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EXTINCTION OF CONTACT AND PERCOLATION PROCESSES
IN A RANDOM ENVIRONMENT!

By ABEL KLEIN

University of California

We consider the (inhomogeneous) percolation process on Z¢ x R defined
as follows:

Along each vertical line {x} x R we put cuts at times given by a Poisson
point process with intensity §(x), and between each pair of adjacent vertical
lines {x} x R and {y} x R we place bridges at times given by a Poisson point
process with intensity A(x,y). We say that (x, ¢) and (y, s) are connected (or
in the same cluster) if there is a path from (x, ) to (y, s) made out of uncut
segments of vertical lines and bridges.

If we consider only oriented percolation, we have the graphical represen-
tation of the (inhomogeneous) d-dimensional contact process.

We consider these percolation and contact processes in a random environ-
ment by taking 6 = {6(x); x € Z%} and A = {\(x,); %,y € Z%, |x—y||z = 1} to
be independent families of independent identically distributed strictly.posi-
tive random variables; we use § and X for representative random variables.

We prove extinction (i.e., no percolation) of these percolation and contact
processes, for almost every 6§ and A, if § and ) satisfy

E{(log1+1)”} <o and E{(log (1+%))ﬁ} < o0

for some
and if

is sufficiently small.

1. Introduction. We consider the inhomogeneous (continuous time) per-
colation process on Z¢ x R defined as follows:

Let 6 = {6(x) > 0; x € Z¢} and X = {\(x,y) > 0; (x,y) € B(Z%)}, where B(Z%)
denotes the collection of bonds (or edges) (x,y) in Z¢, that is, unoriented pairs
of sites x,y € Z? with ||x —y||s = 1. Along each vertical line {x} x R% we put
cuts at times given by a Poisson point process with intensity 6(x), and between
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1228 A. KLEIN

each pair of adjacent vertical lines {x} x R and {y} x R, (x,y) € B(Z%), we
place bridges at times given by a Poisson point process with intensity A(x, y).
All these Poisson processes are independent of each other.

Given a realization of all these Poisson processes (i.e., a locally finite collec-
tion of cuts and bridges), we consider the subset of R**! we obtain by taking
Z? x R, removing all cuts, and adding all bridges, and decompose it into con-
nected components. We call these connected components clusters. We say that
(x,2),(y,s) € Z% xR are connected if they belong to the same cluster; in this case
we write (x,t) < (y,s). Notice that this happens if and only if there is a path
from (x, t) to (y,s) made out of uncut segments of vertical lines and bridges.

More generally, if W ¢ R?*1 we can substitute W for R%*1 in the above
considerations. Thus (x, £) is connected to (y, s) in W, and we write (x, £) —w(y,s),
if the connection lies in W. Given subsets A and B of Z¢ x R, we say that A «wB
if there exist (x,#) € A and (y,s) € B such that (x,2) ow(y,s). f W = R%+! we
omit W.

Given an environment §, A, we will denote by Q = Qs ) the corresponding
percolation probability measure, that is, the probability measure on the space
of configurations (locally finite collections of cuts and bridges on Z¢ x R, which
are the realizations of the corresponding Poisson processes). The connectivity
function in the region W ¢ R**! is then defined by

Gy (@, 1),(5,9)) = Qs A {6, 8) ow(3,8)}.

We may omit 8, A from the notation. If A ¢ Z¢, I C Z, we will write Ga x1
for Gj 5, where A = A U {[x,y];x,y € A,||x — y|lz = 1}. We will also write
|Ce, )] = [|(x, )| oo = max{||x[loo, [£]}-

This inhomogeneous percolation process appears as the limit of the perco-
lation processes on Z¢ x Z/n studied by Campanino, Klein and Perez (1991).
The homogeneous version was independently studied by Bezuidenhout and
Grimmett (1991).

The technicalities of defining such a continuous-time percolation process
were treated by Bezuidenhout and Grimmett (1991) in the homogeneous case.
Their treatment applies to the inhomogeneous case. We will always consider
the configuration space with the Skorohod topology they introduced.

If we consider the oriented percolation process we obtain by keeping the cuts
as above, but replacing the bridges by one-way bridges, that is, each Poisson
process of bridges is replaced by two independent Poisson processes with inten-
sities A\1(x,y) > 0 and Az(x,y) > 0, the first giving one-way bridges from {x} x R
to {y} x R, and the second from {y} x R to {x} x R, and uncut segments can
only be traversed in the direction of increasing time, we obtain the graphical
representation of the inhomogeneous contact process [see Bezuidenhout and
Grimmett (1991) and Liggett (1985)].

Given the inhomogeneous contact process in the environment 8, A1, Ao, we
can consider the percolation process in the environment 8§, A\, where A\(x,y) =
A1, y) + Ao(x,y) (i.e., we make all bridges two-way bridges). Then clearly no
percolation (i.e., no infinite cluster) in the percolation process implies extinction
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(i.e., no infinite oriented cluster) in the contact process, and survival of the
contact process implies percolation in the percolation process. We will abuse
the language and use extinction and survival also for the percolation process.

We will consider these percolation and contact processes in a random envi-
ronment by taking § = {6(x); x € Z%} and X = {\(x,y); (x,y) € B(Z*)}(8, A1, Ao
for the contact process) to be independent families of independent identically
distributed strictly positive random variables. We will use P and E to denote the
probability measure and expectation associated with these random variables.
We will also use § and ) for representative random variables.

In a homogeneous environment, that is, 6(x) = § > 0, AMx,y) = A > 0, the
continuous-time percolation process always has a nontrivial phase diagram.
The relevant parameter is p = A/é. In any dimension d > 1 there exists p.(d),
with 0 < p.(d) < oo, such that if p < p.(d) there is no percolation and the
connectivity function decays exponentially, that is,

G((x,28),(y,8)) < Ce~mlE=2t=9,

for some m > 0, C < oo, and if p > p.(d) there is percolation [Bezuidenhout
and Grimmett (1991) and Campanino, Klein and Perez (1991)]. If d = 1, we
actually have p.(1) = 1 [Bezuidenhout and Grimmett (1991)]. There is also a
similar picture for the contact process [e.g., Liggett (1985) and Bezuidenhout
and Grimmett (1991)].

Life is not so simple in an inhomogeneous environment 6, X. Let

=—— min Ax,y),
0(x) y; Ilx—yll2=1 Y

1
—_— max
8(x) y; lx—ylla=1

It follows from the monotonicity properties of G((x, ¢), (v, s)) with respect to each
6(x) and A(x,y), that if sup, p(x) < p. we have exponential decay of the connec-
tivity function and no percolation, and if inf, p(x) > p. we have percolation.
The interesting nontrivial cases are those where the above conditions are not
satisfied, in particular, when we can find sites where p(x) < p. and sites where
p(x) > pc, so the system exhibits phenomena similar to Griffiths’ singularities
[Griffths (1969)]. This typically happens in random environments.

The one-dimensional (d = 1) contact process in a random environment was
studied by Liggett (1991, 1992), who gave conditions on the probability distribu-
tions of 6 and ) for extinction and survival. Another one-dimensional survival
result is due to Bramson, Durrett and Schonmann (1991). Andjel (1993) ex-
hibited examples of survival in two or more dimensions. Aizenman, Klein and
Newman (1993) found probability distributions under which the continuous-
time percolation process (any dimension) always survives.

Campanino, Klein and Perez (1991) (see their Theorem 4.1) gave the first
proof of extinction for the multidimensional continuous-time percolation pro-
cess in a random environment, thus also proving extinction for the multidi-
mensional contact process in a random environment. They also proved sur-
vival for the continuous-time percolation process in a random environment for

p(x)

plx) = A, y).
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d > 2. Aizenman, Klein and Newman (1993) gave a proof of survival in the
one-dimensional case.

Campanino, Klein and Perez studied the ground state behavior of a d-dimen-
sional Ising model with a transverse field in a random environment. They
rewrote the two-point correlation function as the limit of two-point functions of
(d + 1)-dimensional classical Ising models with d-dimensional disorder, which
were studied by Campanino and Klein (1991). Using the Fortuin—Kasteleyn
representation and comparison theorems, Campanino and Klein bounded these
two-point functions by the connectivity functions of the corresponding indepen-
dent percolation processes, for which they obtained estimates that proved ex-
tinction in a random environment. Campanino, Klein and Perez refined their
methods to obtain estimates uniform in the approximation step. Since these
discrete-time percolation processes converge weakly to the continuous-time per-
colation process, their results yield a proof of extinction for the latter.

A review of results on continuous-time percolation, contact processes and
related quantum spin systems in disordered environments is given in Klein
(1993).

In this article we extend the Campanino, Klein and Perez (1991) proof of
extinction to a larger class of probability distributions. We also perform the
proof directly in the continuous-time percolation process.

Our main result is given in Theorem 1.1. The above-mentioned results are
discussed in more detail in Remarks 1.3 to 1.9. The motivation and justification
behind our conditions for extinction [see (1.1) to (1.3) in Theorem 1.1] are given
in Remarks 1.5 to 1.8. A discussion of the proof of Theorem 1.1 is given after
the remarks.

THEOREM 1.1. Let d > 1 and consider the continuous-time percolation pro-
cess on Z¢ x R in a random environment 6, \. Let

9 [ 1 1
(1.1) 6 >2d (1+ 1+E+§E>

and suppose

(12) T =max {E{(log(l + )\))ﬁ},E{ <1og (1 ¥ %))ﬁ}} < 0.

Then there exists € = e(d, 3,T') > 0 such that we have no percolation for P-almost
every 6, \ if

1 of (v (143)) } <

Furthermore, there exists q(3,d) > 1 with the property that given q € (1,q(3,d))
and m > 0 we can find &(d,B3,T',m,q) > 0 such that if (1.3) holds with
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e =e(d,3,T',m,q), then for every x € Z® we have

(x—y, (10g (1+ it—s|))q>‘}

forally € Z¢ and t,s € R, where C, 5,1 < 0o for P-almost every 6, \.

14)  G(@D,(,9) < Cx,a,AeXP{‘m

COROLLARY 1.2. Let d > 1 and consider the d-dimensional contact process
in a random environment 6, A1, Xg. Let (3 satisfy (1.1)and 6, A satisfy (1.2), where
A = A1 + Ao. Then there exists € = e(d, 3,T') > 0 such that the contact process
becomes extinct for P-almost every 8, Ay, Xy if (1.3) holds.

REMARK 1.3. Theorem 1.1 was proved by Campanino, Klein and Perez
(1991) (see their Theorem 4.1) under the assumption

I' = max {E(%),E(e“’\)} < 00

for some x > 0. In this case they proved that given ¢ > 1 and m > 0 there exists
e=e(d,k,I',m,q) > 0 such that if

k
E <<%> ) < g,
then (1.4) holds with Cx’ 6.\ <0 for P-almost every 6, .
Campanino, Klein and Perez (1991) actually studied the independent perco-

lation process on Z¢ x Z/n with occupation probabilities

1—e 2Ve/ml if =g, |z —ylla =1,

_2K,
l1-e (x),

q&,y),(y,S) = ifx=y, [t—s|= hl"

0, otherwise,

where h = {h(x) > 0, x € Zd},J = J(x,y) > 0, (x,y) € B(Zd)} are given, and
exp[—2K,(x)] = tanh[h(x)/n] [they have J(x,y) = J, but their article is based
on the work of Campanino and Klein (1991), who study the same model with-
out the dependence on n, so their considerations apply also to inhomogeneous
{J(x,9)}]. Let Q™ = Qi:)J denote the corresponding percolation probability
measure, which can be considered as a probability measure on the space of
configurations of the continuous-time percolation process on Z¢ x R. The Qi{") J
converge weakly to Qs x, with 6(x) = h(x), Ax,y) = 2J(x,y) [the technicali-
ties of such convergence are discussed in Bezuidenhout and Grimmett (1991)].
Thus for appropriate events A we have Qﬁ:)J(A) — Qs A(A). Since the results
in Campanino, Klein and Perez (1991) hold uniformly in n for n large, their
results also hold for the continuous-time percolation process.
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REMARK 1.4. Another way of stating Theorem 1.1 is to introduce a coupling
constant v > 0, that is, to consider the random environment 6, y\. Then if (1.2)
holds for 8, A, there exists v; = v1(d, 3,T,m,q) such that (1.4) holds in the
random environment §,y if v < 7;. The results in Campanino, Klein and
Perez (1991) are stated this way.

REMARK 1.5. The scaling (§,\) — (v6,v\), v > 0, of the random environ-
ment corresponds to simply rescaling the time variable. (1.3) is clearly invariant
under such scaling, so I' can be replaced by

T = min max {E{(log(l +7)\))ﬁ},E{ <1og (1 + %))ﬁ} }

Notice that the minimum is attained at some 7 > 0. Notice also that

E { <log (1+ %))ﬁ} < 28+1T,

so I small enough suffices for extinction.

REMARK 1.6. Andjel (1993) gave counterexamples to the conclusions of
Theorem 1.1 and Corollary 1.2 when 3 < d, d > 2. He took § = 1 and X
to be a Bernoulli random variable and showed that the process may survive
although E{(log(1 + \))?} is as close to 0 as one wishes.

REMARK 1.7. Aizenman, Klein and Newman (1993) gave counterexamples
to the conclusions of Theorem 1.1 when 3 < d, which also hold if the theorem
is stated with a coupling constant as in Remark 1.4. For example, if A = 1 and

(1.5) udP{ log% > u} — 00, d>2,
or

u 1
@P{log—5—>u}—+oo, d=1,

they prove that the process always survives. Notice that (1.5) is ruled out by
(1.2)if 8 > d, but it is compatible with (1.2) if 8 < d.

REMARK 1.8. The natural conjecture that follows from the previous two
remarks is that Theorem 1.1 and Corollary 1.2 should hold if 3 > d. Schonmann
has given a heuristic argument to that effect.

REMARK 1.9. Companino, Klein and Perez (1991) showed that in any ran-
dom environment 8, v\, we always have survival for v large enough. If d = 1,
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Liggett (1992) proved survival of the contact process if \; and )\, are identically

distributed and
2
9 1
2E(6)E()\1) + (E(S ) <E (Z)) <1

Bramson, Durrett and Schonmann (1991) proved survival of the contact pro-
cess for \; = As = 1 and 6 having a Bernoulli distribution. Aizenman, Klein and
Newman (1993) proved survival for the one-dimensional continuous-time per-
colation process under the conditions of Theorem 1.1 with § and A interchanged.
They actually proved that summability of the connectivity function in the dual
process implies the existence of an infinite cluster in the original process. Since
the dual process is the same continuous-time percolation process but with A
and ¢ interchanged, survival then follows from Theorem 1.1.

REMARK 1.10. Jitomirskaya and Klein (1993) considered continuous-time
percolation and contact processes in a quasi-periodic environment and obtained
results similar to Theorem 1.1.

To prove Theorem 1.1, we optimize the Campanino, Klein and Perez proof.
The proofinvolves a multiscale analysis of the type used in the theory of random
Schrodinger operators by von Dreifus (1987), Spencer (1988) and von Dreifus
and Klein (1989). An exposition of the technique in the context of percolation
processes is given in Klein (1994).

The multiscale analysis is needed to control the Griffiths-type singularities
introduced by the random environment. To see that, let py = sup, . , p(x) and
6p = inf, ¢ A 8(x) for A ¢ Z2. It was shown by Campanino, Klein and Perez
(1991)—see their formula (3.11)—that for W = A x R we have

8dpa —osalt—s| { 8dPA i
(1.6) Gw((x,t),(y,S))§< i 9) y oo

forallx,y € A, t,s €c Rand any 0 < 6 < 1, as long as
1.7 8dpy <1-6.

Under the hypotheses of Theorem 1.1, (1.7) will be satisfied with high proba-
bility if A is a cube with side of a certain fixed length L, [depending only on the
parameters in (1.1) to (1.3)]. But if P{p(x) > p.} > 0, then, with probability 1
(with respect to P), for any length scale L we will always find infinitely many
cubes in Z¢ with sides of length L in which all p(x) > p.. If A is such a cube, the
system will try to form large clusters in A x R. Thus in almost all environments
we will find infinitely many regions of all sizes in which (1.7) does not hold and
the usual expansions [like the one used in Campanino, Klein and Perez (1991)
to get (1.6)] do not converge. A multiscale analysis is used to control the effect
of these singular regions. One must control not only the size and frequency of
singular regions but also the behavior of the system inside a singular region.
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The difficulty of the latter is enhanced in the case of the systems discussed
in this article, since our singular regions are cylinders infinitely extended in
the time direction. Moreover, in this situation the connectivity function cannot
have exponential decay in the time direction, since given any exponential rate
of decay we can find, with probability 1, regions inside which the connectivity
function exhibits a slower exponential rate of decay in the time direction than
the given rate, thus the slower than exponential decay in the time direction
in (1.4).

In the remainder of this article, we will restrict ourselves to a continuous-
time percolation process in a random environment §, A. In the next section we
introduce the basic tools we will need for our expansions: the Harris—FKG, van
den Berg—Kesten and Hammersley—Simon—Lieb inequalities. We also give a
proof of no percolation and decay for homogeneous continuous-time percolation
processes (see Proposition 2.1 and Corollary 2.2), which will serve as a prototype
for our proof of Theorem 1.1. In Section 3 we state (and explain) the result of our
multiscale analysis (Theorem 3.2) and show how Theorem 1.1 can be derived
from it (see Theorem 3.3 and the following discussion). We complete the proof
of Theorem 1.1 by proving Theorem 3.2 in Section 4.

2. Inequalities. Configurations in the continuous-time percolation pro-
cess are locally finite collections of cuts and bridges on Z¢ x R. In this picture
we think of Z¢ x R as a collection of vertical lines in R?*! indexed by points
in Z%; a configuration is a collection of cuts (points) on these vertical lines and
bridges (horizontal line segments) connecting nearest neighbor vertical lines,
such that any bounded subset of R?*! contains a finite number of cuts and
bridges. We will denote by ) the space of configurations, equipped with the
Skorohod topology.

The space Q has a natural partial order: if w,w’ € Q, we have w < w’
if w’ contains all bridges in w and w contains all cuts in w’. Functions on Q
which are nondecreasing (nonincreasing) with respect to this partial order are
called positive (negative); events are positive (negative) if their characteristic
functions are positive (negative).

An event will be called local if it is determined by configurations inside a
bounded region of R%+1,

Let us fix an environment §, \. We will use several inequalities.

The Harris-FKG inequality. Let A and B be local positive (negative)
events, with Q(0A) = Q(0B) = 0. Then

2.1 Q(ANB) > Q(A)QB).

The van den Berg-Kesten (BK) inequality. Let A be an event, W C
R%+1, We set

Alw={wed;, w ecAifu' nW=wnW}.
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If A and B are events, we let A o B be the event of A and B occurring disjointly,
thatis,A o B = {w € A N B; there exist W1,Wy C R**1 W, N Wy = @, with w €
Alw, N Blw,}. The van den Berg—Kesten (BK) inequality says that if both A and
B are local positive (negative) events, with

Q(0A) = Q(0B) = Q(B(A OB)) =0,
then

(2.2) Q(A 0 B) < Q(A)Q(B).

Both the Harris—FKG and BK inequalities are well known for the discrete-
time percolation processes studied by Campanino, Klein and Perez (1991) [see
the discussion and references in Campanino and Klein (1991)]. By the weak
convergence of the probability measures, the inequalities hold as stated for the
continuous-time percolation process [see the discussion in Bezuidenhout and
Grimmett (1991)]. We also have the Harris—FKG and BK inequalities if A and
B are finite intersections of events of the form {U —~w V}, where U and V
are closed subsets of Z¢ x R, and W is a closed subset of R?*!, or if they are
complements of such events [Bezuidenhout and Grimmett (1991)].

The Hammersley-Simon-Lieb (HSL) inequality. Let A,A’ C Z¢, 1,1’
closed intervals in R, W= A x I, W = A’ x I' Gf W' = Z¢ x R it will be omitted
from the notation). We set

(W, W) = An A x ((00\D) n1),
A A = {(,) € (ZOP%x e AnN,y € M\A, |lx —y2 =1},
By (W, W) = (A, A') x I NI,
(W, W') = 05(W, W) U ({x € Z% (x,5) € (A, A") for some y} x (I 1),

& (W, W) = 05(W, W)U ({y € Z% (x,9) € (A, A") for some y} x (I no).
The form of the HSL inequality we will use says that

Gw(X, )< > Gwaw(X,2)Gw(Z,Y)
(2.3) Z € 9g(W,W')

+ Y. A& | Gwaw (X, (60)Gw(E,0),Y)dt
(2,2/) € DA, AY) Inr
forallX e WNW. Y ¢ W\W.

This inequality can be obtained either directly from the BK inequality or
from the similar inequality for the approximating discrete-time percolation
processes stated by Campanino, Klein and Perez (1991).

We will actually use the following consequence of (2.3): if X € W, let

GwX,0= Y GwX2+ 3 )\(z,z’)/Gw(X,(z,t))dt.
Z e ogW (z,2') € B(A, Z9) I
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Since Gw(Z,Y) is continuous in Z and I NI’ is closed, it follows from (2.3) that
ifxe WNW Y e W\W, we have

(2.4) Gw/(X,Y) < Gw(X,0)Gw:(Z1,Y)

for some Z; € (W, W').

We will refer to (2.4) as the HSL inequality.

The HSL inequality gives global decay out of local decay. This can be seen as
follows:

For L > 0, x € Z%, let

AL@) = {y € Z% ||x - ¥llo <L}
ForX=@t)eZ¢xR,L>0,T>0,let
By r(X)=Ar(x)x [t =T,t+T].
PROPOSITION 2.1. Suppose there exist L >0, T > 0and m > quch that
(2.5) G, +x,0(,0),0) <e™™

for all x € Z*. Then

2.6) G«&ﬁA%sDSem{—m(mm%wzlqm’ﬂ;ﬂ}_l>}

for all (x,t),(y,s) € Z¢ x R.

ProOF. By the stationarity in the ¢-direction of the percolation probabili-
ties, we have

(27) GBL,T(X)(X’ 8) S e"'"

for all X € Z¢ x R.
Let us fix X = (x,2). If Y ¢ By, 7(X), it follows from (2.4) and (2.7) that

G(X,Y) <e ™G(Z,,Y)

for some Z; € 6°Br, r(X).
This procedure can be performed n times, yielding points Zy = X3,...,Z,,
WlchJ (S WBL,T(Zj_l), ] =1,...,n, and

G(X,Y) <e"G(Z,,Y),
aslong asY ¢ By, r(Z)) forj=0,1,...,n — 1. But this is always true as long as
b=l o1},

”<m“{ L+l ' T
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Since G(Z,,Y) < 1 and n is a positive integer, we obtain (2.6). O

Proposition 2.1 gives a one-scale proof of exponential decay of the connectiv-
ity function and no percolation for homogeneous continuous-time percolation
processes, as follows:

COROLLARY 2.2. Let us consider the homogeneous continuous-time perco-
lation process on Z¢ x R [i.e., §(x) = 6, Mx,y) = ). There is no percolation

if

A 1
Furthermore, in this case there exist m = m(p,8) > 0 and C = C(p, §) > oo, such
that

(2.9) G((x,8),(y,s)) < Cexp{ —m|(x —y,t —s)|}
for all (x,t),(y,s) € Z¢ x R.

ProOOF. By the definition of a homogeneous continuous-time percolation
process, we have

(2.10) G3, 16,0 ((x,0),8) < 2e™ 27T + QAIART) = 2(e™ % +dpt),

where ¢ = 267'.
Given p < 1/(2d), a bit of calculus shows that we can choose £ = £(p) > 0
such that

2(e™% +dp€) < 1,
so the corollary follows immediately from Proposition 2.1. O

Corollary 2.2 has a straightforward extension to an inhomogeneous contin-
uous-time percolation process.

COROLLARY 2.3. Let us consider the continuous-time percolation process on
Z¢ x R in an inhomogeneous environment 8, \. Suppose

(2.11) Age = sup Mx,y) < oo and bz = iI;lf(S(x) > 0.
(x,5)
Then there is no percolation if
Agd 1
(2.12) g < é-g

Fd;'thermore, in this case there exist m = m(\gd, 6z4) > 0 and C = C(\ge, bz4) <
00, such that

2.13) G((x, 1), (3,9) < Cexp{—m|x —y,¢— 5]}
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for all (x,t),(y,s) € Z¢ x R.

REMARK 2.4. Notice that if follows from (1.6) that Corollary 2.3 is still valid
with (2.11) and (2.12) replaced by pz: < 1/(8d) and 6z« > 0.

3. The multiscale analysis. Theorem 1.1 is the extension of Corollary
2.3 to a random environment, with conditions (1.1) and (1.2) replacing (2.11)
and (1.3) replacing (2.12). Unfortunately, the proof of Theorem 1.1 is not a
straightforward extension of the proof of Corollary 2.3. Conditions (1.1) to (1.3),
or similar probabilistic conditions, imply conditions similar to (2.11) and (2.12)
inside cubes with side of a certain fixed length Lg, but only with high probability.
In other words, given such an initial scale Ly and the parameters 8 and I in
(1.1) and (1.2), we can pick ¢ in (1.3) to obtain conditions similar to (2.11) and
(2.12) and decay as in (2.13), with the desired probability, only inside cubes with
side of length L. To go to higher scales, we use a multiscale analysis. We will
introduce an increasing sequence of length scales. We will characterize sites in
Z? as regular or singular in a given scale, in such a way that the process will
have the desired decay properties inside boxes with side given by the length
scale and centered at regular (in that scale) sites. The next step is to show, by
induction on the scale index, that if the probability of a site to be regular in a
given scale is good enough (for that scale, in a sense to be made precise), then
the probability of a site to be regular in the next scale is also good enough. This
induction step is the crux of the argument; a site which is regular in a given
scale is surrounded by sites which are mostly regular in the previous scale, but
there will be some nearby sites that are singular in the previous scale. We will
show that under hypotheses (1.1) and (1.2), the probability that the divergences
introduced by the singular sites are not too bad and can be controlled by the
decay we get from the surrounding regular sites is good enough for the given
scale. Finally, we use an argument based on the Borel-Cantelli lemma to derive
Theorem 1.1 from the multiscale analysis.

We start with some definitions. We fix v such that 0 < v < 1 and set

Br(X) =By, v (X)
foranyX € Z¢ xR, L > 0.
DEFINITION. Letm > 0, L > 1. A site x € Z¢ is said to be (m, L)-regular if
G, (, 00 ((,0),8) <e™ ™.

Otherwise we call x (m, L)-singular. A set A C Z¢ is (m, L)-regular if every x € A
is (m, L)-regular; otherwise it is (m, L)-singular. '

.We have the following modification of Proposition 2.1, which is proved in the
same way.

LeEMMA 3.1. Let A be a (m,L)-regular region, W C A x R. Then, if (x,t),(y,s)
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(j.i—;—{,u—we—”)i _1)}.

Our multiscale analysis will proceed in the following way: given increésing
length scales Ly, £ =0,1,2,..., adecay rate my > 0 and p > d, we will assume
(and prove later) tht we can arrange the parameters in (1.1) to (1.3) so that

€ W, we have

(3.1) Gw((x,1),(y,s)) < exp{—mL(

P{0is (mo,Lo)-regular} > 1 — Li{)"

We will then show, by induction on %, that this probabilistic estimate holds in
all scales, but with a slightly smaller m. Of course, the length scales must be
appropriately defined, the original parameters must satisfy certain relations
and we will need to pick our initial scale L, sufficiently large [so € in (1.3) will
have to be sufficiently small]. The main (and precise) result of the multiscale
analysis is given by the following theorem.

THEOREM 3.2. Let d > 1 and consider the continuous-time percolation pro-
cess on Z° x R in the random environment 6, \. Let

214,142+ L
(3.2) B >2d <1+ 1+d+2d)’

and suppose (1.2) holds. Set
a=d+Vd?+d,

and choose v and p such that

adla+B+1)
Bla—d+ad) "

p< ﬂ(u(a—d+a;i)—ad)——ad.

<1,
(3.3)

ad <

Let my and m, be given, with 0 < my, < mq. There exists L=L4d,B,T,v,p,mo,
M) < 00 such that, if for some Ly > L we have

(3.4) P{0is (mg,Lo)-regular} > 1 - 2—%,
then, setting Ly, .1 = (L)%, k = 0;'1, ..., we also have
1

(8.5) P{0is (Mmoo, Ly)-regular} > 1 — L—z
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forallk=0,1,2,....

Notice that (3.3) can be satisfied because of (3.2). Indeed, let

0d(@ +1)
0-d

It is easy to see that f(f) attains its minimum at § = o = d + Vd2 +d, and
f(@) = 2d?(1+ 1/1+1/d + 1/(2d)). Thus (3.2) just says that 8 > f(«), and (3.3)
says that we picked 0 < v < 1 and p > od such that

) = for 6 > d.

alp +d) _ alp +d)
oav—dla(l—v)+v)  vla—-d+ad)—oad’

6>

Theorem 3.2 will be proven in Section 4. Its importance is justified by the
following theorem, which is some sort of extension of Proposition 2.1 to a random
environment.

THEOREM 3.3. Let d > 1 and consider the continuous-time percolation pro-
cess on Z% x R in the random environment 8, \. Let V,Qa,p, Moo, Lg be such that
0<v<la>1lp>oadme>0,Lo>1SetL,,=Lgk=012,....
Suppose

(3.6) P{0 is (meo, Ly)-regular} > 1 — Lii

forallk =0,1,2,.... Then, for any m such that 0 < m < mq,, we have that for

every x € 22,
<x —y, (1og(1+ |t—s|))1/u>‘}

forally € Z¢ and t,s € R, with Cy = C(6, \,m) < oo for P-almost every 6§, \.

G((x,1),(y,s)) < C, exp{ -m

Proor. The proof of Theorem 3.3 is the same as the proof of Corollary 3.2
in Campanino and Klein (1991). We will sketch the proof for completeness.
Let b > 2 (to be chosen later) and let us fix x € Z%. We have from (3.6) that

d d
P{Asr,,,(x) is not a (mq, Ly)-regular region} < (2bll_:2+ v = L(flj)a =
k

Since p > od the above probabilities are summable. We can now use the
Borel-Cantelli lemma to conclude that, with probability 1, we can find %k =
ki(x,b,8,\) < oo, such that Ayy, ,(x) is a (Mmoo, Lg)-regular region for all & > k;.

LetY = (y,s) € Z¢ x R. Except for a bounded set of Y’s we can always choose
k > kq, such that

bL;, <

(x -9, (log (1+ |s|))1/y>' < bLp,q.
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In this case y € Ayr,,,(x), which is a (mo, L )-regular region. It now follows as
in Lemma 3.1 that

G((x,0),Y) < e~ moolun

with n a positive integer such that

) bl % =3lloo | L
< —_— —— .
n_mln{Lk+1,max T+l ,|sle ™"

If ||lx — ¥|loo > (log(1 +|s|)/*, we take n such that

[l — ¥lloo ll — lloo
LEEL LN o P A L
L,+1 == Lpy+1 1

If not, we must have

1/v
bL;, < (1og(1+ |s|)) ,
SO

LY 5 0" - DL _ oLi > bLk+1 o [l —¥llo

[sle STa+l° I+l

for k sufficiently large. In this case we take

-1

1/v
bLy .1 bL; .1 (10g(1+ Isl))
>n> -1>
Lk+1 Lk+1 Lk+1

1/v
(L)
< exp{—moo (I% - %) <x - <log (1+ |s|))1/u)

oo

if b is taken large enough and % is large enough. O

Thus we get

G((x,0),Y) < exp{—mooL;e <

}

< exp{ -m

Theorem 1.1 follows from Théorems 3:2 and 3.3. To see that, it suffices to
prove that, given (1.1) and (1.2), v, p satisfying (3.3) and m, > 0, there exists
e =e(d,B,T,mg,v,p) > 0 such that if (1.3) holds then (3.4) is satisfied for some
L, sufficiently large. "
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But this follows from (1.6): We always have
GB,0,0)(X,Y) < Gay0xr(X,Y).

Let PL = PAL0)s o = 6AL(0), AL = max, e a(AL(0), Z9) Mz, z n. If SdpL <1, we ple
6§ such that 8dp;, < 1 — 6. It follows that

GBL((O, 0) ((0, 0), 8) <1- SdpL)_l(SdpL)L - chd - 12eL" AL

3.7 -1 5
+ 2(1 - 8dpL> 0% (2L)?,

1-46

where ¢ = ¢(d) is a constant such that |9(AL(0), Z%)| < cL¢~ 1.
Suppose

(3.8) 8dpy < e 2mo,
(3.9) 6 >e L2
(3.10) A < el

and take 6 = (1 — e~2™)/2. Then (3.7) gives
Gg,(0,00((0,0),8) < 2ce?mo (1- e‘z'"")_lLd_ 1g—2moL +2L"
+ 2411 — e 2m0) T (14 7 2m0) L4

1 —zmo v
X exp{_( +e2 )eL /2} Se_moL

for all L sufficiently large.
Using Chebyshev’s inequality, we get

P{5L < e—L"/Z} < (2L)dP{6 < e_Lu/z}
(3.11) = (2L)dp{10g(1 + %) > log(1 +eLU/2)}
1 B
< 2d+ﬁLd—6uE<<log<1 + 3)> ) ,
P{’\L ZeL"} < ch_IP{,\ > eLu}
(3.12) < oL~ P{log(1+X) > Tog(1+¢¥") }

<eLd=1~7E((log1+)”),
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—2m
P{8dp, > e™™} < (%)"‘P{p >3 }

)\ e—2m0
< d >l
_(2L)2dP{52 Sd}

(3.13) \ -2
= (2d)(2L)dP{log<1 + 5) > log(l * 53 )}

< i+l (log(l ; e;g")) _ﬂLdE{ <log<1 " %))ﬂ}

To finish the proof, we need only to show that, given (1.1), (1.2), v, p satisfying by
(3.3)and m, > 0, then for all L sufficiently large there exists e(d, 3,T, mq, v, L, p)
> 0, such that if (1.3) holds with ¢ = &(d, 8,T, mg, v, L, p) > 0 we have

(3.14) P{(3.8),(3.9) and (3.10) hold} > 1 — %.

Since p + d < Bv by (3.3), (3.14) follows from (3.11), (3.12) and (3.13) if L is
sufficiently large and E{(log(1 + 1/6))?} is sufficiently small. O

4. The proof of Theorem 3.2. The proof of Theorem 3.2 proceeds by in-
duction in k. The case k£ = 0 is just the hypothesis (3.5). The induction step is
given by the following lemma:

LEMMA 4.1. Letd,S,T', o, v,p be as in Theorem 3.2, set 6y = min{o(1 — 1), 1}
and pick mg and 8 with my > 0 and 0 < 6 < 8y. There exist l; = 1;(d,3,T,v,p,0)
< o0 and a = ald, B,v,mqg) > 0, such that for any | and m with I > l1 and my
>m>1/1%if

P{0is (m,])-regular} > 1 — liP’
then we also have
P{0is (M,L)-regular} >1— 1%5’

with L = 1% and

PrOOF. Since ad < p, we can pick a positive intéger R such that

(R+1)p
p+R+1)d’

Two boxes Ay, (x1), Az, (x2) will be called nonoverlapping iffor ally; € Ay, (x1),y2
€ Ay, (xg) wehave || y1—ysl2 > 1. We will say that x;,xo € Z% arel-nonoverlapping
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if A;(x1) and A;(xy) are nonoverlapping. Notice that if ||x; — x|l > 2{ + 1, then
x1 and x5 are [-nonoverlapping.

If x; and x5 are [-nonoverlapping, the events {x; is (m,l)-regular}, i = 1,2,
are independent. It follows that

P{there exist x1,...,%g+1 € Ar(0)l-nonoverlapping which are (m, I)-singular}
(2 L)d(R +1) 1
S Tp®vD - < 3Lp

for [ sufficiently large by our choice of R. Thus

P{there exist x, ..., xg € AL(0) such that Az(0)\ UR ) Agr41(x))

4.1) 1
i - jon} >1— —.
is a (m,l)-regular region} > 1 2L 7

We can thus restrict ourselves to the case when the event described in (4.1)

occurs.
We want to estimate Gg,()(0,Y) for Y € B (0). There are two distinct cases,

Y € 0gBr(0) or Y € 8yBr(0), where
8uBL(0) = AL(0) x { — e, ™"},
ByBL(0) = AAL(0) x [ — e~ "],
SUBLEMMA 4.2. Suppose the event described in (4.1) occurs. Then there exist

Iy = lo(d,mo, v, R,0) < 00 and a; = a1(d,v,mq,R) > 0 such that for | > Iy we
have

Gp,0(0,Y) < e~ ML

for all Y € 8yBr(0) with

aj 1
Ml:m_ﬁToZF'

Proor. Wecanfindyy,...,yr € Ar(0),withR' <R, nq,...,ng € {1,2,...,
R} with ny + ng + -+ + ny < R, such that the Agnq+n(y), i = 1,..., R/, are
nonoverlapping, and Uﬁ 1Agri1(xy) C Uf; 1Aona+ (3. It follows that A’ =
AL(O\ UE | Agnq+1)(y;) is a (m, D)-regular region.

We set

B = B(0), - B; = Bou s 1y,e ((3:,0),

R/
&B;=0°B;,B), i=1,...,R', B'=B\|JB:
i=1
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If0 € B’, we set 9°By = {0}; otherwise 0 € B;, for some i’ and we set 3B, = °B;.
Similarly, ify € B’, *Bgr .1 = {Y}; otherwise 6°Bg .1 = &B;~ for some i” with

Y € B;».
We have
RI
{0-pY} = U {6°By —p 6°B;}
r=0 {iy,....,ix} C{1,...,R'}
o {8eBi1 —p/ 8eBi2} o--+0 {BeBi,_ —p 8eBR,+1}.
By Lemma 3.1,

d-— Lo
Q(&B;, —p B} < (c(2RU+1)) 1zeL”)Zexp{—mz (ll.)—fi—fll = 1) }

where D, ;, = min{||x; — %2|lc0; (xz,%) € 3°Bj, for some ¢,k = 1,2}.
It thus follows from (4.2) and the BK inequality that

_ A\ 2(R+1)
G5(0,Y) < RI(c(2RA + D) '2e)

x exp{—mL <L —1-4RG+1) R+ 1))} <e ML

I+1
where
;o c1imy Co
Ml_m_ Ji _la(l—u)

for some fixed constants ¢y, cs > 0 depending only on d, v and R.
Thus we have

aj 1
Mile:m_lTtoa

for [ sufficiently large, with

a; =a1(d,v,mg,R) > 0. m]

We must now estimate G, ()(0,Y) for Y € 9yBr(0). Here we must control the
behavior of the process inside the singular regions. This will be done under the
occurrence of events that again we will show to have the desired probability.

Notice that it follows from (3.3) that

1<a(1—u)+u<%.

SUBLEMMA 4.3. Suppose the event described in (4.1) occurs. Let , b, v and
T be such that

a(l—u)+1/</$<é<ay 0<y<b-—krd, v<7<k—all-v),

d > d’
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let

R
< U A=t ) N AL(0),

and suppose

(4.2) Z Ax,y) — Z log( — exp(—6(x)e " )) <1b.

(x,y) CA x€A
Then there exists lo = I(d,mq, v, 3,0,k,b,T) < 00, such that for I > ly we have
Gp,0(0,Y) < exp{—Mae' /%}
for all Y € dyBr(0), with My =m —e~"/6 > 1/L°.

Proor. WetakeY = (y,el”), y € A;(0), thecaseY = (y, —el”) being similar.
Let N = [¢£" "], where [a] denotes the largest integer less than or equal to
a. Notice 7 < av. We set

Sj:BL’e[T/2<<0,(j—%)el‘r)), j= 1,2,.,.,N.

Events in different S;’s are independent.

The main difficulty in the proof is how to control the percolation inside the
cylinders based on singular regions. To do so, given s € R, we introduce the
event D, based on

H,=A x [s — %e‘l S+ ;e_l ]
given by

D, = {there are no bridges in H; and for each x € A the line segment

{x} x [s — 2e7"",s + le7""] has at least one cut}.

Clearly,
D, C {Ax{s——el}HHAx{s+ “l}}

and

Q<D3>=exp{— > A(x,y>e-”}H(l—e‘“”‘f‘”)zrl”

(x,y) CA

by (4.2).
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We will write By = A x [—eL” L] for any A C Z¢. Let

R
A= ( U A2l+1(xj)) NAL(0)

j=1
and let
c

Fy = {9 (B4, BL®) NS} 5,8, Ba,ona NS}

that is, F is the event that there is no connection inside S;\B; from the exterior
boundary of B to By, oy 4- Since S;\B; C By and A’ is a (m, [)-regular region,
it follows from Lemma 3.1 that

-1, NE 15— (2l+2
QFy) < [(c(2(2l+2))d Ll )(c(zzﬂ)d — 1Lt )] exp{—ml<_%_2 _ 1)}

—cgl™— a(l —v)
)

k=0
Se—c:;l Se

for some c3 = c3(d, 7, %,R,0) > 0 and [ sufficiently large, since m > 1/1° 4 <
a(l-—v)and 7 < k — a(l —v).
We now set

Aj=IrjﬂD(j_1/2)el"', j=1,2,...,N.

Since both Fj and D; _ 1 /9.~ are local negative events, the Harris-FKG inequal-
ity gives

Q(A) > QENQD_1jpe) > (1—e "7l > o= 2

for [ sufficiently large.
LetA = Uf": 1Aj; since the A;’s are independent identically distributed events,
we have

sl b
QA% = H (1-Q4)) =(1- Q(Al))N <A —e TW <oV

J=1

But N = [e!""~1"] > €!""/2 for [ large. Since b < av, we conclude

(4.3) Q(Ac) < exp{ _el‘“’/2—2lb} < exp{ _ el"‘u/4}
for [ sufficiently large.

We have
(4.4) Gg,00(0,Y) < Q{{0 «p,00) Y} NA} + Q(A®).

By the definition of the event A, we have
{0 “B;(0) Y} NA C C,
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where C is the event that there exists a connection in B Aro\A Of vertical length
greater than or equal to e/, so

Cc U {(ylvsl) BALO\A (yz,sz)},

the union being taken over all (y,,s;), (y9,s2) € BAL(O)\A with |s; —sg| > €.
Again, applying Lemma 3.1, we get

Q0) < C((ZL)d2eLV)2exp{—ml(elT P -1}

(4.5)
< e’T/Zexp{—(m _ e—l’/3)}

for [ sufficiently large.
Inequalities (4.3)-(4.5) give us

GB,(0)(0,Y) < exp{ —M,e® /8,

with My = m — e~V"/6 for [ sufficiently large.

We can now complete the proof of Lemma 4.1, modulo an estimate on the
probability of the event described by (4.2). Let us assume the events described
in (4.1) and (4.2) occur. Let us also assume the event \; < eL”. We have, by
Sublemmas 4.2 and 4.3,

Gp,(0)(0,0) < cL?~12el" e~ MiLgL” 2(2L)dexp{ - MzelT/S} <e ML
with
a 1

M=m-1 217

for some a = c¢(d,v,m, R, 3,6) > 0, if | is sufficiently large.
By (3.12) we have
1

4Lr
for [ sufficiently large. Thus it only remains to show that

1
P{(4.2) holds} > 1 - =

P{/\LZCLV} <

for [ sufficiently large.
Let

@=e Y Apy)- Y leg(1-e ),

(9,9") CAi(x) ¥ € Ajs(x)

It suffices to show

b
(4.6) P{((x) <L forallxe AL(O)} >1- %
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We have

b v b
P{C(x)>2dR}§P{e mooy A(yy)>4dR}

(9,9") T A= (x)

, . .
+ PO )y log(l—e“s(y)e_l)>ﬁ}.

y € Nr(x)

(4.7)

So we will estimate both terms in (4.7). We start with the second:

Y b

Y E AR

i R Jb —rd
<(@ )dP{—IOg(l—e ) > 2d+1dR}

. lb—nd
= 2dlndP{5 < —é log<1 — exp{ ~ 5T igR }) }
dyrd 1b-~d
< 2¢9[%Pp <28Xp m}

(4.8) b—rd
< Zdl"dP{é < exp }}

2d+2dR

dyrd 1o

= 2¢[xiPp log + = >>log 1+exP{2d+2dR}
d7rd 1o~
< 20[%p log( + ) 53730

< 241"d]-F"g <<log< )) )

for I sufficiently large, since 0 < v < b — xd.
For the first term in (4.7), we have

I ’ /& n,dP 14 lb—nd

(9,9") CAr(x) ,
< 24P\ > '/?}

(4.9)

< 2dl'°dP{ log(1 + \) > %l"}

< 22+ (log1 + V) )
for I sufficiently large. It follows from (4.7) to (4.9) and (1.2) that

lb 2d+6+11-
2dR} < v

(4.10) P{C(x) >
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for [ sufficiently large.
For a number ¢ let (t) = largest integer less than ¢. Let £ = ((I*)Z¢) N AL(0).
We have

AL C | M)
el

and

d
L] < <:§_f‘) = gjle—rd

From (4.10) we have

wn ‘ . I gd . gd+f+1p
11) P{there exists x € L for which {(x) > 2dR} <~y —ad
For x € A(0), let

Ly={y€L; ANex) N Ap()# D}

Notice that |L,| < 2d.
Clearly,
(@< D .

yEL:

Thus it follows from (4.11) that

. . lb 3d . 2d+ﬁ+11-\ 1
P{there exists x € Az(0) for which ((x) > 1—2} < o= ad < a7

for I sufficiently large since 8y > a(p +d).
This completes the proof of Lemma 4.1. O

We can now complete the proof of Theorem 3.2. Given mq > 0, if L is suffi-
ciently large we can apply Lemma 4.1 to conclude that

1
P{0is (my,Ly)-regular} > 1 — I_'i
forallk=0,1,2,...,withm,; > m,; —a/LZ°. It thus suffices to show m; > mq,
forallk=0,1,2,....
But
k-1 4
mp>my—a Z ﬁ'
] Jj=0"J
Thus it suffices to choose L sufficiently large so that

— 1 1
azm=aZW‘<mo—mm. 0O
Jj=0"J J=0"j
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