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LARGE DEVIATIONS FOR MARKOV CHAINS WITH RANDOM
TRANSITIONS

By TIMO SEPPALAINEN
Okhio State University

This paper presents almost sure uniform large deviation principles for
the empirical distributions and empirical processes of Markov chains with
random transitions. The results are derived under assumptions that gener-
alize assumptions earlier used for time-homogeneous chains. The rate func-
tions for the skew chain are expressed in terms of the Donsker—Varadhan
functional and relative entropy. The sample chain rates are different, but
they have natural upper and lower bounds in terms of familiar rate functions.

1. Introduction. A natural generalization of classical time-homogeneous
Markov chains is to allow the transition probabilities to be random in a station-
ary fashion. Such processes are called Markov chains with random transitions
or Markov chains in random environments. Cogburn (1984, 1990, 1991) has suc-
cessfully studied their properties in the framework of Hopf Markov chains. His
papers contain numerous references to earlier related work. The last published
paper of Orey (1991) deals with the ergodic theory of these processes.

Our object of study is the large deviation theory of such Markov chains. We
seek results of the Donsker—Varadhan type, which take the following general
form. The ingredients are a probability space (2, F, P), a sequence {{,:n € Z*}
of random variables taking values in a Polish space S, and a lower-semiconti-
nuous rate functionI: S — [0, oo]. We then say that I governs the large deviations
of {&.} under P if the following inequalities hold for closed subsets F' and open
subsets G of S:

lim sup ;zl—logP{§n eF} < —igg I(x)

n—oo

and 1
lim inf -~ logP{¢, € G} > — igcf;l(x).

After the seminal work of Donsker and Varadhan (1975a, b, 1976, 1983),
large deviation theorems for time-homogeneous Markov chains have appeared
in de Acosta (1988, 1990), Bolthausen (1987), Deuschel and Stroock (1989), Ellis
(1988), Ellis and Wyner (1989), Jain (1990), Orey (1986), Stroock (1984), Ney
and Nummelin (1987) and Varadhan (1984), among others.

As is well known, the elegant and unified large deviation theory of i.i.d.
random variables does not carry over to the Markovian case. To derive their
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714 T. SEPPALAINEN

results, the above-mentioned authors have had to impose various assumptions
on the transition probabilities of the chain to guarantee strong enough ergodic
behavior. The assumptions employed by Ellis (1988), Ellis and Wyner (1989)
and Stroock (1984) generalize naturally to random environments and, as we
shall see, imply that uniform large deviation principles hold for almost every
realization of the environment.

Our proofs are based on classical techniques of large deviation theory. The
upper bound comes from Chebyshev’s inequality and exponential tightness,
and the lower bound by a Shannon—McMillan type argument. The paper is
organized as follows. Section 2 describes the model and our basic assumptions
about it. Section 3 develops the rate functions and presents the large deviation
theorems. To expedite the reader’s way toward the important results, all the
proofs are collected at the end. Section 4 contains the proofs for Section 2, and
Section 5 the proofs of the large deviation theorems.

2. The model. Let (2, T) be a pair consisting of a set 2 and an invertible
map T on , and let (X, Bx) be a measurable space. For each w € €, suppose P(w)
is a Markov transition kernel on X, that is, P(w;-,-) is a function from X x By
into [0, 1] satisfying the following:

1. For each x € X, P(w; x, -) is a probability measure on (X, Bx).
2. For each A € By, P(w;-,A) is a By-measurable function on X.

Pick a starting state w € Q. Its successive iterates w, Tw, T?w, ... generate a
sequence P(w), P(Tw), P(T?w), ... of Markov kernels. For x € X, define a proba-
bility P¢ on the product space (X%, BY) by the following rule: Let {X;:k € Z*}
denote the coordinate variables on XZ', and let Ao, Ay, ..., A, be elements of
Bx. Then

P:){Xo €Ay, X; €Ay,.... X, EAn}

(2.1) =14,) [ Plw; x,dxy) [ P(Tw; x1,dx2)
Ay Ay

X / e P(Tn_zw; xn_z,dxn_l)P(T"‘lw; Xn—1, An)
Ag A,y

Under P¥, the variables {X;} form a Markov chain, called the sample chain,
with starting state x and time n transition probability P(T"~lw). In this sense
the setup describes a time-inhomogeneous Markov chain on X, run by (2, 7).

These Markov chains are studied conveniently via the skew Markov chain.
This is a time-homogeneous Markov chain on an augmented state space
E = X x Q. For this to be meaningful, assume that Q comes equipped with
a o-field Bq such that both 7' and its inverse are measurable and that all tran-
sition probabilities P(w; x,A) are By ® Bo-measurable as functions of (x,w). For
z = (x,w) € E, A € By and B € Bg, we define the skew transition kernel P
by the rule :

P(z, A x B) = P(w; x, A)15(Tw).
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LetZ, = (X,,0,),n=0,1,2,..., denote the coordinate variables on EZ with X-
and Q-components X, and ©,, respectively. By Tulcea’s theorem, there exists
a probability measure P, on EZ" that turns the coordinate process {Z,} into
a time-homogeneous Markov chain with transition probabilities P(z,dz’) and
starting state (x,w). Then, under P, the distribution of {X,} is Py’ and ©, =
T"w almost surely.

Now for topological assumptions and definitions. We assume that X is a
locally compact Polish space and take By to be its Borel field. Let s be a complete
metric on X, and let r be the corresponding Prohorov metric on the space M;(X)
of Borel probability measures on X:

M, v) = inf{6 > 0:pu(A) < v(A®) + 5 for all A € Bx},

where A® = {x € X: there is ay € A such that s(x,y) < §}. Note that A° =AS,
for any A € By, so this definition agrees with the usual one given in terms of
closed sets; r is compatible with the weak topology of M(X) generated by the
space Cp(X) of bounded continuous functions on X, and (M;(X), r) is a complete
separable metric space.

Concerning (Q, T'), we assume that 7' is a homeomorphism on the Polish space
Q and take Bq to be the Borel field.

Let B(X) denote the Banach space of bounded Borel functions on X, with the
supremum norm. A Markov transition kernel @ on X is both an operator on
B(X) and a map from X into M;(X). For f € B(X) and x € X, Qf is defined by

Qftx) = / FQ, dy),

and Q(x) is the measure in the above integral. We say @ is Feller continuous
if Cy(X) is invariant under @ or, equivalently, if the map @: X — M;(X) is
continuous. Let P(X) denote the set of Feller continuous Markov transition
kernels on X. We think of P(X) as the space C(X, M;(X)) of continuous maps
from X into M;(X) and topologize it with the compact-open topology.

Fix a countable base {C}} for the topology of X, consisting of relatively com-
pact, open sets. For P, Q € P(X), define

DP,Q) = Zz ~* sup r(P(x), Q).

x€Cy,

As a metric on C(X, M1(X)), D metrizes uniform convergence on compacts.
Note also that if P(x) = y and Q(x) = v for all x, then D(P, Q) = r(u, v). This says
that the D-topology of M(X), cons1dered as a subspace of P(X), is precisely its
original weak topology.

2.2 LEMMA. (P(X),D)is a complete separable metric space and D metrizes
the compact-open topology of P(X).
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Henceforth we assume that the transition kernels P(w) appearing in (2.1)
come from a continuous map P: Q) — P(X). Then we have the following lemma.

2.3 LEMMA. The skew transition P on E is Feller continuous.
Before introducing further assumptions, here are some basic examples.

2.4 ExAMPLE (The canonical setting). A natural way to construct the dy-
namical system in the background is to let Q be the space P(X)? of sequences
of Feller transitions on X’ with the product topology and T the shift map. By
Lemma 2.2, this Q is Polish. Let P, £ € Z, denote the coordinate projections
from Q into P(X). Then P(w) = Py(w) gives the map P:Q — P(X) that runs
the sample chains. From the point of view of the sample chains, we could have
formulated everything in terms of this concrete shift. However, for the time
being we shall continue to talk about a general dynamical system, for this will
be convenient for proving the large deviation principles.

2.5 EXAMPLE. Cogburn (1984, 1990, 1991) and Orey (1991) work in the
canonical setting with a countable X. To be concrete, take X = N and equip
N with the discrete topology, so that our topological assumptions are satisfied.
Let P(X) be the set of all stochastic matrices over N. The Prohorov metric r on
M1(X) is given by

r(p,v) = —;-“,U, - V“var = ’% Z |N(k) - V(k)|,
k=1

and the metric D on P(X) corresponding to C;, = {k}, for k£ € N, is given by

DP,Q) =) 2771 |P(j,k) - QUjk)|.

j=l k=1

To introduce the randomness of the transitions, fix a T-invariant, ergodic
probability 7 on Q. In other words, 70T~ = 7, and if A € Bq, satisfies T"14 = A,
then m(A) equals 0 or 1.

Fork =1,2,3,... and w € Q, define Feller transitions P*(w) by P(w) = P(w)
and, for k£ > 1,

P(w; x, A) = / P*1(Tw; 3, AYP(w; x,dy).

In other words, P*(w; x, A) = P¥{X; € A}, and P*(w) is the k-step transition of
the sample chain on X, given that the dynamical system is at w. Now we come
to a basic assumption concerning the setup.

AssuMPTION (A). There exist a positive integer b, a T-invariant Borel sub-
set Q4 of Q and a measurable function M:Q — [1,00), such that 7(Qy) = 1,
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logM € L(r), and the following inequality holds for all w € Q4, x,y € X and
Ae Bx:

(2.6) Pb(w; x, A) < M(w)Pb(w; y, A).

REMARKS.

(i) If (2.6) holds for a particular w and b, it continues to hold for this w if b

is increased.
(ii) The T-invariance of Q4 is included merely for convenience. It is not a
real restriction, since any Borel set of full measure contains an invariant set of

full measure.
(iii) In terms of the skew process, (2.6) reads, for all w € Q4, x,y € X and

Ce Bg,
@7 P?((x,w),C) < Mw)P?((y,w),C).

2.8 THEOREM. Assume (A). Then the following hold:

(i) Among the P-invariant probabilities on E, there is a unique one with
Q-marginal ©. Call it ®.
(ii) The probability

Py = / Pre.o)®(dz, dw)

on EZ is ergodic.
(iii) Let f € B(E). Then there exists Q¢ € Bq such that n(€y) =1 and, for all
weQrandx € X,

n-1
lim =3 f(Z) = /fd<I>
n—oo n s
holds P .)-almost surely.

2.9 EXAMPLE. A sequence of independent random variables with distribu-
tions generated by an ergodic process is an obvious special case of our setup
and satisfies Assumption (A) trivially. Large deviation principles for such pro-
cesses have appeared in Comets (1989), Baxter, Jain and Seppéldinen (1993)
and Seppildinen (1991, 1993a, b).

3. Large deviation theorems. This section studies large deviations from
the ergodic behavior of Theorem 2.8(iii). We shall look at both position and
process level for both the skew chain and the sample chain. Throughout, we
shall use the abbreviation I(A) = inf,c4 I(x) for any function I and any subset
A of its domain.
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3.1. Skew chain. At position level, the random variables of interest are the
M (E)-valued empirical distributions

1 n—1
Ln = ;‘L- Z(Szk.
k=0

To have notation for process level, let X = Xo,X1,X3,...) and X, =XoS8k=
X, Xp11,Xp42,...), where S is the s_hifb map on X%, Since the Q-component
moves deterministically, the pair (X}, ©;) contains all the information about
the future of the skew process, and we think of it as a random variable with
values in the space Eo, = XZ" x Q. The M;(E)-valued empirical processes M,
are defined by

1 n—1
M, = n Z 6(551;,91.)'
k=0

Let V,(E) denote the space of bounded continuous functions that map E
into [1, 0o0). The Donsker-Varadhan functional J: M1(E) — [0, ool for the skew
transition is defined by

3.1) () = sup { / log o dl':u € V,,(E)}.

Let M (E) be the set of probabilities on E whose Q-marginal is . Define
Ig: My(E) — [0, 0] by

J@), ifI' e M (E),
00, otherwise.

(3.2) Ig(D) = {

3.3 THEOREM. The functional Iy is lower semicontinuous and convex. As-
sume (A). Then Ig(T') = 0 if and only if T = ®. Moreover, Ir has compact level
sets, meaning that

{T e MyB):IgT) <1}

is compact in the weak topology of M1(E) for all real l.

The functional Iy governs the large deviations of L, under P, uniformly
over X and w-almost surely, in the following sense: There is a Borel subset Qg of
Q such that ©(Qg) = 1 and, for all w € Q, these large deviation bounds hold: If
F c My(E)is closed, then .

lim sup 1 log sup P .){Ln € F} < —Ig(F),
n—oo N 1€EX

and if G C M1(E) is open, then

li'm g})f ,—ll log lél,{: Pg ) {Ln € G} > —Ig(G).
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Intermediate steps between position and process levels are furnished by mul-
tivariate position level results. Let d > 2 be a fixed integer. The appropriate
state space is now Eg = ¢ x Q, and the M;(E;)-valued d-variate empirical
distribution is

n—1

a_ 1
MEL =n Z 6((Xky--'vxlud—l),el¢)‘
k=0

Denote elements of X% by x = (xg, . ..,%4_1). For a probability measure I on Eg,
define the probability measure I'P? on E; by

I'P9A) = / / 1a((x1, .., %4—1,9), Tw)P(T? w; xq_1,dy) T(dx, dw).

The d-variate rate will be expressed in terms of relative entropy. Given two
probabilities  and v on a measurable space, the entropy of u relative to v is
defined by

[log fdu, if du=fdy,
H =
Gl v) {oo, if p < v fails.

If we want to consider the restrictions of 1 and v to some sub-o-field D, we write
Hp(p | v).

3.4 DEFINITION. Suppose d > 2. Say a probability measure I' on Ey is
d-invariant if, for any bounded measurable function g on E;_1,

/g((xo,...,xd_g),w)I‘(dx,dw)= /g((xl,...,xd_l), Tw)T(dx,dw).

Let &, be the distribution of (Xy,...,X4_1,00) on E4 under Py. The dis-
tribution ®, is d-invariant by the shift-invariance of Py and by the fact that
0, = TO,, Ps-almost surely. Now define I'¥: My(Ez) — [0, o] by

3.5 IO = {H(P |TPD),  ifTis d.-invaria.nt and has Q-marginal T,
00, otherwise.

3.6 THEOREM. The mapping I'P is lower semicontinuous and convex. As-
sume (A). Then I'9T) = 0 if and only if T = &4, I has compact level sets
and I'D governs the large deviations of M under P, uniformly over X and
w-almost surely. ’

We are ready to pass to process level. Write ¢ = (xo, x1, Xg, . . .) for elements
of XZ°, and ¢ = (¢,w) for elements of E,. Define a continuous map U on Eq
by U¢ = (8¢, Tw), and let My(E) denote the space of U-invariant probability
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measures on E,. Let the probability measure &, on E, be the distribution of

(X, ©¢) under Pg.
Let © denote the Q-valued projection on E . Let £(n) be the o-field generated
by Xy, ...,X,_1,0). ForT' € My(E), define

. 1
3.7 AT | ®o0) = lim =Hem(T | Boo),
n—oo N
assuming for the moment that the limit exists, and then define I*: M(E ) —
[0, 0] by

3.8) o) = {h(I‘ | Do0)y ifis ({-mvanant,
00, otherwise.

3.9 THEOREM. Assume(A).Then ®,is U-invariant and U-ergodic, the limit
in (3.7) exists for all T € My(E), and h(T' | ®,) can be finite only if T has Q-
marginal ©. The functional h(- | ®,) is an affine function on My(E,) and I
is lower semicontinuous, is convex, has compact level sets and I°(I") = 0 if and
only if T' = O

Moreover, I governs the large deviations of M, under Py, ., uniformly over
X and m-almost surely.

The proofs of Section 4 show that our definitions for Mﬁ:’) and M,, are nat-
ural for the setting. The more standard definitions of multivariate empirical
distributions and empirical processes are

-1
1 n
(d) _
L = n Z(S(kanzlwd—l)’
k=0

with values in M;(E9), and

with values in M;(E%Z"), where
Zk = (Xk’ ék) = ((Xk’Xk+1?Xk+27 . ~)) (ek, ek+1, ek+2, . )).

Let us also record the large deviation principles of these Iiandom variables.
Define the shift-invariant probability measure 7 on Q% by the rule

7{(©o,...,0,) € B} = / 15, T, . .., T"w)r(dw).

Ford € N, the marginal distribution of (8, .. ., ©4_1) is denoted by 7. Elements
of E¢ are written z = (2o, ...,24_1).
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3.10 DEFINITION. Say a probability measure u on E¢ is shift-invariant if,
for any bounded measurable function g on E4~1,

/g(zo,...,zd_g)u(dz)=/ g(z1,...,24_1)p(d2z).
Ed Ed

It is immediate that a probability measure @ on EZ is shift-invariant if and
only if Qg is shift-invariant for all d, where @, is the marginal distribution of
(Zo,...,Z4_1) under Q.

For u € My(E9), let pug_1 denote the marginal distribution of (Zo, ..., Z4_2)
under x. The probability measure pg_; ® P on E“ is then defined by

81D g ®PC) = / / 160, -y 2a-1Pea_s, dza_Dpa—1(dz"),

where z' = (zg, . . . ,24—2). The d-variate rate is defined for u € M1(E?) by

H(p | pg—1 @ P), if p1 is shift-invariant and
(8.12) K9 = has marginal 7; on Q¢,
00, otherwise.

3.13 THEOREM. Letd > 2 and assume (A). Then K9 is lower semicontin-
uous, is convex, has compact level sets and K9(u) = 0 if and only if p is the
E4-marginal of Py. Moreover, K@ governs the large deviations of L® under
P ), uniformly over X and m-almost surely.

Let F(n,Z) denote the o-field generated by (Z,...,Z,_1). For a shift-
invariant probability measure @ on EZ, the specific entropy of @ relative to
P is given by

(3.14) M@ | Pa) = lim ~Hyron(@| Po)

For Q € My(E%") define

3.15) Ko@) = {h(Q |Pg), ifQis sfhlft-mvanant,
00, otherwise.

3.16 THEOREM. Assume (A). Then the limit in (3.14) exists for all shift-
invariant probabilities @, and h(Q | Ps) can be finite only if @ has marginal 7
on QF. The functional K is lower semicontinuous, is convex, is affine on the
space of shift-invariant probabilities, has compact level sets and K°(Q) = 0 if
and only if @ = Pg. Moreover, K™ governs the large deviations of R, under
P ), uniformly over X and m-almost surely.

Theorems 3.13 and 3.16 can be compared with some earlier results. Consider
the following hypothesis: There are an integer b and a constant M such that,
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for all z,2z’ € E and C € Bg,
(8.17) Pb(z,C) < MP?(Z', C).

Under this hypothesis, Theorems 1.2 and 1.4 of Ellis (1988) and Theorem 1.3 of
Ellis and Wyner (1989) state large deviation principles for L,, L and R,,. The
respective rates are as in (3.2), (3.12) and (3.15), but without the provisions
concerning the Q-marginals. Thus their process level rate agrees with ours,
but the position and multivariate position level rates disagree. This appears
inconsistent, for the position rates can be expressed in terms of the process
rate, by the push-forward principle. How can they differ if they come from the
same process rate? The answer is that (3.17) forces Q to be a singleton and the
conditions on Q-marginals become vacuous.

The related hypothesis (U) of Deuschel and Stroock [(1989), page 100] re-
quires that there exist b, N and M such that

, u
k(!
P°,C) < N kgﬂ P, C),

for all 2,2’ € E and C € Bg. Hypothesis (U) neither implies Assumption (A) nor
is implied by (A). Hypothesis (U) forces Q2 to be finite, which Assumption (A)
does not. On the other hand, taking X = Q2 = {0, 1}, taking T to be the flip on
and taking two transition kernels

10 01
P(O) = (0 1) and P(1) = (1 0)
on X gives a simple example of a setting satisfying (U) but not Assumption (A).

3.2. Sample chains. For the sample chain, the empirical distributions are

X 1 n—1
L==> o
k=0

and the empirical processes
1 n—1
X _ o
Ry =— g: 8g.»
=0

with values in M;(X) and M;(X%"), respectively. For probabilities 1 on X,
define
(3518) Ix(p) = inf {J(T):T € M;(E), T has marginals y and r}.

Let the probability measure ¢ on X be the marginal of ®.

3.19 THEOREM. Assume(A). Thenlxis lower semicontinuous, is convex, has
compact level sets and Ix(u) = 0 if and only if u = ¢. The functional Ix governs
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the large deviations of LX under P¥, uniformly over X and m-almost surely, in

the following sense: There is a Borel subset Qx of Q such that n(Qx) = 1 and, for
all w € Qy, these large deviation bounds hold: If F C M;(X) is closed, then

lim sup 1 log sup P¥{L¥ € F} < —Ix(F),
x€EX

n—oo I

and if G C M1(X) is open, then

PR | . WX
liminf = log xlél£ PY{L% € G} > -Ix(G).

n—oo n

For f € Cp(X), let

n-1
Suf =Y FXa),
k=0
and define
(3.20) c(f) = inf 1 / [log sup / exp(S.f) dP,‘;’] m(dw).
neN n XEX

3.21 THEOREM. As a functional on Cy(X), ¢ is Lipschitz continuous and
convex. Under Assumption (A), ¢ and Ix are in duality:

of) = sup{ [Fan-twine Mlm}

and

Iy(u) = sup{ / Fdp—c(f)f € cbm}.

3.22 ExaMPLE (Independent variables). Suppose we are in the canonical
setup described in Example 2.4, and let my be the marginal of 7 on P(X). Assume
that w-almost every transition P(w; x,dy) is independent of the starting state
x, in other words, that the variables X, are conditionally independent given
w € Q. Then we may think of my as a probability measure on M;(X), and we

have .
o(f) = /Mm [log /X efdl/] roldi).

The rate can be written

(3.23) Ix(u) = sup { // log ﬁ%ﬂ(dx)m(du): uc Vb(X)}.
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Note the curious fact that the rate depends on 7 only through the marginal 7.
That this is not true in general is demonstrated by Example 3.27.

3.24 REMARK. Equation (3.23) bears a pleasant similarity to the Donsker—

Varadhan functional, so one would like to know whether the formula generalizes
to the nonindependent case. Set

K(p) = SUp{ / / log 1—)% wdx)r(dw):u € Vb(X)}.
Following the proof of Deuschel and Stroock’s (1989) Lemma 4.1.45, it is not
hard to see that K(u) = 0 if and only if 4 is invariant for P, the mean transition
defined below. Thus the zeros of K and Ix do not necessarily coincide, and K
cannot in general represent the rate (see Example 3.27).
Our description of the rate Iy is somewhat indirect, so let us investigate

it further by finding upper and lower bounds in terms of familiar functions.
Define, for u € M1(X),

Tn = [ T,
Q
where J, is the Donsker—Varadhan functional of the transition kernel P(w); ¢/,
is a lower semicontinuous function of w, so measurability is not a problem in
the above integral.
3.25 THEOREM. Ix(u) < Jr(uw)=J(u® w) for all p € M1 (X).

For a natural lower bound, we need to make a further assumption:

AssuMPTION (B). The pair (Q,T) is as in the canonical setting of Example
2.4, and m = 7L for some Borel probability measure my on P(X).

Define the mean transition P on X by
P(x,A) = / P(w; x, A)yr(dw),
Q

with the corresponding Donsker—Varadhan functional

u

J(u) = sup{/log —ﬁdu:u € Vb(?()}.
Under Assumption (B), the mean process
P, = / Pym(dw)
Q R

is Markovian with transition probabilities P(x, dy).
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3.26 THEOREM. Assume (A)and (B). Then J(u) < Ix(u) for all p € M1(X).

3.27 EXAMPLE. Let us see how the above theorem can fail when Assump-
tion (B) is not in force and the zeros of Iy and J do not coincide. Take
X = {0, 1}, Q2 = P(X)%, T equal to the shift map on Qande € (0,1), and

define
€ 1-¢ 01
P()—(l_é5 c ) and P1=(0 1)

Let us put the following two ergodic measures on 2: The fair coin-tossing mea-
sure

™= ((5p0 + 5p1)/2)z,
and the Markovian measure
7’ = (5wo + 5Tw°)/21

where w0 € Q is defined by w,g = Pymodz, & € Z. Clearly, Assumption (A) holds
withb = 1land M = ¢! v (1 — ¢)71, for both 7 and 7’; 7 and =’ also have
identical marginals on P(X). Let ¢ and ¢’ be the X-marginals of the invariant
measures of the skew processes corresponding to the background measures 7
and 7', respectively. These are found to be

_(1l-e 2-¢ and o = l—-¢ 1+¢
$=\3"2:3-2¢ v=E\{"2 2 )

Ife = %, the variables X, are conditionally independent givenw € (2. Assume ¢ #

%. Then ¢ and ¢’ are different, so, in particular, the rates Ix and I corresponding
to 7 and 7’ must be different. The mean transition for both 7 and =’ is

P= €/2 1-¢/2\,
“\1-9)/2 1+9)/2)’
¢ is P-invariant but ¢’ is not. Thus J(¢) = 0 < Ix(p) and J(¢’) > 0 = I}(¢').
Let us move to the process level of sample chains. For shift-invariant proba-
bilities @ on X%, set
(3.28) hx(@) =inf h(T | ®c),

where the infimum is over U-invariant probabilities T on E,, with marginals
Q and . The process level rate function on My(XZ") is given by

hx(@), if @ is shift-invariant,
otherwise.

K

(3.29) Q) = {

Let the probability measure ¢o, on X" be the marginal of ®.
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3.30 THEOREM. Assume (A). Then I}({°°) is lower semicontinuous, is convex,
has compact level sets and I}((°°)(Q) = 0 if and only if Q@ = Yoo. Moreover, I)((°°)
governs the large deviations of RX under P?, uniformly over X and n-almost
surely.

3.31 EXAMPLE. A natural question is whether Assumption (A) guarantees
large deviation principles under the ergodic probability ¢, on X%, The answer
is no: Take (Q, T) = ({—1,+1}%, shift map) and X = {—1,+1}. Let u be the proba-
bility measure on X% = ) constructed in Orey and Pelikan [(1988), Example 4.2]
that fails to satisfy a large deviation principle. Set = = u, and define the tran-
sition kernel P(w) on X by P(w; x, A) = 14(wyp), for w = (w;) € Q. Assumption (A)
is trivially satisfied, but ¢, = p and hence cannot satisfy a large deviation
principle.

As in Theorem 3.21, we could write the process rate as a convex dual, but
(3.20) does not necessarily define the correct functional on functions that depend
on more than one coordinate. We shall develop an expression that mimics the
limit of a specific entropy. For the remainder of this section, @ is a fixed shift-
invariant probability measure on X%". For n € N, F(n,X) denotes the o-field
generated by (Xj,...,X,_1), and C, denotes the space of bounded, continuous,
F(n,X)-measurable functions on XZ°. Define

(3.32) K,(Q)=sup { / £dQ - / [log / o dP“’w]w(dw): fe cn},

where Py, is the sample chain with initial distribution ¢* and the initial state
of the dynamical system at w, and ¢“(dx) is a conditional distribution of ®.

3.33 THEOREM. Under Assumption (A), hx(Q) = lim,_,, K,(Q)/n.

3.34 REMARK. Ifwe assume (A)and choose toignore the b first coordinates,
the above convergence is uniform over initial distributions. For y € M;(X),
define

K,.(Q) = sup { / £dQ - / [log / exp (f o sb)dp;;] r(dw):f € cn}.
Then minor modifications in the proof of Theorem 3.33 (Section 5) show that

1 1
li -K, <h <liminf inf =K .
imsup Sup wn(@) < hx(@) <liminf inf -~ K,.(@Q)

Finally, let us develop bounds for 4.(Q) in terms of functions that resemble
familiar specific entropies. Define

_ o 1
(8.35) h(Q | poo) = lim sup ;H.F(n,X)(Q | Poo)

and

(3.36) ha@ = Jim [ H(Qu|Qu-1® PW)dw)
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The limit in (3.35) is not guaranteed to exist, hence the limsup; Qg is the
marginal of @ on F(d,X), and the meaning of @,_; ® P(w) is analogous to (3.11).
The limit in (3.36) exists by the monotonicity of relative entropy.

h(Q) =

3.37 THEOREM. Under Assumption (A), h(Q | ¢oo) < hx(Q) <
= Py, so the

hQ @ 7 | Poo) Uﬁder Assumptions (A) and (B), we have ¢u
lower bound reads h(Q | P,) < hx(Q).

4. Proofs of the basic properties. Let us begin with a simple observa-
tion about compact-open topologies.

4.1 LEMMA. Let E and F be Hausdorff spaces with countable bases for their
topologies, and suppose that E is locally compact. Then the compact-open topol-
ogy of C(E, F) has a countable base.

ProorF. ForH CEandV C F,let S(H,V) = {f € C(E,F):f(H) Cc V}. By
definition, the compact-open topology is generated by the subbase

8§ ={S(H,V):H C E is compact, and V C F is open};

see Munkres [(1975), page 286]. Let K and I/ be countable bases of open sets
for the topologies of E and F, respectively, and furthermore so that the closure
K is compact for each K € K. Let

50={S(E,U Uj):Ke/c, reN,Ul,...,U,eu}.

J=1

The class Sy is a countable subcollection of S. By Munkres [(1975), Lemma
8.2 in Chapter 3] the collection of finite intersections of elements of Sy gives a
countable base for the compact-open topology of C(E,F). O

PrROOF OF LEMMA 2.2. Easy arguments show that D is compatible with
the compact-open topology, and then separability follows from Lemma 4.1. The
completeness of D follows from the completeness of (M(X), r) and the fact that
a uniform limit of continuous functions is itself continuous. O

ProoF oF LEMMA 2.3. Let P(w; x) be the value of the map P(w): X — M;(X)
at x. The composition (x,w) — (x, P(w)) — P(w; x) from E into M(X) is continu-
ous, the second step by Theorem 5.3 of Munkres [(1975), page 287]. Since P: E —
M(E) can be expressed by P(x,w) = P(w; x) ® 67y, it is clearly continuous. O

4.2 LEMMA. Assume (A). Let A € Bg and x € X. Then there is a Borel subset
Q1 of Q, depending on x and A, such that w(Q1) = 1 and the following inequality
holds forall w € Q; and y € X:

N—oo

S ~
llmlan. ;P"((y,w), A) > /QM(n)"lle((x,n), A)(dn).
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ProoF. Forn >b,y € X andw € Qq,
P"((y,w), A) > MT"bw)~1P? ((x, T"Pw), A),

so, for N > b,
N b
ZP" (r,w), 4) > = ZM(me) 1P ((x, T™w), A).

n—l

Now let N — oo and use the pointwise ergodic theorem. O

To understand the consequences of Assumption (A) for the ergodic behavior of
the skew chain, we shall apply the theory of Hopf Markov chains, as presented
by Foguel (1969). A Hopf Markov chain is a quadruple (Z, Z, v, P), where (Z, Z,v)
is a o-finite measure space and P is a positive contraction on L!(v). The action of
P on an L1(v)-function u is written «P. If, instead of an L!(v)-contraction, we are
given a Markov transition kernel P on the measure space (Z, Z, v) satisfying

4.3) P(z, A)=0 for v-almost all z, whenever A € Z and v(A) =

we can define a positive L!(v)-contraction as follows: Given u € Ll(v), let 3
be the finite signed measure defined by d3 = udv. Define a new finite signed
measure SP by

BP(A) = / P(z, A)B(d),

for A € Z. By (4.3), BP < v, and we set uP = d(GP)/dv.
We shall need the following standard fact, whose proof can be found in

Rosenblatt (1971):

4.4 LEMMA. Suppose P(x, A)is a Markov transition kernel on a measurable
space (X, A) and that ® is an invariant probabzlzty for Pon (X, A). Let Py be the
shift-invariant probability measure on (XZ", AZ") corresponding to the Markov
chain with initial distribution ® and transition probabilities P(x,dy). Let S
denote the shift on X%', and define the following sub-o-fields of Aand AZ":

E={A€ APl =1y, D-as.};
I={BeA¥:B=S7'B, Py-as.}.

Then ®A) = 0or 1 for all A € £ if and only if P(B) = 0 or 1 for all B € I, that
is,'if and only if the coordinate process is ergodic under Ps.

Now fix ¥ € X and define a probability II for Borel subsets C of E by

I(C) = / P* (&, w), C)n(dw).
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4.5 LEMMA. Assume (A). Then (E, Bg,I1,P) is a Hopf Markov chain. There is
a unique probability ® on E that is both P-invariant and absolutely continuous
with respect to I1. The Q-marginal ®q = 7, and Py is ergodic.

ProoF. First we check the analogue of (4.3). Suppose C € Bg is such that
TI(C) = 0. Then P?((X, Tw), C) = 0 for m-almost all w, and

/ P(z, C)II(dz) < / M(Tw)Pt ((Z, Tw), C)m(dw) = 0

To prove the existence of an invariant probability, absolutely continuous with
respect to IT, it suffices to show that we cannot have an increasing sequence {A;}
of Borel sets such that both A; ' E, II-almost surely, and

1\}1}& IVZ]P (z,A;) =0 for IT-almost all z and all j,

according to Foguel [(1969), Corollary 2 on page 46].
Suppose we have such sets {A;} and let A be their union. By Lemma 4.2,

- lim lim ——ZlP’”((y,w) A) > / M)P (G, m), A)n(dn),

J—0o0 N—oo

for M-almost all (y,w) € E, so that II(A) = 0, a contradiction. This proves the
existence of a probability ® on E such that ® « II and ®P = &.

Since 7 and ®q are T-invariant, so is the density d®q/dn. By the ergodicity
of 7, d®q /dn = 1 w-almost surely, hence &g = 7.

To prove ergodicity of Pg, let A € Bg be such that P14 = 14, ®-almost surely.
This and Lemma 4.2 give

1, = lim ﬁZPnlA > / M)~ P8 (&, n), A)m(dn),

®-almost surely, since & = 7. Multiply by 14. and integrate to get
0 84" [ M) P (@), A) i)
Q

If ®(A°) > 0, then P? (@, m), A) = 0 for r-almost all n, from which it follows that
II(A) = 0 and, consequently, ®(A) = 0. We have shown that &) is 0 or 1, and
so, by Lemma 4.4, Pg is ergodic.

Suppose that T is another P-invariant probability such that I' <« II. Then
the same holds for ¥ = (@ +I')/2, too. By the above reasoning, Pr and Py are
ergodic, but then Py = (Pg + Pr)/2 forces * =& =T. O

ProOF OF THEOREM 2.8. Let @ be the probability measure whose existence
was derived in the above lemma. For part (i) of Theorem 2.8, it remains to prove
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uniqueness. Let ' be P-invariant and satisfy I'q = 7. By the above lemma, it
suffices to show that I' <« II. So let C € Bg be such that I1(C) = 0. Then

I(C) = TPY(C) = / P? ((x, w), C) T, dw)
< / M)P* (&, w), C)m(dw) = 0.

Part (ii) was already proved in Lemma 4.5.
For part (iii), let D be the Borel subset of EZ" where the convergence

) 1 n-1 _
Jim > @ = [fae

takes place. Since D is a tail event, (2.7) implies that for each w € Q4 either
P, .)(D°) = 0,for allx € X, or P, .,)(D) = 0, for allx € X. By ergodicity Pe,.,)(D°) =
0 for ®-almost all (x,w), so it must be that P ,)(D°) = 0 for all x and w-almost
allw. O

5. Proofs of the large deviation theorems. We shall first prove the
large deviation theorems for the skew chain, for the sample chain results will
then follow by the push-forward principle. For the skew chain, we proceed from
position level to process level via multivariate position level results.

To begin, we present some standard facts about large deviations and rela-
tive entropy that will be used repeatedly. Proofs can be found in Deuschel and
Stroock (1989) and Varadhan (1984). The push-forward or contraction principle
says that if I governs the large deviations of {¢,} and has compact level sets,
and if f is a continuous map from S into another metric space 7, then the func-
tion J, defined on 7 by J(y) = inf{I(x): f(x) = y}, also has compact level sets and
governs the large deviations of {f(¢,)}.

If 4 and v are Borel measures on a Polish space X, relative entropy can be
expressed as

(5.1) H|v)= sup{/fdu — log /efdu:f € Cb(X)}.

An easy consequence is
(5.2) H(ep+@ -y |ev+(1L—el) <eH(pu|v)+ 1 -HW | V),

for probabilities u, y’, v and v/ and for 0 < & < 1. Moreover, H(u | v) is lower
semicontinuous as a function of x. The level sets {u € M(X):H(p | v) < 1}
are compact in the weak topology of M;(X), for all € R. If A is a countably
generated sub-o-field of By, and if y* and v* are versions of the conditional
probabilities of 1 and v, given A, then

5.3) H(u | v) = Ha(u| 1) + / H(uA | v4) dp.
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5.1. Position level for the skew chain. We shall establish Theorem 3.3 for
the shifted empirical distribution

- ln—l
Ln = r—i ;5&“"'

The conclusion for L, follows because L, and L, come uniformly close as n
increases. For a detailed argument, see Orey [(1986), Proposition 3.1].
Our first goal is the upper bound, namely, the following proposition.

5.4 PROPOSITION. Under Assumption (A), there is a Borel subset Q, such
that 7(Q,) = 1 and

lim sup % log sup ]P’(x,w){lj,, eF} < —Ig(F),
x€X

n—oo

for all closed F C My(E) and all w € Q,,.
For w € , set

n-1

1
Low)==Y bp,
" %o

and
- 11 .
M(w)=sup =) _log M(T'w).
n21 150y

We let Q, be the~ set of w € Q4 such that lim,_, o L,(w) = 7 in the weak topology
of M1(), and M(w) is finite. The set €, is a shift-invariant Borel subset of €.
By the ergodic theorem, the second countability of M;(2) and Assumption (A),
Q, has m-measure 1.

5.5 LEMMA. Suppose w € Q, and K is a compact subset of M;(E), disjoint
from M (E). Then, for all sufficiently large n,

sup ]P’(x,w){i:n € K} =0.
x€EX

Proor. The image of K under the projection E — Q is a compact subset of
M;(9), not containing 7. Thus L, (T®w) lies outside this set for n large enough,
and the conclusion follows from the fact that P ,)-almost surely

bn-1"

1S b0 = La(TPw). .
n k=b
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5.6 LEMMA. Assume (A) and suppose that w € Q. Then there are compact
sets C; C M1(E), possibly depending on w, such that, for all n,l € N,

supPq . {L, € Cj} <e™.
xEX

Proor. Fixx € X, and define measures 3, ,, and 8 on E by

1 n-1 R ' R
frw= > Y PG TIw) and f= /Q Y&, nyr(dn).

Jj=0
Let £, > 0 be any numbers such that ¢, \, 0 as £ 00, and define, for &k € N,
ch=c; (k+1+ 2M(w) + log 4).

Since T:Q — Q and P:Q — P(X) are continuous by assumption, P?(%,w) de-
pends continuously on w. Therefore the convergence L,(w) — w guarantees
that 3, ., — B as n — oo, hence {3, .}, is tight by Prohorov’s theorem. Pick
compact sets Hy, C E such that 3, ., (Hf) < exp(—cb), for all n,k € N.

Given n, let ¢ = g, be an integer such that (g — 1)b < n < gb. In the next
computation, first add some extra terms to the sum, then apply Chebyshev’s
and Hélder’s inequalities, then Assumption (A) g times, then Jensen’s inequal-
ity and, finally, the definitions of the various quantities:

Pew) {f-‘n(H]cz) > &g }

1 q b-1
< Plaw) { =22 1 (Ziy) > Ek}

i=1 j=0

b-1 q 1/b
< expl-neier] - [| ( / Hexp [CkaH;(Zib+j)] le(x,w))
Jj=0 i=1

b-1 /q-1 1/b
s o e

Jj=0 i=0

1 gb-1
< exp [ — nepey, + 3 Z log M(Tjw)}

J=0

1 gb-1 . q
X (EIE Z Pb ((?, T'w), exp [ckblgz])>

Jj=0
< exp [ - ncxes + gM(w)] ( explcrb)fyp,HY + 1)’

<exp|[-nk+1)],
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valid for all x, n and .
Forl e N, put C; = {v € M(E):v(H}) < &, for k > I}. Each C; is a compact
subset of M(E), and

Sup P, w){L € CC} < Z]P’(x w){Ln(Hk) > 5k} <e™ ,
k=l

foralln and!l. O

Proor oF ProroSITION 5.4. By Lemma 5.6 and Deuschel and Stroock
[(1989), Lemma 2.1.5], we need to prove the upper bound only for compact
F. We may also assume that F N M (E) # @, for otherwise the conclusion is

immediate from Lemma 5.5. By the definition of Iz, Ig(F) = J(F N M,(E)). Let
¢ < J(F N M, (E)). For each a € F N M (E), pick a u, € V3(E) such that

Ux
/log E:da >c.

Since P is Feller continuous by Lemma 2.3, log [u,(Pu,)~'] is a bounded con-
tinuous function on E, and we may find an open neighborhood B,, of a so that

inf [ log ——-du >c.
WEBq Pu,,

Tracing the argument of Donsker and Varadhan [(1975a), pages 8-9] then
shows that

lim sup — log sup P w){L €B,} < —c.

n—oo

Cover the compact set F N M, (E) with a finite union U = B,, U---UB,, . The
set F \ U is a compact subset of M1(E) \ M(E), so, by Lemma 5.5,

lim sup — log sup P, w){L € F} < max lim sup — log sup P w){L €B,}
n—oo 1<j<m  n—oo
< —c. ]

Our next goal is the corresponding lower bound.

5.7 PROPOSITION. Under Assumption (A), there is a Borel subset O such
that m() = 1 and

hm 1nf log mf P w){L € G} > -Ig(B),

for all open G € My(E) and all w € Q.
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We saw above that the definition (3.1) of J is useful for proving the upper
bound, but for the lower bound we need another expression for J. Given a prob-
ability measure I and a Markov transition kernel Q on E, we define a probability
measure I' ® Q on E2 by

reQO) = / /E Le(e0,21)Qz0, d2y)ldzo).

By Donsker and Varadhan [(1976), Theorem 2.1],

JI) =inf {H ® Q | I ® P): Q is a Markov kernel

5.8
(5.8) with invariant measure I'}.

Recall that @ is the unique P-invariant probability measure on E with Q-
marginal &g = 7.

5.9 LEMMA. Letv € M1(Q)andT € M(E).

(i) If J(T') < oo, then T'q is T-invariant.
(ii) If Hw | m) < oo and v is T-invariant, then v = .
(iii)) Assume (A). Then there are constants c¢; > 0 and ¢y € R such that

JT) 2 ¢, H(T | @) +cq,
for all T € M, (E).

ProOOF. Statement (i) is immediate; (ii) follows from the ergodicity of = and
the fact that two T-invariant probability measures are identical if they agree on
T-invariant sets.

Note that the assumption I'q = 7 is necessary for (iii) to hold. For if " is a
P-invariant probability measure with I'q # 7, then J(T') = 0 but H(T' | ®) = o0
by (ii). The point here is that J treats all P-invariant probabilities equally, with
no preference for those with marginal .

Write ¢“(dx) for the conditional distribution of the X'-coordinate under ®,
given w € Q. Let u € V,(E). By Assumption (A), for all x and 7-almost all w,

Pbu(x, w) < M(w) / PPuly, w)e*(dy).

Now take logarithms, integrate against I, apply Jensen’s inequality and, finally,
use the P-invariance of ¢ to get .

/ (log Pu)dr" < / log. Mdr + / [log / Pou(y, w)ga“’(dy)] (dw)

< /logMd7r+log~/ud<I>.
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By Lemma 2.3, P*u € V,(E) for all &, so, by (3.1),

b
1 Pk-1y 1 u
> = E ——dl'== —
JI) > b 2 /log PFo; dr 3 /log ]Pbudl"

> %{/log udl"~log/ud<I>}—%/logMd7r.

Taking the supremum of the last expression over u € V,(E) and using (5.1) give
o> 1ar) o) - % / log Mdr. g

Let Q denote the set of pairs (I', Q) such that I' is a probability measure
on E and Q is a Markov kernel with invariant measure I'. Write Qr for the
shift-invariant measure on EZ" obtained by extending the initial distribution
I" with the transition kernel Q. At times we shall consider Qr as a measure on
EZ without inventing new notation for it. Z, = (X,,, ©,) denotes the coordinate
variables on EZ as well as on EZ,

5.10 LEMMA. Under Assumption (A), there exists a countable subcollection
Qo of Q such that, for all open subsets G of M,(E),

I(@=inf{(HT ®Q|T'®P): T € Gand (T,Q) € Q},
and all pairs (T', Q) € Qyq satisfy properties (i)—(v):

i) Tg=m

(i) HT|®)< oo
(fiii)) HI'eQ|I'®P) < .
@iv) T'~®.

(v) Qr is ergodic.

Proor. Observe first that countability is no restriction by the second count-
ability of the weak topology of M;(E). Let G C M;(E) be open. Combining (3.2)
and (5.8), we get

(5.11) Ig(@=inf{HT®Q|T'®P):T € G, I'o =7 and (T,Q) € Q},

where inf® = oo by convention. Since we only need to consider I' such that
I'q = mand J(I') < oo, we may restrict attention, by Lemma 5.9(iii), to I such that
H(T | ®) < oo. From this follows I' <« ®.

Let (T', Q) be a candidate in (5.11) satisfying I' < ®. Let £ € (0, 1), and define
probabilities @. on E2 and I, on E by

RQ.=(1-eRQ+cdRP
and

IF.=(1 =& +¢®.
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Let Q¢ be a transition kernel such that . = I'. ® Q., and check that I, is an
invariant measure for Q.. For small enough ¢, T; lies in G and consequently
(T'¢,Qc) is also a candidate in (5.11). By (5.2),

HT. Q. |T.®P)<(1-eHT'®Q | ®P),

so we can do even better in (5.11) by picking (T, Q.) instead of (T', Q). We have
['. ~ ®. Thus all but (v) are satisfied.

It remains to show that the stationary Markov chain with initial distribution
I'. and transition kernel Q. is ergodic. Let A € Bg be such that Q.(z, A) = 14(2)
for T'.-almost all z € E. Since Q.(A x A®) = Q.(A° x A) = 0, it follows that
DRQPA XA%) =D QP(A° X A) = 0, and from this that P14 = 14, ®-almost surely.
By the ergodicity of Py and Lemma 4.4, ®(4) € {0, 1}, but then I'.(A) € {0,1},
too, and we are done. O

5.12 LEMMA. Suppose (T',Q) € Qq. Forj k € Zand f € L (Qr), the following
holds Qr-almost surely: ©, = Tk‘fG)j, the o-fields generated by ©; and ©), are
equal, as are the conditional expectations Qr(f | ©;) and Qr(f | ©3).

ProoOF. From
00>HT®Q|T 8P = / H(Q, ) | P, )T(d2),

it follows that Q(z, -) < P(z, -) for I'-almost all z, and hence Q((x, w), X x {Tw}) =1
for I'-almost all (x, w). This implies that, for £ > 0,0, = T*©,, Qr-almost surely.
The same conclusion for 2 < 0 comes by the shift-invariance of Qr and the
invertibility of T'. The lemma follows immediately. O

For w € (, define a probability measure P¢ on EZ’ by

P2{(Zo,...,Z,) € C}

(5.13) =/ /--~/lc((x,w),zl,...,z,,)]P(z,,_l,dz,,)
xJe JE
-+ Plzq,dzo)P((x, w), dz1) o (dx).

For each (T, Q) € Q, fix a version Q% of the conditional probability of Qr, given
@0 =w.

5.14 LEMMA. Assume (A). There exists a Borel set Q; of full m-measure such
that, if w € Q, then the following holds simultaneously for all (I',Q) € Qq: For
all n, we have the derivatives

d(IDw
fn = d]P‘E
® | x(n,2)
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and
(5.15) lim % / logf,dQ¢ =HT ®Q | @ P).
If G is an open subset of M1(E) containing T, then

(5.16) lim Q¢{L, € G} = 1.

PROOF. Since Qg is countable, we need to show that the lemma holds for a
fixed (I', Q) € Q, for w-almost all w. As observed above, Q(z, -) < P(z, -) holds for
T-almost all z. Without affecting the measure Qr, we may modify the kernel Q
on a I'-null set so that this holds for all z. Then we have a measurable function
g:E? — [0,00) so that Q(zg,dz1) = g(2¢,21)P(2¢,dz1), for all z, [for a proof, see,
e.g., Nummelin (1984), Lemma 2.5], and

0o >HI'®Q| I‘®]P’)=/loggd[‘®@.
By Lemma 5.10(ii) we have a Radon—-Nikodym derivative = dI'/d®, and
oo >HI | ®)= /loghdl".

Let v“(dx) be the conditional distribution of I’ on X, given w € . Recalling
similar notation introduced earlier for ®, we may write ®(dx, dw) = ¢*(dx)n(dw)
and I'(dx, dw) = v*(dx)w(dw). It follows that v“(dx) = h(x, w)p“(dx) for m-almost
all w. After throwing away a 7-null set, we may assume that QY is given by

Q{(Zo,...,2Z,) € C}

(5.17) = / / / 1o (Ce,w), 21, - - 5 20) Q2n-1,d2n)
xJE JE
-+ Qlz1,dz2)Q((x, w), dz1) v+ (dx).
By comparing (5.13) and (5.17), it is evident that

n—2
fn = h(Zy) H &(Z;,Zj.1)

J=0

does the job. Apply Lemma 5.12 to conclude that

1 L, 1 . 12 "
- / log f dQf = / log htx,why“(de)+ = 3 / logg(Zo, Z1)dQ”,

J=0
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m-almost surely. The first integral on the right-hand side is finite 7-almost
surely, so the term vanishes as n — oco. By the ergodic theorem, the limit of the
second term is

/ [ / logg(Zo,Zl)dQ‘fi] ldw) = / loggdT ©Q=HT ®Q | T @ P).

This proves (5.15).
For a fixed G, (5.16) follows from ergodicity. To get it for all open sets simul-
taneously, let G vary over a countable base for the weak topology of M (E). O

PROOF OF PROPOSITION 5.7. By Assumption (A), for 7-almost all w and all
neN,

1, . ~ log M(w)
(5.18) ;logxléli P {Ln € G} > -

+ %log]P’g{I:n € G}.

Let (I',Q) € Qo be such that T' € G. Since the set {L, € G} is F(n + b,2)-
measurable and Q¢ {f,.+» = 0} = 0, we may write

+logP3{L, € G} 2 7 log [ 1oLnfi}dt,
and use Jensen’s inequality to get
%mgpg{in €G}
(5.19) > %logQ‘fi{I:n € G}

- -11 =~
- [Q‘fi{Ln € G}] ~ / 16(Ly)log fr.s Q.

By the elementary inequality xlogx > —1/e,

21
n

~ 1 1
[ 16@0g s dQt =~ ~ - [ogfuisdt,
en n
so (5.18), (5.19) and Lemma 5.14 combine to give

e | . =~
lim inf —log inf Pe.){Ln € G} > ~HT ® Q| T ® P).
Since this holds for all (I',Q) € Q satisfying I' € G, we are done by Lem-
ma 5.10. O

To complete the proof of Theorem 3.3, it remains to establish the properties
of Ig. Lemma 2.3 and (3.1) show that J is convex and lower semicontinuous. The
functional J has compact level sets by Lemma 5.9 (iii) and the fact that relative
entropy has compact level sets. It is immediate from (3.2) that I inherits these
properties. According to Deuschel and Stroock [(1989), Lemma 5.1.4], J(T') = 0
if and only if I'P = I". By (3.2) and Theorem 2.8(i), I(T") = 0 if and only if " = ®.
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5.2. Position level with a multivariate X-component. Our strategy will be to
apply Theorem 3.3 to a new setup where X is replaced X¢. Since we formulated
Theorem 3.3 for a general dynamical system instead of the canonical one, we
need only “redirect” the map from ( into P(X4).

Define a complete metric s; on A4 by

d-1
sq(x,y) = Z s(xg, Y1),

k=0

and let r4 be the corresponding Prohorov metric on M;(X%). Recall that the
metric for P(X) was defined in terms of a fixed countable base {C:} of relatively
compact open sets for the topology of X'. For a multiindex k = (&, ..., kg_1) € N¢,
put C(k) = Cy, x --- x Cy,_,. The set C(k) is a relatively compact, open subset
of X¢, and the collection {C(k):k N?} is a countable base for the topology of
X<, Put [k| = ko + - - - + k4_y. The corresponding metric for P(X?) is defined by

DyP, Q=Y 27/ P(x), .
(P, Q) ; ngg{)rd( (%), Q(x))

5.20 LEMMA. Given P € P(X), define R = R(P) € P(X?) by
/ FyR(x, dy) = / F@, .. %a-1,9)Plg_1, dy),
Xxd X

for f € B(X?). Then the map P — R(P) from (P(X),D) into (P(X?), D,) satisfies
Dy(R(P;), R(Pg)) < D(P4, Py).

ProOF. ThatR = R(P)is Feller continuous is obvious from R(x) = §,,.. », )
®P(x4_1), for x = (xg,...,x5_1).

Now suppose R; = R(P;) and R, = R(Py), for some Py, P, € P(X). It suffices
to show that r;(R1,Rg) < r(P1(x4_1), P2(x4_1)), for all x = (xq,...,x5_1) € X°.
Given x € X9, let € > r(P1(xg_1), Po(x4_1)). For A € By« we may write

(5.21) Ri(x,A) = Pi(xq_1,Alx]), i=1,2,
where A[x] = {y € X:(x1,...,x4_1,y) € A}. By the choice of ¢,
(5.22) Pi(x4_1,B) < Py(xg_1,B%) +¢,

for all B € Bx. Relations (5.21) and (5.22) and the fact that (A[x])* C (A%)[x]
give Ri(x, A) < Ry(x, A®) +¢, for all A € By, hence rg(R1(x), Re(x)) < e. O

Letting P: Q2 — P(X) still denote the original map introduced in Section 2,

define P:Q — P(X?) by P = R o P o T¢~1, To be more explicit, here is how P(w)
acts on a function f € B(X9):

[ FOP@ixd) = [ flar, .. g P s 0, dy),
X X
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5.23 PROPOSITION. If Assumption (A) holds for P with b and M, it holds for
Puwithbd =b+d —1and M’ = M o T4 1,

Proor. Use the definition of P. O
The skew transition P'® on Ej is defined for A € By« and B € Bq by
P9 ((x,w),A x B) = P(w; x,A)15(T,).
Recall the probability measure &, on E; defined by
94(C) = Po{Xo, ..., Xq-1, ©0) € C}.

5.24 PROPOSITION. Under Assumption (A), ®, is the unique P@-invariant
probability measure on Eg4 with Q-marginal .

PRrROOF. The Q-marginal of ®, is 7 by definition, and invariance follows by a
straightforward computation. Uniqueness then follows from Proposition 5.23,
by applying Theorem 2.8(i) to &3, P9 and E;. O

5.25 DEFINITION. ForI' € M(Ey), define IV € M(Ey) by

/fdl"’ = //f((xo,...,xd_z,y),w)P(Td‘zw; %4-2,dy)[(dx,dw),

for f € B(Ey).

Note that the property of d-invariance defined by (3.4) is precisely what is
needed for IV = TP®. The measure I agrees with I on the o-field £;_; generated
by the coordinates ((xo, .. .,%4—2),w), S0

(5.26) H{T | = / H(T(- | £4-1) | T'(- | £4-1)) dT.

A regular conditional probability of I, given £;_1, is given by

(527)  T'(-| (0. %d—2),w) = Sag,...ta_p) @ P(T42w; 24_3,") ® 6,
Let J@ denote the Donsker—Varadhan functional for the transition P\%.

5.28 PROPOSITION. Suppose d > 2, and let T’ € M1(Ey). Then

JOT) = {H (T | TP@), ifTis d.-invariant,
00, otherwise.

ProoF. IfT is not d-invariant, let K > 0 and find a g € Cy(E;—;) such that
g>0and

/ (%o, .., %), w) D, dw) — / g(1,... %a_1), Tw)T(dx, dw) > K.
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Put u(x,w) = explg((xo,...,x4_2),w)] and deduce that

190 > / log ﬁ‘mdr > K.

This shows that JO(T") = co.

Now suppose that I' is d-invariant. We shall show that J9(T') = H(T' | [),
which gives the conclusion. Let u € V,(E) be arbitrary. By Jensen’s inequality
and the d-invariance of T,

19T) > / log udl — log / POy dr

- /log wdl — log/udP’,
s0 JO(T') > H(T' | I'). Conversely,
/ log udl’ — / log P9y dT
- / [ / log wdI(- | £4_1) — log / wdr'(- | a,_l)] dr

< [H(TC | €0 T'C | &a-v)dr
=H(T |,
hence J9(I') <H(T' |IV). O

As an immediate corollary from this and definition (3.5) of I'? we get

@r), iflg=
(5.29) ey = 77O =
o0, otherwise.

Comparing with (3.2), we see that I, = I¥, so Theorem 3.3 gives the properties
of I@ stated in the first part of Theorem 3.6.
Let (X,,, ©,) denote the coordinate variables on (Ez)%", and let

n+d—2

1
L;z = ;L- Z 6(xk,ek).
k=d—1

By Theorem 3.3 and reasons explained in the first paragraph of subsection 5.1,
I@ governs the large deviations of L/, under ]Pﬁ‘ifw), uniformly in x € X4 and
m-almost surely. To prove the large deviation principle of Theorem 3.6, it only
remains to observe that the distribution of L under ]PE‘QTI_%) is precisely the

distribution of M¥ under Py, ), if x = (xo, . . . ,%4_2,%).
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5.8. Process level for the skew chain. The next lemma proves the first claim
of Theorem 3.9.

5.30 LEMMA. Under Assumption (A), ®, is U-invariant and U-ergodic.

Proor. The shift-invariance of Py translates into the U-invariance of @,
Suppose A is a U-invariant Borel subset of E,. Let A= {(XO, ©g) € A} be 1ts
inverse image on EZ'. Then é is Pg-almost surely shift-invariant, so by the
ergodicity of Pg, ®(A) =Ps(A)=00r 1. O

Given I' € M1(E), let Ty be the marginal distribution of (X, ...,X;_1),©)
on E;. Define I': M (E ) — [0, 0] by

(5.31) I'(D) = sup I'9(Ty) V Ix(Ty).
d>2

5.32 PROPOSITION. The functional I' is lower semicontinuous, has compact
level sets and I'(T") = 0 if and only if T = ®.,. Moreover, I' governs the large
deviations of M, under P, ., uniformly over X and m-almost surely.

ProoFr. From the definition of I’, I'(T") = 0 if and only if I'Y(T'y) = 0 for all
d. By Theorem 3.6, this is equivalent to I'; = ®,4 for all d, which is equivalent
to I' = ®,,. The rest of the proposition is an immediate consequence of the
projective limit argument of large deviation theory. This allows us to deduce
the process large deviation principle with rate I’ from the succession of position
resultsford = 1,2, 3, .. .. See de Acosta [(1990), Section 5], Dawson and Gértner
[(1987), Theorem 3.3], Deuschel and Stroock [(1989), Theorem 5.4.12] or Ellis
and Wyner [(1989), Theorem 1.3]. O

With this proposition, what is needed to complete the proof of Theorem 3.9 is
contained in the next lemma.

5.33 LEMMA. Assume (A). For T € My(E,), the limit in the definition (3.7)
of h(T | ®) exists, and h(I' | @) can be finite only if T'q = w. The function
h(- | ®) is an affine function on My(Ey,). Furthermore, I =1' on M(E).

PrOOF. Start by observing that a probability measure I" on E, is U-invari-
ant if and only if each I'; is d-invariant in the sense of Definition 3.4. From this
it follows that I'(T") = co = I°X(I") whenever I is not U-invariant.

Now fix I' € My(Ex). Recall Definition 5.25 of I';. By U-invariance,

= ['4PP, Proposition 5.28, (5.29), (5.31) and the fact that .]I(d)(l‘d) isincreasing
in d combine to give

;| T if ['q =
530 ) = {hm H(y T, if Tq=m,

0, otherwise.
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By the definition of ®; and (5.27),
b,Xy_1€A | Eq4-1) = P(Td_2@0; Xy 9, A) = F&(Xd_l €A | Ea-1),

so the conditional probabilities are equal: ®4(- | £;_1) = L(- | €4-1). Apply (5.3)
n — 1 times and the previous equality and (5.26), to obtain

Hep) (T | @) = H('y | ®) + Z/H(Fd(' | €4-1) | @a(- | €4-1)) dTg
d=2
(5.35) =HT | ®)+ Z/H(Fd(‘ | €a-1) | Tg(- | €4-1)) dTq

n
=HT; | ®)+» HTq|T).
d=2
In case H(I'; | @) = oo, both A(T' | ) and I'(T") are infinite, the former by
the monotonicity of relative entropy and the latter by (5.31), (3.2) and
Lemma 5.9(ii).
Suppose H(T'; | ®) < co. Lemma 5.9(ii) implies that I'q = 7. Equations (5.34)
and (5.35) give

lim _Hg(n)(r l (I)oo) I’(F)

n—oo

That A(- | ®) is affine on My(E) is proved as in Deuschel and Stroock
[(1989), page 222]. O

Theorems 3.13 and 3.16 come from Theorems 3.6 and 3.9 via push-forwards:
First define F;: E; — E? and F:E,, — E% by

Fy(x,w) = (x, (w, Tw, ..., Td_lw))
and

F(,w) = (g, (@, Tw, T?w, ... )).

The maps induced on the corresponding measure spaces then take M® to L@
and M, to R,, respectively. The straightforward but somewhat tedlous detalls
can be found in Seppéldinen (1991).

5.4. The sample chains. Theorems 3.19 and 3.30 follow immediately from
Theorems 3.3 and 3.9 by push-forwards via the projections from E onto X and
from E., onto XZ", respectively.

Proor or THEOREM 3.21. The expression

log sup / exp(S,f)dPY
xEX
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is measurable as a function of w, by Feller continuity. By a standard subaddi-
tivity argument,

.1
c(f)=nlg£1o ~ / [log sup / exp(Snf)dP,‘;’] m(dw).

The convexity of ¢ follows from Hélder’s inequality. If f, g € Cp(X) satisfy
g—¢ < f < g+e¢ then c(g) — e < e(f) < c(g) + €, which gives Lipschitz
continuity. The duality statement comes as in Deuschel and Stroock [(1989),
Theorem 2.2.21)], using the following uniform version of Varadhan’s theorem
[Deuschel and Stroock (1989), 2.1.18], valid for all w for which Theorem 3.19
applies:

(5.36)  lim sup

n—oo xEX

%log/exp(Snf)dP,‘;’ — sup {/fdu—IX(p)H =0. O

BEM(X)

PROOF OF THEOREM 3.25. By (3.18), it suffices to prove (1) = J(u ® 7). Let
u € Vi(E) be arbitrary. Write u,, for the element of V;(X) defined by u,,(x) =
u(x,w). Then P(w; x,ur,) = Pu(x,w) and, consequently,

ulx,w)
Pu(x,w)

Tn(w) > / log

We have J (1) > J(p ® ).

To get the converse, we use characterization (5.8) for the Donsker—Varadhan
functional. Let Q be any Markov kernel on E with invariant measure y® 7 and
such that

w(dx)m(dw).

HuoroQ|uereP) = / / H(QUx,w) | P, w)) pd)m(dw) < oo,

This forces Q to be of the form Q(x,w) = Q(w; x) ® 61, where
Qw; x, A) = Q((x,w), A x Q), xe X, Ac By,

defines a Markov kernel @(w) on X which depends measurably on w. An easy
computation shows that y is @(w)-invariant for -almost all w. Hence again by
(5.8), this time applied to each J,,

Tu) < [ H(59Q) | 1® Pw)nd)
- / / H(QW; ) | Pw; ) pldayn(dw)

- / / H(Q,w) | P, w)) uldx)n(duw).

Since Q was arbitrary, we have J (1) < J(u® 7). O
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ProoF oF THEOREM 3.26. For f € Cy(X) define

c(f) = lim 1 log sup / exp(S,f)dP;.
n—oo n TEX

The limit exists by subadditivity. By Deuschel and Stroock [(1989), Lemma
5.1.36],

J(u) = sup { /fdu —e(f): fe Cb(X)}.

By Theorem 3.21, it suffices to prove c¢(f) < e(f), which follows from the equa-
tion for ¢(f) in the proof of Theorem 3.21 and Jensen’s inequality. O

Proor oF THEOREM 3.33. Let C be the union of the C,,. For f € C, let

n—1

Saf =Y F(X)
k=0
and define

(5.37) o(f) = lim * / [sup log exp(S,,f)dP;"]w(dw).
n— Q

oo n x€EX
Let @ be a fixed shift-invariant probability measure on XZ°. The analogue

of (5.36) for process level and the fact that C generates the weak topology of
M;(XZ") imply that

(5.38) hx(Q)=sup{/fdQ—c(f):feC}.

For f € C,, Holder’s inequality applied to the right-hand side of (5.37) and the
shift-invariance of 7 yield

of) < % /Q [sup log [ e dP,‘;’]w(dw).

xeEX

Apply this to f o S® and use Assumption (A) to get
1 b w W 1
c(f) < A /Q [log//exp (r+b)f 08°)dPy ¢ (dx)] m(dw) + A /log Mdnr.

By the P-invariance of ®, ¢“P(w) = ¢T«. Apply this b times together with the
shift-invariance of 7, to arrive at

1 (r+b)f w L/
o)< — /Q [log / e aPy, (o) + —— [ log Mdn.
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Substitute this into (5.38) to get

1 r+ " 1
hx(Q) > m{ / (r+b)fdQ-— /Q [log / et b)fdew]w(dw)}—r—_'_b- / log Mdr.

Since f was arbitrary, we have

1 1
m(@ > K@ - i [log M,
and letting r 1 oo gives

hx(Q) > lim sup %K,(Q).

r—oo

The opposite inequality comes easily. Let v < hx(Q) be arbitrary, and pick an
integer r and f € C, so that

/fdQ —e(H) > .

For large enough n,

%{ / SnfdQ — /Q log / exp(Snf)dPg. ﬂ(dw)}

> l{ / S,fdQ — [ suplog [ exp(S,f)dP¥ w(dw)} >,
n QxeEX

where we also made use of @’s shift-invariance. However, S,.f is an element of

Cn+r, hence K, (Q)/n > v, and letting n 1 co gives

lim inf %Kn(Q) > .

n—oo

The proof is complete. O

For the final proof, we need to show that Proposition 2.1(iii) of Cogburn (1984)
carries over. Recall that ¢“(dx) is the conditional distribution of the X coordi-
nate under @, given w € . In the canonical setting, let B;°>" denote the o-field
on (2 generated by (P:—0c0 < & < n). Then we have the following lemma.

5.39 LEMMA. In the canonical setting, the map w — ¢“ is Bam’"l-measur-
able.

ProoF. Let u“(dx) = P’(T—%w; %,dx), and let II be the probability measure
appearing in Lemma 4.5. The measure u*(dx) is a version of the conditional dis-
tribution of the X coordinate under II, given w. It is a function of the coordinates
P_y,...,P_y, hence B *~1_measurable. The formula

dPY (T~ "w; y)

T "w
d @p”  “(dy)

vIP”‘(x,w):/ v(y, T "w)
x
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shows that vP" is By ® B;°> " '-measurable, whenever v is a By ® B5™""!-
measurable function in L'(IT). Let u = d®/dI1. Since ®, = Il = =, it is also true
that ¢*(dx) = u(x, w)p“(dx) for w-almost all w. Thus it suffices to show that u is
Bx ® B, =L measurable, and now Cogburn’s proof applies word for word. O

ProorF oF THEOREM 3.37. Let I' € My(Ey) with marginal @. Then
H iz, x)(Q| poo) < Hegn)(T' | ®oo), for all n, which gives the first inequality. Now
take I' = @ ® m, and note that the conditional distribution of [yP® on X9, given
O = w, is Q_1 ® P(T%2w). Thus

H(T |TaP®) = [ H(Qu | Qa-18 PW)do)

Note that the expressions are increasing in d. If both sides are infinite for some
d, then A(l' | ) and 4,(Q) are both infinite, the former by (5.35) and the
latter by its definition (3.36). Finiteness of the left-hand side implies that J(I';)
is finite, and hence sois H(T'; | ) by Lemma 5.9(iii). Use again (5.35) and (3.36),
and let d — oo to get A(T | ) = h(Q). This and (3.28) complete the proof of
the first statement of the theorem.

To justify ¢, = P, under Assumptions (A) and (B), write

pualt) = [ [ PN @IA),

for a Borel subset A of X%°. As functions of w, P¥(4) is BY*°-measurable and

by Lemma 5.39, ¢ is Baw’"l-measurable, so they are independent under .
We get

PoolA) = / / PL(A)r(dw)p(dz) = Py(A). .
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