

B(t)eP* dt = / B(t)eP* dt,
k—1)6 0

where 8 = —§~11og(1 — 6). The concavity of the logarithm function and log1 = 0
imply that 8 | 1 as § | 0. Therefore, by the monotone convergence theorem,
(6.6) holds for all sufficiently small positive 6.

EXAMPLE 6.3. Let f be a nonnegative submartingale bounded above by 1
and g a transform of f by a predictable sequence that takes its values in {1, -1}
such that the pair (f,)o<»<m and (gz)o<»<m have the same distribution as
the pair (Fr)o < n <m and (Gn)o < < m, Where m is a positive integer divisible by
3 and F and G are as in Example 6.1. On the set where f;, = 1 and g,,, = 0, let
f» =1and g, = 0 for all n > m. On the set where f,, = 0 and g,, = 1, let the pair
(fm+r)e>0 and (gn +2)x >0 have the same distribution as the pair F and 1+ G
of Example 6.2. Similarly, on the set where f,, = 0 and g,, = —1, let the pair
(fm+r)k >0 and (gn 1+ 2 > 0 have the same distribution as the pair F and -1+ G
of Example 6.2. Then, for all large m,

|&nl 2 [ —t
sup E® > (e " dt — 27,
n>0 2 3 Jo
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and this implies that the bound on the right in (6.1) is the best possible. An
application of the ideas on page 60 of [8] completes the proof of Theorem 6.1. O

REMARK 6.2. Suppose that |e,| < |d,|,n > 1, but that |ey| < 1—dy. We have
then, instead of (6.1), the sharp inequality

®.7) supEcp('g"') < (1—Efy) / Bt~ dt,

n>0

since U(x,y) < U(x,(1 —x)y)=a(l —x)if 0 < |y| <1 —x.

7. A sharp exponential inequality for an integral with respect to a
nonnegative bounded submartingale. Suppose that ® satisfies the condi-
tions of Section 6. Theorem 6.1 and an approximation argument similar to that
used in Section 3 yield the following theorem.

THEOREM 7.1. If X is a nonnegative submartingale bounded from above by
1, and Y is the integral of H with respect to X, where H is a predictable process
with values in the closed unit ball of RY, then

7.1) supE<I>(| ‘l> 2/ D)t dt

t>0

and the bound on the right is the best possible.

We now turn to the supermartingale setting, where the results and their
proofs can differ substantially from those above.

8. A sharp maximal inequality for a strong subordinate of a nonneg-
ative supermartingale.

THEOREM 8.1. Iff is a nonnegative supermartingale and g is strongly sub-
ordinate to f, then, for all X > 0,

(8.1) AP(g* > ) < /\P<sup (fo+1gnl) = /\) < 2Ef,
n>0

and 2 is the best possible constant. In fact, given \ > 0, there is a +1-transform
g of a nonnegative martingale f such that \P(g* > \) = 2Ef; > 0.

Proor. Itis enough to prove that
(8.2) P(fn +|gn| > 1) < 2Efy.
Here let U and V be defined on [0, 00) X R” by the following:

Ux,y)=2x —x2 +|y|?, Vi, y)=0 if x+|y|<1;
U(x)y)=1) V(x,y)=1 if x+ |y| > 1.



1016 D. L. BURKHOLDER

Note that U is continuous and is bounded from above by 1. Inequality (8.2) is
equivalent to EV(f;, g,) < 2Efy, which follows from V < U,
(8.3) EU(fn,81) SEU(fu-1,8n-1), n=1,

and U(fy, 80) < 2fo. To prove (8.3), define ¢ and 1 on the set where x > 0 and
y € RY by

ole,y)=2—2x, Plx,y)=2y if x+[y|<1;

o(x,y)=0, Plx,y)=0 if x+|y| > 1.
We shall show thatifx > 0,x+A >0,y € R”,k € R” and |k| < |h|, then
(8.4) UGx+h,y+k) < Ulx,y) + plx, )b +p(x, y) - k.

The inequality (8.3) follows from (1.DS), (1.CDS), (8.4), || < ¢ and the super-
martingale condition E(d, | 3,-1) < 0, n > 1. (See the proof of (2.13), but here
no translation by o and |a| is needed.) To prove (8.4), consider the following
three cases: ) x+ |y| > 1; () x+|y| <landx+h+|y+k| <L GiD)x+|y <1
and x+h +|y+k| > 1. In case (i), the right-hand side is 1 and the left-hand side
is not greater than 1. To check case (ii), observe that the difference between
the right-hand side and the left-hand side is h2 — | k|?, which is nonnegative. In
case (iii), this difference is given by

(8.5) (B? — | B[2)£ + 201 — to)[(1 )k +y - &],

in which the number ¢, € (0, 1) satisfies r(¢9) = 1 so that U(x + hto,y + kto) = 1.
Here, as above, r(t) = x + ht + |y + kt| and, by (iii), 7(0) < 1 and (1) > 1 so such
a number ¢, does exist. Also, h > 0, for otherwise, by (iii),

ly| + k| > |y +k| >1—(x+h)>|y| —h =y +|h],

a contradiction of |k| < |h|. Therefore, (1 — x)h > |y||k| > y -k and (8.5) is
nonnegative. This completes the proof of (8.1).

To prove that equality can hold throughout (8.1), let f and g be defined on
the Lebesgue unit interval by f, = A2"1jg 9-») and g, = 2fo — fn. Then Efy = A
and P(g* > 2)) = 1, so equality holds throughout (8.1). O

THEOREM 8.2. Iff and g are sequences given by

n
fn = de +An,
k=0

n
8n = Zek +B,,
k=0

where d and e satisfy (1.DS) and (1.CDS), f is a nonnegative supermartingale,
Ay =0,By =0, and, for alln > 1, the functions A,: Q — (—00,0l and B,: Q — R”
are F,-measurable and integrable with

(8.6) |Bn| < —An,
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then, for all X > 0,
AP(g" > N < AP(sup(fn +lgal) > A) < 2Ef,
n>0

and equality can hold throughout.
The sequence A need not be monotone, and A and B need not be predictable.

PrOOF OF THEOREM 8.2. Fix anonnegative integern.If0 < k < n,let D, =d;
and E, =ep. LetD,,1=A,and E, .1 =B,. Ifk>n+2,let D, =0and E; = 0.
Then D and E are adapted to the original filtration and satisfy condition (1.DS).
They also satisfy (1.CDS): If 1 <k < n, then

|E(Er | Fr-1)| < —E(Dp | Fr-1)-

By (8.6), this also holds for 2 = n+1 as well as holding trivially for &£ > n+2. Let
F have the difference sequence D, and G the difference sequence E. If 1 <k < n,
then, by the nonpositivity of A, ;

k

k
Fy=) Dj=) di>f, >0
j=0 j=0

ifk > n,then F, = f, > 0. So F and G satisfy the conditions of Theorem 8.1 and
P(fn + Ign| > 1) < P(Fn+l + |Gn+1| > 1) < 2EFO = 2Ef0-

This implies the desired inequality. The equality can hold as in Theorem 8.1:
takeA=B= 0. O

9. Sharp maximal and escape inequalities for integrals with respect
to nonnegative supermartingales.

THEOREM 9.1. If X is a nonnegative supermartingale and Y is the integral
of H with respect to X, where H is a predictable process with values in the closed
unit ball of R, then, for all A\ > 0,

(9.1) AP(Y* > )\ < /\P(sup (X + 1Y) > )\) < 2EX,
t>0

and P(Y* > 1) = 2EX, > O for some X and Y, so the constant 2 is the best
possible.

THEOREM 9.2. If X is a nonnegative supermartingale and Y is the integral
of H with respect to X, where H is a predictable process with values in the closed
unit ball of R”, then, for all j > 1,

(9.2) P(C.(Y) > ) < 2EX,/(cj?).
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Both the constant 2 and the exponent % are the best possible.

Inequality (9.2) follows from (9.1), which follows by approximation from (8.1).
Their proofs have the same pattern as those of (5.1) and (5.2). Also, see Example
1 of [9].

10. A sharp exponential inequality for a strong subordinate of a non-
negative bounded supermartingale. Suppose @ is a convex function sat-
isfying the conditions of Section 6.

THEOREM 10.1. Iff is a nonnegative supermartingale bounded from above
by 1, and g is strongly subordinate to f, then

oo

(10.1) sup E@(@> <Efy / Bt~ dt.
n>0 2 0

The constant on the right is the best possible and is already the best if v = 1 and

gis a t1-transform of f.

If &(¢) = 2PtPe?A, where 0 < 8 < 1 and 2 < p < oo, then

2°PT(p +1)
(10.2) sg%ElgnI"exp (Blgnl) < =
nz

S @ozppith

and the constant on the right is the best possible. One special case of (10.2) is
already known: v = 1, p = 2, 8 = 0 and g is the transform of f by a predictable
sequence uniformly bounded in absolute value by 1. Using a different method,
Edwards [11] proved that, in this case, || g||2 < 8E f. The theorem above implies
that the constant 8 is the best possible.

ProoF oF THEOREM 10.1. Let F be the submartingale defined by F,, = 1—f,,.
Then F and g satisfy the conditions of Remark 6.2 and the result stated there
yields (10.1). The last assertion of the theorem follows easily from a slight
modification of the examples in Section 6. O

11. A sharp exponential inequality for an integral with respect to a
nonnegative bounded supermartingale. Suppose again that ® satisfies
the conditions of Section 6. Theorem 10.1 and approximation yield the follow-
ing theorem.

THEOREM 11.1. Suppose that X is a nonnegative supermartingale bounded
from above by 1, and Y is the integral of H with respect to X, where H is a
predictable process with values in the closed unit ball of R”. Then

%]

(11.1) supE<I>< 5

t>0

) < EX, / ~ d)e "t dt
0

and the bound on the right is the best possible.
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12. Boundary value problems and the search for U. The aim here is
to throw some light on the method used to find the function U of Section 2, the
function U of Section 4 and the other such functions in this paper. For simplicity,
set v = 1 so that U will be defined on a subset of R?, and consider the problem
only for +1-transforms g of submartingales f. Once this case is understood,
suitable functions U for the strongly subordinate and higher-dimensional cases
can be conjectured. Furthermore, a simple transformation can be made so that
instead of finding first a majorant U of V' such that the two mappings ¢ — U(x +
|h|¢, y £+ |h|t) are concave and nonincreasing (concave and nondecreasing in the
supermartingale case), one can find a biconcave function u that is nonincreasing
in each of its two arguments. We shall use the word “bidecreasing” to describe
the latter property. (For the martingale setting in which monotonicity is not
required, see [2] or, in the Banach-space context, [3].)

Let S be a biconvex subset of R2, that is, each horizontal and vertical section
of S is either empty or an interval. Let S, be a nonempty subset of S. Let F
be a real-valued function on S, and let Uz be the family of all biconcave and
bidecreasing functions u: S — R such that u > F on S. One may think of S,
as a boundary, F as the boundary data and Uy as the upper class. If the upper
class is nonempty, let Ur denote the upper solution: for (x,y) € S,

Ur(x,y) = inf {u(x,y): u € Up}.

A zigzag submartingale Z is a sequence (Z,), > o with Z, = (X,,,Y,), where X
and Y are submartingales relative to the same filtration satisfying

X,—-X,_.1=0 or Y,-Y,_1=0,

for all n > 1. An example is given by Z,, = (f, + g», f» — g») where g is a +1-
transform of a submartingale f. A zigzag submartingale Z is simple if the Z,
are simple functions and, for some n depending on Z,

Zn=Zn+l="'=Zoo-

Let Z(x,y) be the set of all simple zigzag submartingales Z on the Lebesgue
unit interval with values in S such that Zy = (x,y) and Z, has its values in
S The filtration is allowed to vary with the Z.

THEOREM 12.1. Assume that Ur is nonempty and that, for all (x,y) € S, the
set 2(x, y) is also nonempty. Then

(12.1) Ur(x,y) = sup{EF(Z.): Z € 2(x,y)}.

The proof is similar to the proof of its martingale analogue, Theorem 11.1
of [2]. Note that another way of stating (12.1) is that the following inequalities
are sharp: for all Z € Z(x,y) and all u € Up,

(12.2) EF(Zy) < Up(x,y) < u(x,y).
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For example, suppose S is the set of points in the plane satisfyingx +y > 0
and that S, = S. Let F be defined on S, by

_aml|P p
| ()

where the positive number 3 can be chosen later. If u € Ur and u is twice con-
tinuously differentiable on some open subset of S, then on this subset,

(12.3) Uy V Uy VU Vi <O0.

If, in addition, u = Up, then its extremality suggests that equality will hold
in (12.3) on some subdomain of S. This gives the initial clue, one that leads
eventually to the least possible value of 8 and the functions U and V of Section
2. (The discussion of the martingale analogue in Section 2 of [8] may also be
helpful here.) Sometimes it is enough, and simpler, to work with a function u
that may not be extremal for every (x,y) € S.

13. Comparing the sizes of smooth functions. Let n be a positive in-
teger and D an open connected set of points x = (x1,...,x,) € R*. Fix{ € D and
suppose that z and v are continuous functions on D with continuous first and
second partial derivatives. Assume that

(13.1) [v(©)] < |uw(@)|,
(13.2) |Vu| < |Vu|,
(13.3) |Av| < |Au|,
where u is real-valued and v = (v}, . ..,v") has its values in R”. So, for example,

(13.2) is the condition that |Vu(x)| < |Vu(x)| for all x € D, where

n n 14
Vo= e =D vl

k=1 k=1j=1
v = (},...,v¥) and v} = v/ /Ox. Similarly,
14
|Av]? =) " Av?,
j=1

where Av/ = ¥2_,v}, and v}, = 8%v//0x}. If u and v are harmonic, then both

sides of (13.3) vanish and (13.3) is trivially satisfied. Conditions (13.1), (13.2)

and (13.3) play arole here analogous to that played by (1.DS) and (1.CDS) above.
Let Dy be a bounded subdomain satisfying ¢ € Dy C Dy U 8Dy C D, and set

1/p
el = sup [ / Iul”du] ,
D 8Dy

0
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where the supremum is taken over all such Dy. Here p = ,uf)o, the harmonic
measure on 0D( with respect to ¢.

THEOREM 13.1. Let1 < p < oo. Ifu and v are as above and u is nonnegative
and subharmonic on D, then

(13.4) [vllp < (™ = Dl

This should be compared with Theorem 2.1. Also, see [6, Theorem 2.1] in
which z and v are harmonic and |jv||, < (p* — 1)||u| p, an inequality that con-
tains the classical conjugate-function inequality of Marcel Riesz. In the Riesz
inequality, the domain D is the open unit disk of the complex plane, ¢ = 0,
the function u is harmonic on D, and v is the harmonic conjugate of u satisfy-
ing v(0) = 0. Therefore, (13.1) is satisfied, (13.2) holds with equality and both
sides of (13.3) vanish. For further discussion of the Riesz inequality, the equally
classical Kolmogorov inequality and some key references to later work, see [6]
and [8]. In [6], the domain D is n-dimensional and the conjugacy condition is
replaced by the gradient condition (13.2). Here the harmonicity condition is
dropped in favor of the less restrictive condition (13.3).

To prove Theorem 13.1, we shall use the function U of Section 2.

ProoF oF THEOREM 13.1. If U is given by (2.4), then U(u,v) is superhar-
monic on D. This can be seen by direct calculation or by showing, as we shall
do below, that this is a simple consequence of what we have already proved in
Section 2. Therefore, with V defined as in (2.2),

Lowrdu=m -2 [ wirdus [ Voo
8D, 8D, 8D,
where the last integral satisfies

V(u,v)du < Ulu,v)dp < U(u@),v(€)) < 0.
aD, aD,

These three inequalities follow from (2.7), from the superharmonicity of U(x, v)
and from (13.1). The desired inequality (13.4) is an immediate consequence.

To prove that U(u,v) is superharmonic, we let W = U(u, v) and assume that
both u and |v]| are strictly positive on D (otherwise, replace u by |a|+u and v by
a +v, where a is as in Section 2). Then W is twice continuously differentiable
on D and

AW = AW + AgW,

where

AW = Uow,v)Au + Y Uy(u, v)Av/
j=1
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is nonpositive by (2.12), (13.3) and the subharmonicity of u, and

AW =Uoo(u,v)|Vul? +2 > Ugu,v) Vi - o/
Jj=1

+izu: Uj(u,v) Vo' - Vv/

i=1j=1

is also nonpositive, as we shall show. The U; and Uj; denote the first- and second-
order partial derivatives of U on the (v + 1)-dimensional open set where they
are defined. If (x, ¥) belongs to this set, then G(¢) = U(x + ht, y + kt) satisfies

G"(0) = Ugo(x, y)h% + 2> Uy, )hkI + > >~ Uyl y)k'k7,
j=1 i=1j=1

where & = (k1,...,k/). Let us write G”(0) = G"(0; x,y, h,k) and use a similar
notation for the functions A, B and C of Section 2. Then
n
Z G"(0;u,v,u,vy)
k=1

AW

n
—ap z [A(u, v, up,vp) + B(w,v,ug, vg) + Clu,v,up, vp)] (u + |v]
k=1

—ap ZB(u, v, up,vp) (1 + Ivl)p_3
k=1
—ap(p — Lp™* (|Vul® — Vo) (u + o) P,

)P

IA

Here we have used the nonnegativity of A and C. Using (13.2), we see that
AW < 0. Therefore, AW <0 so W is superharmonic and Theorem 13.1
is proved. O

The following theorem for smooth functions contains two inequalities that
are also analogous to earlier ones in the paper.

THEOREM 13.2. Suppose, as above, that u and v satisfy (13.1)~(13.3) and
that p is the harmonic measure on 0Dy with respect to &. Let A > 0. () If u is
nonnegative and superharmonic on D, then

(13.5) Ap(u+[v] > A) < 2u(8) = 2||ulx.

Even for Au(|v| > A) < 2||ul|1, the constant 2 is the best possible. (ii) If u is non-
negative and subharmonic on D, then

(13.6) A+ v] > A) < 3/ udp < 3||ul|;.
D,
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This should be compared with Theorem 1.1 of [6] in which z and v are har-
monic. That theorem contains the classical Kolmogorov inequality and gives
a simple approach to it. The following proof can be easily modified to obtain
inequalities for the Brownian maximal function of u + |v| that are analogous to
(13.5) and (13.6). See the proof of Theorem 1.2 of [6] or, for a different approach,
see Section 14 below.

ProOOF OF THEOREM 13.2. To prove (13.5) we can assume that A = 1 and
use the functions U and V of Section 8. It is easy to check that U(u, v) is super-
harmonic. Therefore,

plu+lpl >1) = V(u,v)dy < Uu,v)dp
8Dy 8Dy

< U(u(§),v(8)) < 2u(€) = 2||uf;.

Note that u(¢) < ||u||; follows from the definition of |||, and the opposite in-
equality from the superharmonicity and nonnegativity of u.

The proof of (13.6) is similar and rests on the superharmonicity of U(u, v),
where U is the function of Section 4. The expression for G”(0) in (4.7) can be
used to prove this superharmonicity.

The following example completes the proof of Theorem 13.2.

ExaMPLE 13.1. Letn = 1 and v = 1. The following example can be easily
modified to take care of any pair (n, v) of positive integers. Let D be the interval
(—1,3),and let ¢ = 0, u(x) = 1+x and v(x) = 1 —x. The function u is nonnegative
and harmonic on D and the conditions (13.1), (13.2) and (13.3) are satisfied. If
-1<a<0<b<3andDg=(a,b), then the harmonic measure u on D, with
respect to 0 must satisfy |, (a,5y @ = 0. Therefore, ||u[l; = 1. If 0 < X < 2, then

[v(x)] < Aifand onlyif 1 — A <x <1+, so

. i >A) =1 = .
(13.7) l}glsll)lop)\u(|v| > ) 1/\1%121)\ 2||ul|

Therefore, the constant 2 in the inequality Au(jv| > A) < 2||u||; of part (i) of
Theorem 13.2 cannot be replaced by a smaller number. O

REMARK 13.1. By Theorem 1.1 in [6], the inequality A\u(jv| > A) < 2||u||;
holds for harmonic functions « and v satisfying (13.1) and (13.2). The function
u need not be nonnegative. Indeed both u and v can be vector-valued. The above
example shows that the constant 2 is also the best possible in this harmonic
function context, thus answering a question implicit in Remark 1.3 of [6]. Here
is a closely related example for a more frequently encountered domain. Let D
be the open unit disk of the complex plane C, and let £ = 0. Let F be a univalent
analytic function mapping D onto the horizontal strip {w € C: -1 < Jw < 3}
with F(0) = 0. Then z = 1+JF and v = 1 — JF are harmonic functions satisfying
(13.1), (13.2) and (13.7).
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14. Sharp inequalities for Ité6 processes. This paper contains sharp
inequalities for possibly discontinuous X and Y, where Y is the integral of a
predictable process with respect to X. Analogous inequalities hold for pairs
of It6 processes satisfying the conditions (14.1)-(14.3), as well as for similar
pairs of continuous processes in which dB; is replaced by dM;, and ds by dAs,
where M is an adapted continuous martingale and A is an adapted continuous
nondecreasing process starting at 0. Their continuity can be exploited in the
proofs where the functions U again play a role.

For example, let X and Y be It6 processes [12] defined by

t t
Xt=X0+/ (Psst"'/ Vs ds,
0 0

t t
Y, = Y0+/ G.dB, + | wds.
0 0

As above, the underlying probability space (2, , P) is complete and is filtered
by an increasing right-continuous family (%;);>¢ of sub-o-fields of F, where Fy
contains all A € F with P(A) = 0. The real Brownian motion B starts at 0 and
is adapted to (F;);>0, and the process (Byss — Bs):>o is independent of F; for all
s > 0. The real processes ¢ and 1 are predictable,

t t
P(/ |<ps|2ds<ooand/ |¢s|ds<ooforallt>0> =1,
0 0

and ¢ and ¥ are R”-valued processes satisfying the same conditions. Both X
and Y are adapted and can be taken to be everywhere continuous.
Under the conditions

(14.1) |Yo| < |Xol,
(14.2) 2] < el
(14.3) 19| < |4,

the nonnegative submartingale and nonnegative supermartingale inequalities
of the earlier sections carry over. For the special case in which v = 1 and X,
is constant, the analogues of the maximal inequalities (1.2) and (9.1) are in
[9]. The proof of the analogue of (1.2), for example, uses It6’s formula and the
restriction of the function U of Section 4 to the set wherex > 0andx+|y| < 1.
The proof of the analogue of the norm inequality (3.1) rests similarly on It6’s
formula applied to U(X7,Y?), where U is given by (2.4) and a has the same role
as in the proof of (2.13). One may also use U*(X;,Y;), where ¢ > 0 and U®(x, y)
is the result of substituting x + ¢ for x and (| y|? + €)!/2 for | y| in the right-hand
side of (2.4).

There are similar inequalities for more general It6 processes that yield al-
ternate proofs of the theorems of Section 13. For example let B, ¢ and each
component of & have their values in R". Replace fo s dBg by fo s - dBs, with
a similar replacement for the corresponding integral of each component of .
Then use the appropriate function U and Itd’s formula as above.
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