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ON THE CRITICAL BEHAVIOR OF THE CONTACT PROCESS
IN DETERMINISTIC INHOMOGENEOUS ENVIRONMENTS
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We consider the contact process with inhomogeneous deterministic death
rates. We prove the following:

1. Such models may have discontinuous transitions, in the sense of surviv-
ing at the critical point.

2. Ifthe death rates are identically 1, except on a set which is small enough
in a proper sense and where the death rates take a fixed value smaller
than 1, then the critical point is identical to that of the homogeneous
system.

Extensions of the results to other (d + 1)-dimensional systems with
d-dimensional deterministic inhomogeneities are also discussed.

1. Introduction. Inthis paper we are concerned with the critical behavior
of the contact process (and related models) in inhomogeneous deterministic
environments. The problems that we treat are basically of two kinds:

1. Can the nature of the phase transition change from continuous (for the
homogeneous system) to discontinuous (for an inhomogeneous system)?
2. How is the value of the critical point affected by the inhomogeneities?

To describe our results on these problems, we first have to recall the definition
of the contact process (with inhomogeneous death rates). It is a continuous-time
Markov process on the state space {0, l}Zd, whose evolution is governed by the
following rules. A 1 at site x € Z¢ flips to 0 at rate §(x) > 0; we call §(x) the
death rate at x. A 0 at site x flips to 1 at rate Ax (number of nearest neighbors
of x which are in state 1). Here the “nearest neighbors of x” are the sites in
{y € Z%: ||y —x||; = 1}, where || - ||, is the /;-norm on Z¢. We call the parameter
X > 0 the infection rate. This description specifies a unique process; for a proof
of this fact and the basic properties of the contact process recalled below, the
reader is invited to consult Chapters 3 and 6 in Liggett (1985) and Chapter 4
in Durrett (1988). At the beginning of Section 3, we will recall the graphical
construction of this model. The case in which 6(x) = 1 for all x will be called the
homogeneous case.

From monotonicity considerations it follows that when started from the con-
figuration identically 1, the process converges in distribution to an invariant
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INHOMOGENEOUS CONTACT PROCESSES 1141

measure which will be denoted by v. This measure is called the upper invariant
measure (it dominates the other invariant measures in a certain sense). The
configuration identically 0 is a trap for this process and hence the delta measure
concentrated on it, §y, is invariant. Monotonicity arguments also imply that if
v = &, for certain values of {6(x):x € Z?¢} and ), then the process is ergodic in
the sense that §; is the only invariant measure, and from any initial configu-
ration the process converges to it. Furthermore, once the process is ergodic for
particular death and infection rates, it is also ergodic for the same {6(x)} and
any smaller A. On the other hand, the process is clearly nonergodic if v # §,. We
say that the process survives if it is nonergodic, and we say that it dies out if it
is ergodic. These remarks lead to the definition of the critical point

X = inf{\ > 0:6p#v}.

Itis obvious that A, is a function of the death rate. In the homogeneous case, it is
known that 0 < A\, < oo in every dimension d. Let (¢}, ¢ > 0) denote the contact
process started from the configuration 7. For a given x € Z%, let x* denote the
configuration which is 1 at x and 0 elsewhere. Define

pa(x) = P(for every ¢, there exists a y such that & (y) = 1),

the probability that the configuration is never identically 0. Self-duality
implies that

pA@) = v{n: n(x) =1}.

It is clear that either p,(-) is identically O or else it is nonzero for every
x. Therefore

Ac =inf{X > 0:px(0)#0}.

In a fundamental paper, Bezuidenhout and Grimmett (1990) proved that in the
homogeneous case,

0x.(0) =0 in any dimension,

which is equivalent to the assertion that v = §y at A\ = A\.. So the critical homo-
geneous contact process dies out and the “order parameter” p,(0) is continuous
at ..

The first question we address is whether inhomogeneities can make the tran-
sition discontinuous.

THEOREM 1.1. There are inhomogeneous contact processes which have dis-
continuous transitions, that is, py,(0) > 0.

REMARK. In each of our examples, the critical point of the inhomogeneous
contact process is equal to the critical point of the homogeneous contact process.
We chose examples with this feature because they are easier to handle at the
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critical point. There are examples in which the critical point is smaller than
that of the homogeneous system and for which the transition is discontinuous,
but they are considerably more complicated.

We now give two explicit examples of inhomogeneous contact processes which
exhibit discontinuous phase transitions.

ExaMPLE A. The inhomogeneous contact process in d = 1 with

i
2 . o .
eV, ifx= E J2 for some i,
Jj=1
1, otherwise.

6(x) =

PROPOSITION 1.2. The process in Example A has the same critical point as
the homogeneous contact process, but has a discontinuous phase transition.

This example is one for which we can prove such behavior in ‘the simplest
possible way. The reader may nevertheless wonder if the sequence of §(x) going
to 0 very fast in this example is crucial for such a behavior. The next example
and proposition show that this is not the case.

ExAMPLE B. The inhomogeneous contact process in d = 1 with

5(x) = b, ifxisin an interval [A;, B;] for some i,
= 1, otherwise,

where b is a fixed number in (0, 1), and the sequences A; and B; are defined
by A1 = 0,

Bi =Ai+i2 and Ai+1 =Bi+(i+ 1)3

ProprosITION 1.3. The process in Example B has the same critical point as
the homogeneous contact process, but has a discontinuous phase transition.

In higher dimensions one can also have the same phenomenon, but since the
examples are more cumbersome and less explicit, we will omit them.

The above results raise the question of how to characterize the environ-
ments {6(x), x € Z%} for which the transition is discontinuous. In other words,
can we find necessary and sufficient conditions for this behavior? Unfortu-
nately, this seems to be a very difficult question. For instance, consider the
following example.

ExAMPLE C. The inhomogeneous contact process in dimension d with 6(0) =
b < 1andé(x)=1forx+#0.
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The following result is not hard to show (see Lemma 4.1).

PROPOSITION 1.4. The process in Example C has the same critical point as
the homogeneous contact process.

OPEN PROBLEM 1. We believe that for Example C the phase transition is
continuous, but we have not succeeded in proving it. Observe that this claim is
stronger than the analogous statement for the homogeneous contact process,
which has only been proved recently by Bezuidenhout and Grimmett (1990),
using elaborate methods [in part from Barsky, Grimmett and Newman (1991)].
But their approach makes heavy use of translation invariance and seems to be
useless in our case.

We turn now to the other type of problem addressed in this paper. When is the
critical point of the process different from the critical point of the homogeneous
system? We will restrict our attention to the case in which é6(x) = 1 for all x
outside of some (small) set S and §(x) assumes a constant value b € (0,1) on S.
In this class of examples we shall ask how small S has to be for the critical point
to be unaffected. We will denote by A\.(S) the critical point of such a system, so
Ac(@) is the critical point in the homogeneous case.

Recent methods of Aizenman and Grimmett (1991), who built on an idea of
Menshikov (1987), give a sufficient condition for the critical point to be low-
ered for percolation models. The proof of the next theorem is a straightforward
adaptation of their methods and we omit it.

THEOREM 1.5. If S is such that there is a length R so that each (Euclidean)
ball of radius R in Z% contains at least one point in S, then \(S) < A(D).

This theorem states that if S is sufficiently dense, then the critical point
changes. The next result states that if S is sufficiently thin, then this does
not happen.

THEOREM 1.6. IfS C Z% is such that for every I there are only finitely many
pairs of points in S a distance not larger than | apart, then A\ (S) = A\ (D).
Moreover, for all A < A\(S), there are v and C in (0, c0) such that for all x € Z4,

P(£5 () #0 for some (y,t) such that ||y — xl|oc >k or t > k) < Ce™ .

Note that the model in Example B does not satisfy the assumption of
Theorem 1.6. For this model we have \.(S) = )\.(®) but it is not difficult to
see that for A in (\.(®)b, \.(®)) the exponential decay in Theorem 1.6 does not
hold in the time direction.

Ind = 1, Theorems 1.5 and 1.6 can be combined (leaving aside the exponential
decay in Theorem 1.6) in a nice way. In this case S can be described by the doubly
infinite sequence ...g_1,80,81 ... of distances between successive points in S
(with gy indicating the distance between the first two nonnegative sites in S),
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with the convention that the g; become eventually +oo if there is a leftmost or a
rightmost site in S. Theorems 1.5 and 1.6 may be combined in d = 1 as follows:

@) If limsupg; < oo and limsup g; < oo, then A\.(S) < \A(D).

(i) If lim g; =00 and lim g; = oo, then A\.(S) = \.(D).

Using the observation that the critical point for the half-infinite one-dimen-
sional homogeneous system coincides with \.(®) [see Durrett and Griffeath
(1983)] together with the techniques in Aizenman and Grimmett (1991), asser-
tion (i) can be strengthened to

i) If limsupg; < oo or limsup g; < oo, then \.(S) < A (D).

i — 00 i— —00

OPEN PROBLEM 2. Observe that unfortunately (i’) and (ii) do not say
whether the positivity of the density of S on one of the two semi-infinite sets
Z, and Z _ is also a necessary condition for the critical point to change. In more
than one dimension, on the other hand, it is clear that S does not need to be
dense for this to happen, since it can simply be a one-dimensional line if 6 is
sufficiently small, or for any b < 1 a one-dimensional strip [see Theorem 2 in
Bezuidenhout and Grimmett (1990)].

The inhomogeneous contact process in deterministic and random environ-
ments (sometimes with site-dependent \) has been considered in various recent
papers. Bramson, Durrett and Schonmann (1991) showed the existence of an
intermediate phase in one dimension in an i.i.d. random environment. Liggett
(1991, 1992) (see also references therein) has investigated conditions which
imply survival and extinction for the process. More recently, Andjel (1992), as
well as Aizenman, Klein and Newman (1993) and Klein (1994), obtained results
along these lines giving partial answers to questions left open by Liggett. Our
approach differs from those in these previous works in that we are concerned
with the critical point and specifically how its value and the behavior of the
system at this point differ from the homogeneous system. In general, these are
rather delicate questions and we are only able to give partial answers.

OPEN PROBLEM 3. Are there contact processes in i.i.d. random environ-
ments which have discontinuous transitions, as in Theorem 1.1?

The remainder of the paper is organized as follows. In Section 2 we mention
other models for which our results and techniques are valid. In Section 3 we
prove Propositions 1.2 and 1.3. Finally, in Section 4 we prove Theorem 1.6.

2. Related models and results. Most of our techniques and results apply
to other (d + 1)-dimensional systems with d-dimensional inhomogeneities. We
chose to state them first and only prove them in detail for the contact process
for the sake of clarity of exposition.
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The other systems for which one can extend most of the results discussed
in Section 1 are ordinary bond or site percolation [see, for instance, Grimmett
(1989) or Durrett (1988)], ferromagnetic nearest neighbor Ising models [see
Chapter 4 in Liggett (1985)] and hence, via a path space representation, a quan-
tum lattice system called the Ising model with transverse field [see Campanino,
Klein and Perez (1991) or Aizenman, Klein and Newman (1993)]. In the case
of the quantum system mentioned above, if one considers the d-dimensional
version, with purely local inhomogeneities (i.e., d-dimensional) in the strength
of the transverse field, then its path space representation corresponds to a
(classical) (d + 1)-dimensional system with d-dimensional inhomogeneities.

Consider ordinary percolation on Z¢*1, In the case of bond percolation, each
pair of neighboring sites in Z¢*1 is thought of as defining a bond. Each bond
{x, ¥} is open with probability p, ,; independently from bond to bond. The ho-
mogeneous case corresponds to all p, ,; being identical to a unique parameter
p. One defines the clusters as the maximal sets of sites in Z¢*! which can be
joined by continuous paths of open bonds. In the homogeneous case, it is well
known that when d +1 > 2 there is a critical point p. € (0, 1) such that the prob-
ability of the occurrence of an infinite cluster is 0 for p < p. and 1 for p > p.. In
d + 1 = 2 or for large enough d [Hara and Slade (1990)], it is also known that
this probability is 0 at p., and this is believed to be true in any dimension.

In analogy with the inhomogeneous contact process, one can think of a per-
colation model, in dimension d + 1, for which py, .3 = p, if y = (x,v) and z =
(x,v + 1), where x € Z¢ and v € Z, and P{y,z} =P when y and z are neighbors
but not of the preceding form. We think of p as the parameter which plays the
role of \. Such models were, for instance, considered in Campanino and Klein
(1991). One can easily adapt Examples A, B and C to this context. A very small
6(x) in the contact process corresponds to p, very close to 1 in percolation, while
8(x) = 1 corresponds to p, = p. Hence for the analogue of Example A one can
take d + 1 =2 and

i
‘2 N . .
l-e, ifx= E j2 for some i,
Jj=1
p, otherwise.

DPx =

The analogues of Examples B and C should be clear now and we omit them.

All the results for the contact process presented in this paper extend with the
same proofs to this class of inhomogeneous percolation models. In fact, there
are some simplifications in the proofs, due to the discreteness of the lattice
and also to better (and more elementary) lower bounds on the connectivities at
the critical point. As a consequence one can easily find examples analogous to
Examples A and B in higher dimensions for which the proofthat the transition is
discontinuous applies with no extra difficulty (contrary to the present situation
for the contact process).

OPEN PROBLEM 4. The question of whether the percolation analogue of Ex-
ample C (the model with p, = b > p. for x = 0 and p, = p otherwise) percolates
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or not at its critical point p = p, is also open. [While revising this paper, we
learned that Zhang (1994) proved that there is no percolation in this case when
d+1=2]

Two known facts related to our results for ordinary percolation should be
mentioned. Chayes, Chayes and Durrett (1987) proved that certain inhomoge-
neous percolation models percolate at their critical point. In Chayes and Chayes
(1986) examples are also given of percolation models in subsets of Z¢ (wedges)
where the transitions are discontinuous. In our case, the fact that we are dealing
with (d + 1)-dimensional systems with d-dimensional inhomogeneities imposes
an extra restriction on the choices of environments and requires new argu-
ments.

We limit ourselves now to a very brief description of the extensions to the
other two types of models. Complete definitions are omitted, but we use stan-
dard notation and terminology, and we give references where detailed descrip-
tions can be found.

Ising models in (d + 1) dimensions with d-dimensional inhomogeneities were
studied by McCoy and Wu (1968), McCoy (1970), Shankar and Murty (1987)
and Campanino and Klein (1991). In all these papers the inhomogeneity is ran-
dom, in contrast with the present paper. As in the case of ordinary percolation,
one can consider analogues of the contact process as follows: let the interaction
J1y,2} for the bond {y,z} be given by J¢, ,; = J, ify = (x,v) and z = (x,v + 1),
where x € Z¢ and v € Z, and J(y,z} = J when y and z are neighbors but not
of this form. The existence of models of this type with discontinuous transition
(i.e., such that the spontaneous magnetization is positive at the critical point)
can be proven by combining the techniques that we use for the contact process
with the Fortuin—Kasteleyn representation of these models in terms of depen-
dent percolation models [see Aizenman, Chayes, Chayes and Newman (1988)].
To each bond {x, y} in this dependent percolation model there corresponds a
parameterpy, ,; = 1—e ~J1=.7 which plays essentially the role of the probability
that the bond is occupied. One can easily adapt the examples with discontin-
uous transitions from percolation to Ising models. The proofs of discontinuity
are basically the same as those given in Section 3, since the Harris—FKG in-
equalities also hold for the dependent percolation models involved. In the place
of the independence used for events related to disjoint parts of Z¢*!, one has
to bound the probabilities of the intersection of such events by products of the
probabilities of the corresponding events for modified versions of the system,
in which these disjoint regions are separated by layers of spins, all frozen as +1
or all frozen as —1 and regarded as boundary conditions.

Unfortunately, we are not yet able to extend Theorem 1.6 to this type of model
nor to those discussed in the next paragraph.

The last model we will consider in this section is the (quantum) Ising model
with transverse field. It is defined by the formal Hamiltonian

H=-J Z o3(x)os(y) — Z h(x)oq(x),

x,y€EZe: ||x —y|;=1 xe€zd
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where o3(x) and o1(x) are Pauli spin 1/2 matrices, J > 0 is a free parameter (i.e.,
it plays the role of X in the contact process) and i (x) are the site-dependent trans-
verse fields. As discussed in Campanino, Klein and Perez (1991) and Aizenman,
Klein and Newman (19983), this model has a “path space representation” in
terms of a (d + 1)-dimensional Ising model with d-dimensional inhomogeneities.
So, via the Fortuin—Kasteleyn representation, one can prove that this model has
a discontinuous transition for appropriate choices of {A(x): x € Z%}.

3. Proofs of discontinuous transitions. First, we recall the graphical
construction of the contact process and some related basic notation. We asso-
ciate each site x € Z¢ with 2d + 1 independent Poisson processes, one with
rate 6(x) and 2d others with rate . Make these Poisson processes also inde-
pendent from site to site. For each x, let {T,’f’k:n >1},k=0,1,2,...,2d, be the
arrival times of these 2d + 1 processes, respectively. For each x and n > 1,
we write a § mark at the point (x,7"°) and draw arrows from (x, %) to
(x + ek,T,f’k) for 2 = 1,...,2d, where e;, i = 1,...,2d, are the unit vectors of
Z4. We say that there is a path from (x, s) to (1, ) if there is a sequence of times
S) =85 <81 < - < 8y < Sp+1 =t and spatial locations xy = x,x71,...,%, =y SO
thatfori =1,2,...,n thereis an arrow from x; _ 1 to x; at time s; and the vertical
segments {x;} x (s;,s;+1) fori=0,1,...,n do not contain any §. We will use the
notation {V — W}, where V and W are subsets of R? x R,, to denote the event
that there is a path from some point in V to some point in W. For U C R x R,,
we write {V —U W} for the event that such a path can be found inside U,
except perhaps for the arrows in the path and the two endpoints of the path.
If we replace — by -~ , we indicate the complement of the previously defined
event. Observe that if A ¢ Z¢ and we define ¢ to be the indicator function of
the set {x € Z%: A x {0} — (x,t)}, then (¢4, ¢t > 0) is a version of the inhomo-
geneous contact process. We will denote by P(-) the probability law associated
with the graphical construction described above. Sometimes, for comparison,
we will also refer to the similar construction in the homogeneous case; Pg(-)
will denote the corresponding law.

We shall use the definition of an increasing event that was given by
Bezuidenhout and Grimmett (1991). Briefly, an event E is said to be increasing
if the following holds: for any realization of the graphical construction that is
in E, every other realization obtained from it by the addition of arrows or the
suppression of § marks is also in E. The complement of an increasing event
is said to be decreasing. The Harris—FKG inequality says that if £ and F' are
either both increasing or both decreasing events, then

P(ENF)>PE)PEF).

The [*°-norm in R? or R%*! will be denoted by | - ||; distances will be measured
with respect to this norm except when explicitly stated otherwise.

In this section ). will denote the critical value of the homogeneous model.
We shall write |x] to denote the greatest integer less than or equal tox. C, ¢, Cy,
C,, ... will denote positive and finite constants, whose exact value is irrelevant
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and may even change from appearance to appearance. When referring to sets
with a single element, we will simplify the notation, representing such a set by
its unique element.

Our main task in this section is to prove Proposition 1.2. To clarify the signif-
icance of our choice of parameters in the process of Example A, we shall work
with the following more general class of inhomogeneous models.

ExamMpLE D. The inhomogeneous contact process in d = 1 with é6(x) = 1
except at the sites x1,x9, ... is given by

x1=1 and Xiy1 =X + [(i+ 1)qJ,
where the death rates are
8(x;) = exp(—i")

for some choice of positive parameters g and r. (Recall that Example Ahad ¢ = 3
andr =2.) )

A basic ingredient for the proof of Proposition 1.2 is the qualitative difference
between the decay of connectivities for the homogeneous system in the critical
and subcritical regimes. Bezuidenhout and Grimmett (1991) proved that for
any \ < ), there is a v > 0 such that for all x in Z¢ and for all ¢ > 0,

(8.1)  Py((0,0) — {x} x R) <e "l and Py((0,0) — Z¢ x {t}) <e ™.

From (8.1) it is easy to obtain an exponential bound for the probability of con-
nection between two distant sets. Indeed, applying the Harris—FKG inequality
to the intersection of the event that there is no death mark in {0} x [0, 1] with
{{0} x [0, 1] — {(x,2):||(x,2)| > I}, one obtains

(3.2) PH({O} x [0,1] — {(x,8):[|x, ]| > z}) < Ce™

This gives the following bound for the probability of connection between two
sets for the subcritical contact process on Z¢:

3.3) Py(S — T) < a(S)e™PED,

where a(S) is the number of sets of the form {x} x [i,i+1) (x € Z¢,i=0,1,...)
which have a nonempty intersection with S, and

D@S,T) = inf{||x,) — (y,0)|: (x,) € 8, (y,u) € T}

is the distance between S and T'.
The following lemma will be used several times.

LEMMA 3.1. (a) Suppose Eq,E,,... are all increasing (or all decreasing)
events such that P(E;) > 0 for all i. If $3°, P(E¢) < oo, then P(N21 E;) > 0.
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(b) Suppose that S C Z? x R, is the union of a finite or countable collection
of sets S; such that o(S;) = 1 for every l. Then

Pys T >]] [1 — exp(— yD(S), T))].
1

Proor. (a) By the Harris—FKG inequality, for every J we have

J J
P< Ei) > [[ P&y,
i=1 i=1

so upon letting J — oo we obtain

P( FiE) > ﬁ [1-P@E)] >0

i=1

(b) From the Harris—FKG inequality and (3.3), we obtain

Py(S 4 T) = Py (ﬂ{sl WA T})
!

> [[Putsi+ T
l

> H [1 - exp(——'yD(Sl,T))]. -
!

We now discuss the case of A = )\, in one dimension. The proof of (5.4) in
Durrett, Schonmann and Tanaka (1989) implies
Py((0,0) -V {x} x R,) >x~% for x large enough,

where U = {—x,...,x} x [0,x5]. This inequality implies the following one, which
will be used in the next lemma:

(3.4) Py ({0} xR, =" {x} xR,) >x~% for x large enough,
where V = {0,...,x} x [0,x°].

LEMMA 3.2. Assume that q > 0 and r > 0. Then the process in Example D
survives when \ = ..
PROOF. Set hy =0 and h; = 6(x;)~ /2 = exp(i"/2) for i > 1. Define the events
A} = {no death mark in {x;} x [0, k;]},
Ai2 = {{xi} X [hi—1,hi] — {xi+1} X [hi—lahi]}a
A;=AlnAZ
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Divide {xi, e ,xi+1} X [hi_ l,hi] into parts of the form {xi, . ,xi+1} X [k(l +
1%, (k + )G + 1)%], for k = |h;_1/G + 1% +1,...,|h;/G+ 1)%9] — 1. Using
(3.4) and the independence of the graphical construction in disjoint space—time
regions, we have for large i,

P((42)%) < (1 - G+ 100/ O he/Gr 7 =
4 - .

The mean value theorem implies that h; — h; _1 > rh;_1/(20), fori > 2, so it
follows that

oo o0 (o)

SoP(49) < SOP((4))) + S P((4Y)°) < oo

i=1 i=1 i=1

Lemma 3.1(a) implies that

P (1) > P( ﬂAi> > 0,
i=1

and so p,,(0) > 0. O

We now have to prove that the critical value of the inhomogeneous model is
equal to )\.. Our method of proof requires us to assume that ¢ > r in Example
D, and we shall do so for the rest of the section. We will also need later to
assume that » > 1 (see Lemma 3.5), and this is the reason we chose, somewhat
arbitrarily, r = 2 and ¢ = 3 in Example A. The next lemma tells us that the sites
with small §(x) are too far apart to permit propagation of the process over the
intervening distances in a reasonable length of time.

LEMMA 3.3. Assume that q > r in Example D. Fix s such that ¢ > s > r
and let

'S

8i =1
and
H; = (g)?/6(x;) = i* exp(i")

for i > 1. Also define the sets
Vi=lx; —gi, x; +&1 x [0,H;]
and the events
E; = {{x;} x [0,H;/2] /> (V;)°}.
Then, for every XA < X, 72, P(E$) < oo.

ProoF. For fixedi and for each k2 =1,2,..., consider the event

B = {{xi} x [kgi, (b + Dgi] Y (R\{x:}) x {¢k + l)gi}},
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where U}, = [x; — g;,x; +8;] % [kg;, (k+ 1)g;], R is the set of real numbers and A\B
is the set A N B°. Let

B? = {there is a death mark in {x;} x [(k + 1)g; — 1,(k + 1)g;]
and no arrow starts or ends in this set}.

When i is large, the interval [x; — g;,x; + g;] does not contain any site x; with
Jj#i. Applying Lemma 3.1(b) with the S;’s taken to be subintervals of {x;} x
[kg;, (k + 1)g;] of length 1, we obtain

(3.6) P(B}) > Cy >0,
where C; does not depend on i or k. Also,

(3.7 P(B}) > Cad(xy).
Define B, = B} N BZ and

|H./g.] ~ 1
D; = U B
k=|H,/2g)]+1

From (3.6), (3.7), the Harris—FKG inequality and the independence of the B,
for different k&, it follows that

(3.8) P(D) < (1 — Csb(xy)) /2N 18/200] =1 o =Cas,
Observe now that

P(E;nDy)
(3.9) < P(there are (x,),(y,s) € V; such that |x — y| > g;

or [t —s| > g; and (x,) —F (y,9)),
where
H = {x:6(x) =1} x R,.

Using (3.2), we see that the right-hand side of (3.9) is less than a(V;)e™ "8 <
(2g; + 1)H;e~ "8 which is a summable sequence. This together with (3.8) proves
Lemma 3.3. O

Using the assumptions and notation of the preceding lemma, we now consider
the boxes

Ai = [—xi + l,xi - 1] X [0, 2Hi_ 1]
and let F; be the event that A; is crossed from bottom to top by a path:
Fi = {[—x,- + 1,x,- —1] x {0} M [—xi + 1,x,~ - 1] x {2Hi-1}}.
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LEMMA 3.4. Assume that q > r in Example D. For every A < )\, there exists
an € > 0 such that P(F;) <1 — ¢ for all i large enough.

ProofF. From Lemmas 3.1(a) and (3.3),

() (7)o

Hence

(3.10) P(Ff) =P (F

i—1
ﬂEj) Cs.

j=1

But H; < 2H;_, forj < i — 1, and hence on ﬂi;llEj, F; can only happen if
[—x; + 1,x; — 1] x {0} is connected to the set

i—1
T, = [-x;+1,x; — 1] x {2Hi_1} U (ﬂ{xj} X [IIj/2,2Hi_1]>,
Jj=1

using only the part of the space where 6(x) = 1. Therefore

P<<thIEJ> nFi) SP((ldEj> n {[—xi + l,xi — 1] X {0} -——>H Tt}> .

Using the Harris—FKG inequality for one increasing and one decreasing event,
we get

i—1 i—1
(3.11) P(((]Ej) nFi) §P< N Ej>P([—xi+1,xi ~ 1 x {0} - T)).
j=1

j=1
From (3.10) and (3.11), it follows that
(312) P(Ff) > C5PH([—xi + l,xi —1] x {0} -/-> Tl)

Now Lemma 3.4 follows easily from (3.12) and an application of Lemma 3.1(b)
with S; = {({,0)}. O

We are finally ready to complete the proof of Proposition 1.2. It will be an
immediate consequence of the next lemma and Lemma 3.2.

LEMMA 3.5. Assume that g > r > 1in Example D. Then the process dies out
for every A < A.

Proor. We use the notation of the previous lemmas. Consider the boxes

Q= [—x;+ 1,x; — 1] x [0,H;]
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and observe that

P((0,0) — ¢)
< P((O, 0) —% {=x+ 1,2, — 1} x [O,Hi])
+P((0,0) % [—x; + Lx; — 1] x {H}}),

and so

P((0,0) - )
< P(there are (x,2),(y,s) € ©; such that |x -yl >i? and (x,8) - (y,s))
+ P(F)LH/@H - 1) |

The first term goes to 0 by an application of (8.2) [since a(f;) is of the order
of 2i9*1;2%"] while the second term goes to 0 by Lemma 3.4 and the fact that
H;/(2H; _ 1) goes to co as i—oo (since r > 1). This proves the result. O

Itis clear that Example B was constructed so that the stretches with 6(x)=b
mimic the effect in Example A of the sites x;. The proof of Proposition 1.3 is
a straightforward adaptation of that of Proposition 1.2, once one recalls the
following fact proved in Durrett and Schonmann (1988). If one considers a
contact process on the finite set {1,2,...,n}, so that the sites 1 and » have only
one neighbor each and §(x) = b < 1 for all x, then if A > b\, there is a positive
v such that

nli)ngoP({l,...,n} x{0} = {1,...,n} x{e*}) =1 ifa<y
and the limit is 0 if & > v. In reality, to prove Proposition 1.3, one only needs
the much more elementary result that states that the limit is 1 for sufficiently
small o and is 0 for sufficiently large a.

Finally, we make some comments about the existence of models with dis-
continuous transitions in d > 1. In the proof of Proposition 1.2, the basic in-
gredient is the difference between the critical and subcritical behaviors of the
connectivity probabilities in the homogeneous case. The exponential decay be-
low ). has been proved for the homogeneous contact process in any dimension
by Bezuidenhout and Grimmett (1991), so this part presents no problem. It is
also widely believed that at the critical point the connectivity probabilities in
the time and space direction decay only as powers of the distance, in a fashion
which would allow us to extend Examples A and B and Propositions 1.2 and 1.3
to higher dimensions immediately. But unfortunately the rigorous results in
the form of lower bounds for the connectivity probability in the space direction
(which concerns us) are rather inadequate at present. We are nevertheless able
to construct examplesind > 1 which are (not so straightforward) adaptations of
Examples A and B for which we can prove that the transition is discontinuous.
But we omit our examples because this seems a marginal issue and because
we expect that improved knowledge of the decay of connectivities at the critical
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point will trivialize this point in the near future. It is interesting to remark,

however, that our examples in d > 1 rely only on the fact that the exponential
decay rates v in (3.1) tend to 0 as )\ increases to .

4. Proof of Theorem 1.6. Given a set V in R? x R,, the cluster of V is
defined to be the set

C(V)={(x,t) e Z* x Ry: V — (x,8)}.
For technical reasons it will be convenient to “discretize the time.” With this
in mind, we recall the following definition. For each set V C Z¢ x R,, (V) is
the number of sets of the form {x} x [i,i + 1) (x € Z%, i =0,1...) which have a
nonempty intersection with V. One can think of (V) as a (convenient) measure
of the volume of V. We will use the abbreviation
Clx,t) := C({x} x [t,t +1]).
Given a site z and a length &, define the box
B(z,k) := (z + [k, k%) x [0,k] = {(w,s) € R? x R,:||(w,s) — (z,0)|| <k}
and let
0B(z,k) = {(w,s) € R* x R,:||(w,s) — (z,0)]| =k}

be its top and lateral boundary.

In this section we are considering models such that 6(x) = 1 for x ¢ S and
6(x) = b for x € S, where b is a fixed number in (0, 1). Example C is the par-
ticular case S = {0}. The first lemma below is a technical strengthening of

Proposition 1.4.

LEMMA 4.1. For the model in Example C, for any A < A\(D) there is a constant
¢ > 0 such that P({0} x [0, 1] — dB(0,n)) < exp(—cn!/?) for large n.

PrOOF. For each n consider the slabs
R;=Z% x (jn*?,(j+ 1n*/?],
Jj=0,1,.... Define the events
E; = {{0} x (jnt2,(j+ Dnt2 — 1) 4 Z¢ x {(j + 1)n1/2}}.

These events are independent because the R; are disjoint. From Lemma 3.1(b)
it follows, as for (3.6), that P(E;) > p > 0, where p does not depend on j or n.
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Now, again using (3.2.),

P({0} x [0, 1] — 8B(0,n))

(n1/%) -1
< P( U (Ej)c> + Py (3 (x,t),(y,s) € B(0,n) a distance at least
j=0

n'/2 — 1 apart and connected by a path)

<1 —p)”l/2 +(©2n + 1)%nCe~ -1
< exp(—cn'/?)

for large enough n, where c > 0. O

The next proposition contains the main arguments of the proof of Theorem
1.6 and it is also of intrinsic interest. Define

IS) =inf{|x —y|: x,y € S, x # y}.

PROPOSITION 4.2.  For fixed b and A\ < \.(QD), there exists a finite I, such that
if 1(S) > 1y, then the process dies out, and moreover there exist C and - in (0, 00)
such that for any x € Z¢,

P((x,0) — OB(x,n)) < Ce ",

Proor. We will show that there is a k( such that if [(S) > 4k, then there
is an 71 € (0, 1) with the property that for all z € Z¢,

4.1) E(a(Te, 00N 0Bz, 2ko) ) < n.

The proposition will follow then, with [, = 4k, from an argument which is
a straightforward adaptation of a well-known procedure to prove exponential
decay of connectivities [e.g., the proof of Theorem (5.1) on page 84 of Grimmett
(1991), with the homogeneity there replaced here by the uniformity in z in (4.1)].
For the sake of completeness we show now how to obtain the exponential decay
of connectivities from (4.1).

It is clear that if a path starts in {z} x [0, 1] and leaves the box B(z,m; +
mg), then it must contain two subpaths, with only one endpoint in common,
one connecting {z} x [0, 1] to a point in dB(z,m), and the other connecting
this point to B(z,m; + mg). Using the van den Berg—Kesten inequality [see
Bezuidenhout and Grimmett (1991) for a version for contact processes] and
translation invariance in the time direction, one obtains [after summing over
all sets of the form {w} x [i,i + 1), w € Z%, i = 0,1,2,..., which intersect
0B (Z ) ml)]

P(C(z,0)n 0B(z,m; + mg)#®)
< E(a(C(z,0)n 3B(z, my) ) max P(C(w,0) N 0B(w, my) # ).
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Iteration of this inequality leads now readily to the desired exponential decay:

3 3 L /2ko
P(C(z,0)N8B(z,n)# @) < (E(a(C(z,O) N 8B(z,2k0))))
< ()7 () o)™,

We turn now to the proof of (4.1). IfI(S) > 4k, then [—2k, 2k]% +z can intersect
S in at most one site. If the intersection is not empty, then let y be this site. (If
the intersection is empty, the argument below becomes trivial.) Divide the set
A := C(z,0) N 0B(z, 2k) into two parts: let A; denote the set of points in A which
are reached from {z} x [0, 1] by paths which do not intersect { ¥} x [0, c0)N B(z, k)
(observe that A; = A if ||y — z|| > k), and let A, = A\A;. Clearly,

(4.2) E(a(A)) < E(a(Ay) + E(a(Ay)).

To bound the first term on the right-hand side above, observe that
E(a(Ay) < a(8B(z,2k)) Py ({z} x [0,1] — 0B(z,k))..

But for some finite constant C,

(4.3) «(0B(z,2k)) < Ck?,

so that translation invariance of the homogeneous system and (3.2) imply that
for large enough %,

(4.4) E(a(Ay) < 1/3.

The second term on the right-hand side of (4.2) is 0if |y — z|| > &, and we will

use Lemma 4.1 to bound this term in case ||y — z|| < k. Denote by P(-) the law
of the model defined in Example C and considered in Lemma 4.1. Observe that
if ||y — z|| < k and there is a path connecting a point (y,s) in {y} x [0,%] to
a point in OB(z,2k), then this path must exit the box of radius £ centered at
(y,s). Using translation invariance in the time direction and the fact that y is
the only site in ([—2k, 2k]% + z) N S, we obtain

E(a(Ag)) < a(0B(z,2k))EP({0} x [0,1] — 8B(0,k)).
By (4.3) and Lemma 4.1, it follows now that for large enough &,
(4.5) E(a(Ap)) < 1/3.

Inequalities (4.2), (4.4) and (4.5) imply (4.1), completing the proof of the
proposition. O

With the help of Proposition 4.2 it is easy to prove Theorem 1.6. Recall that
b € (0,1) and S are fixed. It is clear that A\.(S) < A\.(®), so we only need to
show that the inhomogeneous system dies out for every A < A\.(®). Given such
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a A, let [y be the number given by Proposition 4.2 (for the fixed value of b that
we have). By the assumption on S, there is a finite N such that if we define
So = S\[-N, N1¢, then S; has the property

Z(So) > lo.

Hence the conclusion of Proposition 4.2 applies to the system with S, replacing
S. We will present now a simple way to exploit this fact in order to show that
the system with inhomogeneities in S dies out. In order to be able to use some
elementary ergodic theory below, we extend the graphical construction (in a
standard fashion) to Z?¢ x R. This is done by considering the corresponding
Poisson processes which give rise to § marks and arrows on R instead of R,.

We say that there is a cut at time ¢ € Z if the following two events both
happen:

1. For each site x € [-N,N]?, there is a death mark in {x} x [t — 1,#] and no
arrow leaves or enters this set.

2. [-N, N4 x (—0c0,t — 1] +4» ;(Z4\[-N, N1¢) x {t}, where U = (Z4\[-N, N1%)
xR. ’

Using the exponential decay of the connectivity probability in Proposition
4.2 for the event in (ii) and the Harris—FKG inequality, it follows that

P(there is a cut at time ) = C > 0,

where C does not depend on ¢. From the ergodicity of the underlying Poisson
processes, we obtain

P(there are positive cut times) = 1.

But if there is a positive cut time, then the cluster of (0, 0) must be finite. This
proves that the system dies out and finishes the proof that \.(S) = \.(®).

The exponential decay of connectivities claimed in Theorem 1.6 can be proved
with a little more effort. The argument basically relies on the same reasoning
used to prove Proposition 4.2, so we merely sketch it and leave the details to
the reader. Observe that in the proof of Proposition 4.2 (including the proof
of Lemma 4.1) the only fact about the homogeneous system that was used
was the exponential decay of connectivities, from (3.1) and (3.2). Think of the
system with inhomogeneities in S as resulting from a modification in the finite
region [-N,+N]¢ of the system with inhomogeneities in S. Keep in mind
the exponential decay of connectivities proved in Proposition 4.2 for the system
defined by So. Now it should be clear that the system defined by S has a structure
similar to that of the model introduced in Example C (with the background
being the system defined by S, rather than the homogeneous system, and the
modification affecting the finite region [—N, + N ]¢ rather than just the origin),
and one can adapt the proof of Proposition 4.2 to this setting to complete the
proof of Theorem 1.6.
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