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CONSTRUCTING GAMMA-MARTINGALES WITH
PRESCRIBED LIMIT, USING BACKWARDS SDE

By R. W. R. DARLING

University of South Florida

Let Vi, and Vy be Euclidean vector spaces and let V,, = L(Vy, - Vy).
Given a Wiener process W on Vy, with natural filtration {Z,}, and a
¥ -measurable random variable U in Vy, we seek adapted processes
(Y, Z) in Vy X V, satisfying the SDE

U=Y(¢t) + ZdW — I'(Y,ZZ*)ds/2, 0<txT,
®) j;t,,T] '/;t,T]( )ds/

under local Lipschitz and convexity conditions on the map (y, A) —
I'(y, A). These conditions apply in particular in the case I'(y, A) =
LT}, (y)A%*, where T is a linear connection on Vy whose Christoffel
symbols I}, are bounded and Lipschitz, and I' has certain convexity
properties. In that case the solution Y above is known as a I'-martingale
with terminal value U. The solution (Y, Z) is constructed explicitly using
the Pardoux-Peng theory of backwards SDE’s. Applications include the
Dirichlet problem and the heat equation for harmonic mappings, and
other PDE’s.

0. Introduction. Pardoux and Peng (1990, 1992, 1994) have considered
existence and uniqueness of adapted solutions (Y,Z) in R™ X R™*! to
stochastic differential equations of the form

(L) U=Y(&)+ [ ZdW- F(x,Y,,Z)ds/2, 0<t<T,
(t,T] (¢,T]
where W is a multidimensional Wiener process, F(¢,-,-) is progressively
measurable and U is a given T ;-measurable random variable known as the
terminal value; see Section 1.4 below for more technical details.
An interesting example of an equation of this type is the case where T' = o,
{I’jik} are the Christoffel symbols of a connection I' on R™ and

Fi(s,y,2) = ¥ Th(y)zjz;,
Jrk.q
in which case Y becomes a I'martingale with prescribed limit Y, = U. As
explained in Section 2.1 below, a I'-martingale is a kind of stochastic process
with values in a manifold M, with connection I', which generalizes the notion
of continuous local martingale on Euclidean space. Solutions of (1) are closely
related to the following problems. :
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TABLE 1
Literature on existence of a gamma-martingale converging to a prescribed limit

Nonlinear I', or

Levi-Civita I’ Linear I “connector”
Kendall (1990) — This article
Wiener filtration {F,} Picard (1989, 1991)
— Arnaudon (1993) Picard (1994)
More general {F,} Darling (1993)

1. The Dirichlet problem for harmonic mappings with values in (M, T), as
discussed in Kendall (1990, 1993).

2. The construction of a barycenter with associativity under conditioning; see
Emery and Mokobodzki (1991), Picard (1994) and Peng (1993).

3. Duffie and Epstein’s model (1992a, b) of stochastic differential utility.

The problem of uniqueness of such a Y was studied by Emery (1985). Table 1
gives a brief guide to the literature on the problem of existence. In every case
except Picard (1989, 1991), some kind of “convex geometry” is assumed,
meaning that there exists a continuous, convex function from M X M to [0, ®)
which is zero precisely on the diagonal; this is a stronger condition than
uniqueness of solutions to the geodesic equation [see Kendall (1992)]. In every
case except Darling (1995), M is compact, with some additional convexity
properties. In Picard (1989, 1991, 1994) there are some further restrictions on
the terminal value.

In the case where Y takes values in a compact manifold with boundary M,
Kendall (1990, 1991, 1992) has shown that uniqueness of the solution is
equivalent to the statement that (M, T’) has convex geometry.

All existence proofs so far have used specific discretization procedures, in
which one constructs discrete time processes on M using conditional expecta-
tions in a sequence of nearby tangent spaces, and then uses tightness and
weak convergence ideas to show that these processes converge to a limit
which must be a I'martingale. This article presents a solution to this
problem using the Pardoux—Peng construction without ever discretizing,
taking conditional expectations or using any kind of weak convergence. The
strategy of the proof can be simply described:

1. Solve a Pardoux—Peng backwards SDE (23) to construct a process which is
close to being a I'-martingale and which terminates at the desired random
variable. .

2. Use the solution to set up a forward SDE (66) for a I'-martingale, whose
terminal value is close to being the desired one.

3. Repeat steps 1 and 2 with a parameter tending to zero to create a sequence
of I'-martingales and show that their terminal values converge to the
desired value (Lemma 6.4).

4. Show by an abstract method that this sequence has a limit, which must be
a I'martingale with the desired terminal value (Theorem 7.1).
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The assumptions used to obtain this solution are similar to the “convex
geometry” used by Kendall (1990) and Picard (1994) (in fact, convexity with
respect to both I' and the Euclidean connection relative to the embedding is
used in a number of places), but in certain respects the results presented here
are more general. For example:

1. All proofs are carried out for nonlinear connections (which involves almost
no extra difficulty) and extend immediately to the time-dependent case
(Section 8.3).

2. No differentiability is assumed for the connection—only local Lipschitz
properties (Condition 6.1).

3. It is not necessary to work within a compact manifold nor to assume that
the terminal value is bounded (Section 8.2). For other results in this
direction, see Darling (1994).

4. The method offers the possibility of extension to the case where W is
replaced by a more general (possibly discontinuous) martingale, as in
Antonelli (1993).

1. Basic concepts.

1.1. Linear algebra. Let Vy, Vy and V; be finite-dimensional Euclidean
vector spaces, and let V, denote the vector space L(Vy — Vy) (linear maps
from Vi to V) with the Hilbert-Schmidt norm

21> = Tr(z - 2), z eV,

where z -z is a square matrix whose (j, k) entry (z - z)’* is the dot product
27 -2* of the vectors in Vy formed from the jth and kth columns of z.
Alternatively, for z in V, we may identify z-z with the linear mapping
zz* € L(Vy —» Vy) = Vy ® Vy, and give it the norm

L) /2
(2) ||Z'ZIIE{Z(zf-zk) } .
. gk
Two applications of the Cauchy—Schwarz inequality suffice to prove that
3 — 2> < llz-zll < |27,
(3) \/HI |

where m = dim(Vy).

1.2. Connections. For an elementary account of differential forms and
linear connections, see Darling (1994). We shall deal here with nonlinear
connections I' on the tangent bundle of Vy, and so the topology is Euclidean,
and a single local trivialization of the tangent bundle will suffice. In this
trivialization the connection is specified by a local connector, also denoted T,
which is a map

(4) I:Vyx(Vy® Vy) = Vy.
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For this paper it suffices that I'(y,-) is defined on the set of elements of
Vy ® Vy of the form Lv, ® v, (finite sum). We do not deal with curvature in
this paper, so I' need not be differentiable. In the linear case where
I'(y,Tv, ® w,) = XT'(yXv, ® w,), the ith component of T'(y) (v ® w) is
LT (y)v'wh,
gk
using the Christoffel symbols F’ Whenever I is linear, it may be assumed to
be torsion-free, that is, I'(y,v ® w) =I'(y,w ® v), but need not be a metric
connection. Indeed the use of the Euclidean metric on Vy is just for analytic
convenience. One should think of choosing a convenient coordinate system for
studying T, and finally taking a metric whose metric tensor in this coordinate
system is the identity.
For linear connections one uses the dual connection on the cotangent
bundle to find the covariant derivative Vd¢ of an exact 1-form d¢ [i.e., the
second covariant derivative of the function ¢ € C2(Vy)] by the formula

(5) Vd¢(D; ® D) =Dy, ¢ — Z(Dd’) ks

where D; = d/dy’ and D, i = D;D,,. Since Vdd) is a (0,2)-tensor, we can
think of y - Vd¢(y) as a map from Vy to L(Vy ® Vi — R). A coordinate-free
form of (5) is

(6)  Vdo(y)(v @ w) = D%(y)(v ® w) — DS(y)T()(v @ w).
Imitating this expression in the case of a nonlinear connection gives the
formula

() Vdé(y)(z-2) =D%(y)(2-2) — DH(y)T(y,2°2), z<€Vy,
which is not necessarily linear in z - z. Observe that it is only necessary to

define the left side of (7) for elements of Vy ® Vi of the form {z -z: z € V,},
not on the whole of Vy ® V.

1.3. Convex functions. We shall say that ¢ € C2(Vy) is I'-convex (resp.
strictly T-convex) on G C Vy if for all y € G and z € V, Vdd(yNz-2) = 0
[resp. Vd¢(y)z -z) > al|z|® for some a > 0]. Note that the second definition,
but not the first, depends on the arbitrary choice of the metric, and that both
depend on the dimension of V. A characterization of I'-convexity of ¢ in the
linear (but not the general) case is to say that ¢ — ¢(y(2)) is convex for every
geodesic vy, that is, for every solution of the geodesic equation ¥ + I'(y )y ®
v) = 0. Because of the nonintrinsic nature of certaln constructions, we also
need to introduce the expression

(8)  Hess, ¢(y)(z-2) = min{Vd(y)(z-2), D(y)(2-2)}

‘ and we shall say that ¢ is doubly convex (resp. strictly doubly convex) on
G cVy ifforall y € G and z € V,, Hess, ¢(y)Xz-z) > 0 [resp. Hess, ¢(y)
(z-2) > alz| for some a > 0]. Even for linear connections, these properties
are nonintrinsic, that is, they depend on the choice of coordinate system.



1238 R. W. R. DARLING

1.4. Stochastic differential equations with prescribed terminal value. Let
{(W(t), 0 <t <x} be a Vy-valued Wiener process on a probability space
(Q, T,P), with the natural filtration T, = o{W(s), 0 < s < ¢}, augmented by
the P-null sets and their complements; right-continuity is not assumed.
Suppose that 0 < T' < »© and that we are given some random function

F:QX[0,T] XVy XV, > Vy,
where F(t,-,-) is progressively measurable, and a T -measurable random
variable U on Vy, known as the terminal value. Following Pardoux and Peng
(1990), the problem is to construct a pair (Y, Z) of adapted, progressively
measurable processes on Vy X Y, which satisfy the stochastic differential
equation
dY(t) = Z(t) dW(t) — (1/2)F(t,Y(t)),Z(t) dt

such that Y(T') = U. Let us emphasize that Y = {Y(¢), 0 < ¢ < T} is a process
with unknown initial value, but known terminal value. There will be no
ambiguity if henceforth we omit the time variable ¢ from the integrands in
most stochastic integrals.

Subtracting the equation

Y(¢) -Y(0) = [ zdW-(1/2)[ F(sY,Z)ds
(0,¢] (0,¢]
from its counterpart when ¢ = T gives the “Pardoux—Peng equation”
9 U=Y(t)+ [ ZdW-(1/2)[ F(sY,Z)ds, 0s<t<T.
(¢,T] (¢, T]

Conditions on U and F for existence and uniqueness of solutions to (9) are
given in Pardoux and Peng (1990). We only quote a special case of Pardoux
and Peng’s (1990) result [for the non-Lipschitz case, see also Pardoux and
Peng (1994)]. First here is some notation: For any Euclidean vector space V,
HP?(0,T;V) denotes the set of progressively measurable processes Z (with

respect to {T,}) such that
p/2
{ [ lzP ds}
(0,T]

THEOREM 1.5 (Pardoux-Peng theorem for the Lipschitz case). Suppose
T<ow,UeL*Q,T;,Vy) and F: Q X [0,T] X Vy X V, > Vy has the prop-
erties:

(i) F(', 0, 0) € HZ(O, T; VY);

(ii) There exists ¢ > 0 such that |F(w,t,y,2z) — Flo,t, 5, 2)| <c(ly — 5 +
|z — Z|) for almost all t and w.

(10) E < o,

. Then there exists a unique pair (Y,Z) of processes in H?(0,T;Vy) X
H2(0,T;V,) which satisfy (9).

2. The Pardoux-Peng system associated with a connection. Given
a nonlinear connection I' and a terminal value U, define the Pardoux—Perg
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system of stochastic differential equations associated with the triple (W, T, U)
to be the Pardoux-Peng equation (9) with

F(tay’z) = F(y,Z‘Z).
Note that, even when T is linear, this F is usually not Lipschitz in y or z

because the process Z is not known to be bounded. In the linear case, (9) can
be written as

m
Ul=Yi(t)+ [ Z'dW-(1/2) ¥ [ Ti(Y)(Z'-Z*)ds,
(¢,T) jk=1"(t,T]
i=1,2,...,m,.
In general, it becomes

(11) U=Y(t) +f(tT]ZdW—(1/2)f(tT]F(Y,Z-Z) ds.

Using (7) and Itd’s formula, another statement of (11) is that, for all f e

FU) = F(Y () + [ df(Y)(ZdW)
(12) 1
+(1/2)f VAdf(Y,Z Z) ds.
(¢, 7T]

2.1. Gamma-martingales. A clear introduction to I'martingales in the
case of a linear connection I' is given in Emery and Meyer (1989). The case of
nonlinear I is less well known, but is presented in Meyer (1981). We shall
say that a continuous semimartingale X with values in Vy is a I'-martingale,
with respect to the filtration {¥,, ¢ > 0} given above, if each component has a
semimartingale decomposition X! = M + A’, where d[ M‘, M’] = HY dt (ab-
solute continuity of the joint quadratic variations with respect to Lebesgue
measure holds for all continuous local martingales in this filtration) and

(13) A(t) = _(1/2)/<0 ., I'(X,H)ds.

Thus for the Euclidean connection, I'-martingales are simply m-dimensional
continuous local martingales. A more abstract way to give the definition is to
say that X is a continuous semimartingale in Vy such that

(14) X +(1/2) [T(X,(dX ® dX)/ds) ds

is a continuous local martingale in Vy, where (dX ® dX)¥ means d[ X?, X’].
'Its Itd representation [see Revuz and Yor (1991)] yields a progressively
" measurable process Z such that

(18) [ ZdW=X(t) - X(0) + (1/2)[ T(X,(dX ®dX)/ds)ds.
(0,¢] (0,¢]
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It is clear from (15) that (dX ® dX)/ds = Z - Z, and so the solutions to (11)
are precisely the I'-martingales on [0, T'] with terminal value U. Notice also
that, from Itd’s formula, the real semimartingale

(16)  f(X,) - f(X,) — (1/2) f( o o Y (x:(dX ® dX)/ds) ds

belongs to My,,, the space of continuous local martingales, for all f € C*(M).
Given a Riemannian metric g on M (not necessarily related to I'), we may

associate with any M-valued continuous semimartingale Y a Riemannian

quadratic variation process [{dY|dY ), given in local coordinates by

(" ’/;O,t] (dY|dY) = '/;O,t] Zgij(Y)d[Yl,ij]

[see Emery and Meyer (1989)]. Suppose 0 < p <. A I'-martingale X is
called an HP T'-martingale on (M, g) or is said to belong to the Hardy space
HP [see Darling (1993)] if

(18) [ (dXldX) e Lr.

(0,)
In the case where g is the Euclidean metric, (17) becomes the Euclidean
quadratic variation and (15) shows that [(dX|dX) = [IZ |2 ds. We have now
proved the following lemma.

LEMMA 2.2 (Gamma-martingales and backwards SDE’s). The solutions to
(11) [with Z € HP(0,T;V,)—see (10)] are precisely the {¥}-adapted T-
martingales (in the class HP) on [0, T] with terminal value U.

3. An approximation scheme with uniformly bounded variation.
Equation (11), which we wish to solve, usually lies outside the scope of
Pardoux-Peng Theorem 1.5. However, suppose h: (0,1) X V, — [0,%) is a
function with the following two properties: for each ¢,

(19) |z <1/e = h(e, z) =0,

(20) z—>2z-2z/(1+h(e,z)) isbounded and Lipschitz.

Note that the norm (2) is used for z -z. An example of such a function 4 is
(21) h(e,z) = (ellz-2ll = D1, pc1/0-

3.1. Local Lipschitz property of the connection. Assume that for each
r > 0 there exists c(r) > 0 such that ‘

- (22) IT(y,2-2) —T(5,2-2) <c(r)(ly =yl +llz-2 — 2-Zl])

forall y, 7 € Vy and all 2,7 € V,, with 22zl < r and |Z-2] <.

REMARK 3.1.1. For example, in the linear case I'(y, z-z) = I'(yXz - 2), 3.1
holds when the Christoffel symbols are bounded and Lipschitz.



GAMMA-MARTINGALES AND BACKWARDS SDE 1241

When Condition 3.1 holds, it follows that the map

r ( z-z )

N -

(7.2) V' T+ n(e, 2)

is bounded and Lipschitz, for each ¢, since the composition of two Lipschitz
maps is Lipschitz, and z -z /(1 + h(e, 2)) is bounded. By Theorem 1.5, for any
U € L” there is a unique progressively measurable solution (Y, Z,) €
H?(,T;Vy X V,) to the following approximation to (11):

23) U=Y(t)+[ zaw-(1/2)f T|Y, Z 2|,
= - T - = < Sn
¢ e, ° / '/;t,T] 14+ h(e,Z,)

Consider the following condition on I"' and on the coordinate system:

3.2. A convexity condition. (i) Assume there exists ® € C*(Vy) with
bounded first and second derivatives and with Vd®(y, z - z) < c||z|| for some
¢ > 0, such that the set

(24) G={yeVy: ®(y) <0}
is compact and ® is doubly convex on G° [see (8)].

(ii) Moreover there exists f € C2(Vy) which is strictly doubly convex on G
[see (8)].

REMARK 3.2.1. (i) The set G is I'-convex in the sense that every geodesic
segment y with endpoints in G lies in G. Suppose a < b, y(a) and y(b) lie on
the boundary of G and y(¢) € G° for a < t < b. The I'-convexity of ® on G°¢
implies ® oy is convex, but

®(v(a)) =0==a(y(d)) = P(v(¢)) <0 Vie(a,b),
which is a contradiction to (24). The set G is convex in the Euclidean sense by
an analogous argument. This implies in particular that G is connected.

(ii) Consider the case where I'(y, z - z) is zero for y outside some ball of
radius a. Condition 3.2() holds for any ® such that ®(y) =|y| —a on
{y: |yl = a} and which is nonpositive on G = {y: |y| < a}. Provided the values
of T(y,z-2)/llz-z|l are not too large, the function f(y) =|yl® is strictly
doubly convex.

(iii) The purpose of (i) will be to ensure that the processes {Y,} are
uniformly bounded (Lemma 3.3); (ii) will ensure that the {Z,} are uniformly
bounded in H?2(0,T';V,) (Proposition 3.4).

(iv) These conditions refer to the choice of coordinate system, inasmuch as
they refer to the Euclidean convexity of ® and the strict Euclidean convexity
of f.

Here is a weaker version of the condition, applicable to I'-martingales.

3.2.2. Convexity condition—uweaker version. This is the same as 3.2 except
that ® (resp. f) need only be I'-convex (resp. strictly I'-convex).

The following lemma is an easy extension of a result in Darling (1993).
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LEMMA 3.3 (Boundedness of Pardoux—Peng solutions). Assume that T
satisfies Conditions 3.1 and 3.2(i). If the terminal value U of (23) lies in G,
then Y (t) € G for all t, with probability 1.

PROOF. Step 1. Let us use the abbreviation
(25) Z,=2,/(1+h(e,Z,))

and so dY,(t) = Z,dW — (1/2T(Y,Z, - Z,)dt. Thus, for any C? f and any
stopping times o, 7 with 0 < o0 < 7 < T, we have

FY(0) = V(@) = [ df(Y,)(Z, dW = (1/2T(Y.. 2, Z,) at)

1/2

+(1/2) f( . DM(Y)(Z.2,) dt,

= ]df(Ya)(Ze dw)

(o,r

(26) o .
AL ATV ARNIC AT AYE S

Here we have used the fact that Z,-Z, = (1 + h)Z,Z,, and so
D*f(Y,)(Z,"Z,) = (1 + k) D*f(Y,)(Z." Z,).

Consider the case where f is chosen to be the function ® appearing in
Condition 3.2. The first integral in (26) has mean zero because Z, is in
H?%0,T;V,) and d®(y) is bounded. By the double convexity of ®, the second
integral is nonnegative, and its expected value is finite because Z, is in
H?(0,T;V,), and D?>®(y) and Vd®(y, z-2)/llz-z|l are bounded. In other
words,

E[o(Y,(1)IT,] = ®(Y,(0))

and ® -Y, is a submartingale.
Step 2. Fix n > 1 and a time r > 0, and define a stopping time o by

o =inf{t > r: ®(Y,(t)) < 1/n}.
Observe that P(c < ®) =1 and ®(Y,(c)) < 1/n because ®(U) <0 as. It
follows from Step 1 that
(27) (Y, (r)) <E[®(Y,(0))IT,] <1/n. as.

Since (27) holds for all n, we see that P(Y, € G) = 1, but r was arbitrary, so
. with probability 1, Y, € G for every rational ¢, and hence for all ¢, by path
continuity. O

The next result, closely related to previous one, puts a uniform bound on
the total quadratic variations of the martingales [Z_dW.
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ProPOSITION 3.4 (Uniformly bounded quadratic variation). Suppose Con-

ditions 3.1 and 3.2 hold for some ® and f, with Hess, f(yXz-z) > alz|® on
G. Then

sup{ E |Z,|? dt
(28) p{ [fm,ﬂ |

< (2/a)sup{f(x) — f(y):(x,y) € G X G}.

ProoF. For an f as in Condition 3.2, we see that, on the entire interval
(0,71,

:0<s<1}

(29) (VAf(Y,,Z,-Z,) + kD f(Y,XZ, - Z ) > a(Z, 1>+ hZ,|*) = a|Z, %,

where (25) gives the last identity. Since the process Y, is bounded, by Lemma
3.2, it follows that df(Y,) is bounded and so the first stochastic integral in
(26) is a martingale. Now (26) and (29) combine to give

(30) E[ [, V2l dt] = /) ELFAT)) ~ FCEO)],

and the result follows because, by Lemma 3.3, Y,(0) as well as U = Y, (T') are
in G. O

COROLLARY 3.5 (Similar result for gamma-martingales). Assume Condi-
tion 3.2.2. Suppose Y is a bounded {¥,}-adapted T-martingale on [0, ) with
terminal value U and that U lies in G. Then Y, € G for all t a.s. and Y is an
H? T-martingale with Euclidean quadratic variation bounded by the right
side of (28).

Proor. In view of Lemma 2.2 we consider a solution (Y, Z) to (11) instead
of the solution to (23). Nowhere in the proof of Lemma 3.3 or Proposition 3.4
do we need the fact that T is finite or that ¢ is greater than zero. The only
difficulty is that we do not know a priori that Z € H?2(0,; V), and therefore
we cannot immediately take expectations in (26). To deal with this problem,
define stopping times {7(¢), 0 < & < 1} as follows:

7(&) = inf{t > 0: f 1ZI? ds > 1/3}
(0,t]

or « if there are no such ¢. Let Y,(¢) = Y(¢ A 7(¢)) and Z,(¢) = Z(£)1, _ (.-

Then Y, is an H? T'-martingale, in which Z, plays the role of Z in (15). All

the calculations of Proposition 3.4 go through for the pair (Y,, Z,), taking

h,= 0, yielding the estimate (28), except that G is replaced by the bounded

set in which Y spends its life. By Lebesgue’s monotone convergence theorem,

E Z* ds lim £ Z,* ds
o] e,y

w.
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By Lemma 2.2, Y is an H? I'-martingale, and we may now use the sub-
martingale argument of Lemma 3.3 to show that Y, € G for all ¢ a.s., and so
(28) also follows. O

4. Coupling technique. In order to prove the main estimates of this
paper, we need to study the stability of the ¥ ;-measurable terminal value U
with respect to variations in the path of the Wiener process W. In this
construction [inspired by Picard (1994)] we shall assume temporarily that ()
is the canonical space C([0, T']; Vi) of continuous paths starting at zero.

Let {W'(¢), 0 < t < T} be another Vy-valued Wiener process on a probabil-
ity space (', T, P’), with Brownian filtration {¥'}, all of which are copies of
the original W, (Q ¥, P) and (T}, respectively. Construct a product probabil-
ity space (Q, T, P) = (Q X O/, i X €', P ® P'), with filtration T, = T, X T,
in which we identify ¥, and T, as sub-sigma fields of g,

Any {Z,}- progresswely measurable subset H of [0,T] X Q may be identi-
fied with the {i }-progressively measurable subset H X Q' of [0, T'] X Q, and
similarly for {i }-progressively measurable processes. For such an H, we
may define an {it} -adapted process W on (Q, T, P) by

(31) Wi=[ 1gdW' + 1. dW.

(0,¢] (0,¢]
For example, if H =]Jlo, 7] for some pair of {¥,}-stopping times o,7 with
0<o<7<T,then:

1. On the random intervals (0, o] and (7, T'], the increments of W and wH
are identical.

2. On the random interval (o, 7], the increments of W and W# are indepen-
dent.

The mapping (W, W') - (W, W#) induces a new probability measure, de-
noted P, (with corresponding expectation operator Ey), on (Q, ). Observe
that the marginals of P are equal to P and P’, respectively.

Given any T ,-measurable random variable U = U(W) on (Q, T, P) with
values in Vy, and an identical copy U’ = U'(W') on (Q', T’, P’), the pair
(U,U’) has a joint law as a random variable on (Q, T, P) with values in
Vy X Vy, induced by the composition map

(W, W) > (W, W) > (UW),U'(WT)).

For example, U and U’ are independent if H =[0,7'] X  and identically
equal if H = .

In this and subsequent propositions, {8, 8,,...} will refer to positive real
numbers which we are free to choose as small as we like.

PROPOSITION 4.1 (Stability with respect to changes in the Wiener path).
Every random variable U in L*(Q, T, P; V), for any Euclidean vector space
V, has the following property: for every 8 > 0 there exists u = u(8;) >0



GAMMA-MARTINGALES AND BACKWARDS SDE 1245

such that, for every {T ,}-progressively measurable subset H of [0,T] X Q, the
Jjoint law of (U,U’) under Py satisfies

(32) Ex[lU-UP] < u(al)E[f(o . 1, dt] + 8,

REMARKS. The idea is that U does not behave in an “unstable” fashion in
response to a small change in the Wiener path. It is important to notice that
the expectations on the right and left sides of the previous inequality are
taken over different probability spaces. Since (32) refers only to the laws of

the random variables involved, it remains true without the restriction that
Q= C(0,T]; Vy).

ProoF. Let us give Q = C([0,T']; V) the topology of uniform convergence
on compacts, under which it is a normal topological space. The Borel sets for
this topology are identical with &, and Wiener measure P is a closed, regular
measure [see Dudley (1989), Chapter 7, for the definitions]. Given 6 > 0, we
first choose a compact set K in V such that

(33) Ex[lU - U A°] < 6/3,
where A = {(w, 0'): (U(w),U'(w')) € K X K}. Let p denote
p = supf{lx — yI*: (x,y) € K X K}.

By Lusin’s theorem [Dudley (1989), page 190], there exists a compact set
F c Q with P(F¢) < §/(6p) such that U = U(w) restricted to F is continu-
ous. Let F' € Q' be a copy of F. Now

Py((F X F')°) < Py(F° x Q') + Py (Q X (F')°)
< 2P(F°) < 6/(3p).

Since U — U’ is continuous on the compact F X F’, it is uniformly continu-
ous, and so there exists an n = 1(8) > 0 such that for (w, ') € F X F',

35) supllo(®) —0'@:0<t<Ti<n = |[Uw) - U(w)?<§/3.
Let us decompose the set A as follows:

Ay=AnNn(FXF),

A =ANn{(w,0') €F X F':sup{lo(t) —o'(t):0<t<T} <1},

A, =ANn{(w,0') €F XF :sup{lo(t) — o' (t):0<t<T}>n}.
Observe that by Doob’s inequality and (31),

Py(A,) < Py(sup{IW, - WHP:0 <t <t} > n?)

(36) < 07 2E[sup(IW, - WH*:0 <t < T}

(34)

< 297 2E[ W, — WH | = 21;—2E[f(0 o L dt].
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Finally we obtain from (33),
Ey(lU-UPP] <8/3+ ¥ Ey[lU-UP; A

O<i<2
£6+2pn_2E[f lHdt],
(0,T]
using (34), (35) and (36). O

5. Stability of solutions with respect to the terminal value. Given
a nonlinear connection T', the product connection I'® on Vy X Vy is defined
for our purposes by

rol|Y zz z-2 —rof|? z-z 0
y,,Z,'Z 2" ! y/’ 0 2z’

F( Y22 )
T(y',z'-2")|
Note that we do not need to define it except when the second argument is of
one of the two special forms above. As in (8), we shall say that a C? function
¥: Vy X Vy = R is doubly convex on a subset B of Vy X Vy if it is convex
with respect to both the product connection I'® and the Euclidean product
connection; in other words,

(38) Hess, ¥(y,y)((z®2')-(2®2')) =0
for all (y, y') € Band all z, 2z’ € V,. V®® d¥ will denote the second covariant

derivative with respect to I'®, in the sense of (7). The following condition is
based on Kendall (1990).

(37)

5.1. Another convexity condition. Let G be the compact set appearing in
Condition 3.2. We shall say that G has doubly convex geometry if there exists
a C? function ¥: V;, X Vy — [0, ) which is doubly convex on B X B for some
open set B D G and which vanishes precisely on the diagonal of G X G, or to
be specific,

(39) {(x,y) €eGXG:¥(x,y) =0} ={(x,x): x € G}.

REMARK 5.1.1. (i) For linear connections, such a ¥ always exists in a
sufficiently small neighborhood of any point. The proof is a modification of
(4.59) in Emery and Meyer (1989).

(ii) The condition is not intrinsic, since it refers to the Euclidean convexity
of .

(iii) The purpose of the condition is to bound the distance between two
approximate solutions in terms of the distance between their terminal values.

(iv) We know from Kendall (1990, 1991, 1992) that, in the case of linear
connections, the weaker Condition 5.1.2 (with ¥ merely continuous, instead
of C?) is equivalent to uniqueness of a I'-martingale Y with terminal value U
in G, in the case where G is a compact manifold with boundary.
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5.1.2. Convexity condition—weaker version. This is the same as Condi-
tion 5.1 except that ¥ need only be I'®-convex.

5.2. Constructing a coupled pair of approximate solutions. Let us change
notation slightly from the previous section, so that (W, W’) is the canonical
random variable on (Q, T, P)=(Q X Q', T X T, Py), Q being path space,
H some {T,}-progressively measurable set and P, the probability measure
described above such that the marginal distribution of both W and W' is that
of a Vy-valued Wiener process. Given any ¥ -measurable random variable
U, =U(W) on (Q,ZT,P) with values in Vy, and a (possibly unrelated)
' -measurable random variable U, = Uy,(W’') on (', Z’, P'), we may solve
both (23) for U, and the corresponding equation for U,, namely,

Uy, =Y/(¢t) + [(mz; aw’ — (1/2)f(t,T]r(y;',Z;-Z;) ds,

where A is as in (19) and (20) and
Z.=27./(1 + h(s,2))">.

We now have a solution scheme analogous to (23), replacing I' by the product
connection I'® as in (37), namely, a solution

(Y., Z,),(Y,,Z;)) € H*0,T;(Vy X V) X (Vy X Vy))
to the backwards SDE:

U] [Y.(t) . Z, dw
Uy | vy " a2 aw
Z,-Z, ZS-Z;]

(40) _(E

— T® .
2

Y,

Y.I'lz.-2, z-Z
Here Z, = Z,/(1 + h(e, Z,))*/?, and the top and bottom rows have a joint law
induced by Py. The meaning is the same if the off-diagonal entries of the last
two-by-two matrix are set equal to zero, by (37). Note the technical point that
the top row contains {<T;}-adapted processes and the bottom row, {¥}-adapted
processes; thus everything is {¥,}-adapted. Observe also that in expressions
involving terms from both top and bottom, expectations must be denoted E,;,
whereas for expressions involving the top only, E and Ej coincide.

PROPOSITION 5.3 (Bound on the distance between coupled solutions). Sup-
pose I satisfies Conditions 3.1, 3.2 and 5.1. Also assume that the range of the
terminal values U, and U, is contained in the compact set G specified in
Condition 3.2 a.s. Given 8, > 0, there exists a constant A = X §,,G,T) such
. that, for every { }-progressively measurable set H, every ¢ > 0, every {T }-
stopping time v < T and every A € T,

(41)  Eg[IY,(v) - Y (0)1*1,] < M(8,) Ex[IU; — Upl*1,] + &,.

PRrOOF. Let the C? function ¥: Vy, X V, — [0,) be as in Condition 5.1
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and let Y, = (Y,,Y). For any stochastic interval Jlo, 7], we may write as in
(26),

V(Y,(1)) - ¥(Y.(0))

= d¥ (Y. Z, dW
IR/ (Y.) Z. dW'
> _E.Zé‘ _6‘ _;’
+ 1HS{V<2)d\If Y, O _ _
(o,1l .:: & ; ;;
(42) +D2\I’ ¥a Ae Ae As A;: it_
g2 22
. |Z,-Z 0
+ 1,(v®dv|Y,,| ° ° _ _
f(a,ﬂ H{ o Z.-Z
N VAV o || a
+D2w(Y)| T L 1o
o Z.-7.| 2

where Z_ = Z {h(s,Z,)/( + h(e, Z,))}*/?, and similarly for Z!. This expres-
sion follows from (40) because the increments of W and W' are independent
on H and identical otherwise. The boundedness of (Y,,Y,) (by Lemma 3.3)
and the fact that Z, and Z, are in H2(0,T;V},) ensure that all the stochastic
integrals above have finite-expectation. Double convexity makes the second
and third stochastic integrals nonnegative, while the first is a martingale.

Thus [17s,.7 d(¥o Y’a) is a nonnegative submartingale and, in particular,

(43) Ey[¥(Y.(7)) - ¥(¥,(0))|T] 20, O0<o<r<T.

Let p denote sup{lx — y|*: (x, y) € G X G}, and given & > 0, define
Ry={(x,y) €GxG:lx —yI* < 8/(2p)}.

By virtue of (39), the following quantities are well-defined:

a2
p(d) = sup{\lp(T,yyl—):(x,y) eEGXG —Rs},
q(d) = sup{lg(%j%z): (x,y) €GXG —Ra}.

Thus for every {T,}-stopping time v < ¢ and every A € T,
 E[|%) - V() [14] £ 8/2 + Eg[|Y.(v) - ()14, V() # R, ]
< 8/2 + p(8) Ey[¥(Y.(v), ¥/ (v))14]
< 8/2 + p(8)Ex[¥(U,U")1,],
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using (43). However, by a similar reasoning,
Ey[v(U, U1, <8 /2 + q(‘o")EH[IU - U’IzlA].
Choosing 8’ small enough so that p(8)8’ < 8 now gives the result. O

COROLLARY 5.4 (A uniform bound in probability). Given a > 0, let v=
inf{t > 0: |Y,(¢) — Y/(¢)| > a} A T. Given &, > 0, there exists a constant A(§,)
= N8y, &,T') such that, for every {Z }-progressively measurable set H and .
every € > 0,

(44) Py(v<T) < {N(8,) Ex[IU; — Upl*; v < t] + 8, /a’.

ProoF. Clearly E,[|Y,(v) — Ys'(v)lz; v<T]>a?Py(v<T). Taking A =
{v < T} in Proposition 5.3 gives the result. O

COROLLARY 5.5 (A result for gamma-martingales). Assume Conditions
3.2.2 and 5.1.2. Formula (41) applies to bounded T'-martingales Y and Y’
with T -measurable terminal values U, and U, in G, respectively.

Proor. It follows from Corollary 3.5 that Y and Y’ spend their whole
lifetime in G and are H? I'-martingales. The proof goes as before, taking
H=¢, h=0 and T = . Many of the details are in the proof of the next
corollary. O

COROLLARY 5.6 (Limit of a sequence of gamma-martingales). Assume
Conditions 3.2.2 and 5.1.2. Suppose T' < » and for 0 < e < 1,{M_(¢),0 <t <
T} is a bounded T'-martingale with values in the open set B O G appearing in
Condition 5.1, with the property

(45) E[IM(T) -UI’)l >0 ase—0

for some ¥ -measurable U in G. Then there exists a I'-martingale M with
values in G such that M(T) = U and P(sup{|M,(¢) —M@®)l: 0 <¢t < T} > a)
—>0as e— 0 foreach a > 0.

ProOF. Let us mimic the coupling construction (40), taking H = J, so
that in effect W = W’; thus the distinction between P and P, need no longer
be maintained. Let us use an 71 for the bottom row instead of an &, for there
is no need for the parameters in the top and bottom to coincide. We obtain an
expression of the form

Me(T) _ Me(t) E
wyry |~ ey | o

All the calculations of Proposition 5.3 go through exactly as before, except
that £ = 0 and so we do not need any condition on D?¥. Each Z_ is in

0

Z, dW T(M,,Z,-Z,) ] ds
Z, dw f(m (M, Z,Z)|2"
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H?(0,T;V,) by Corollary 3.5. Also we replace G by B from (43) onward.
Given a > 0, let

v=inf{t > 0:|M,(t) - M,(¢)| 2a} A T.

Corollary 5.4 gives the following assertion: given &, > 0, there exists a
constant A(8,) = M8, B,I') such that

(46) P(v<T) < {A(8,) E[|M,(T) — M(T)I*] + 62}/a2.
However, it follows from (45) that
(47) E[IM(T) - M(T)’| >0 ase,n—0.

Together (46) and (47) say that, for every a > 0,
P(sup{IME(t) -M,(t):0<t< T} > a) -0 ase,m—0.

In other words, {M_, 0 < & < 1} forms a Cauchy family of continuous {<¥,}-
adapted processes with respect to the topology of uniform convergence in
probability on [0,T']. There exists a subsequence which is Cauchy with
respect to uniform convergence a.s., and which therefore has a unique contin-
uous {ZT,}-adapted process M on [0,T] as its limit; all such subsequences
have the same limit a.s. Necessarily we have, for all a > 0,

(48) linéP(sup{IMs(t) -M(¢):0<t<T}>a)=0.

It follows from (48) that the terminal value M(T") must be U. The fact that M
is a I'-martingale follows from Theorem 4.43 of Emery and Meyer (1989),
which says that the limit under uniform convergence in probability of any

sequence of I'-martingales is a [-martingale. The fact that M takes values in
G follows from Corollary 3.5. O

6. Estimates for approximating gamma-martingales.

6.1 A stronger Lipschitz condition. Assume that there exist constants
¢, ¢’ > 0 such that, for all z € V,,

(49) IT(y,z-2) —T(y',z-2)l<cly —y'llz-2ll Vy,y €Vy,
(50) T(y,z-2) —T'(y,0)l<c'llz-2z]l Vyea.

Also there exist constants c(r) > 0 for each r > 0 such that, for all z,z’' €V,

with |z -zl <rand |2’ - 2'|| <,

(61) II'(y,z-2) —TI'(y,2"-2) <e(r)llz-z—2"-2'l VyeVy.
REMARK 6.1.1. (i) Condition 6.1 implies Condition 3.1.

(ii) Inequality (49) (taking z -z = 0) implies that I'(y,0) is the same for
all y, and (50) implies that, for y, y' € G,

T(y,z-2) —TI'(y',2" -2 <II'(y,2-2) = T'(y,0)l
(52) +1T(y’,0) —=T(y",2"-2")l
<c'(lz-zll+1lz"-2'll).
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(iii) Condition 6.1 is satisfied when I' is a linear connection whose
Christoffel symbols are bounded and Lipschitz.

The following proposition gives the crucial technical tool for controlling the
solutions to (23) as ¢ = 0.

PROPOSITION 6.2 (A uniform integrability property). Suppose T' satisfies
Conditions 3.1, 3.2, 5.1 and (52), and that the range of U is contained in the
compact set G specified in Condition 3.2, a.s. Then the solution (Y,, Z,) to (23)
satisfies

/ Lizps l/s)IZs|2 dt —» 0 in probability as € = 0.
o,7] T 7

To be precise, there exists a family of {Z }-stopping times {v(¢), 0 < & < 1}
such that, for H ={|Z,1* > 1/&}, the following occur as & — 0:

(53) Py(v(e) <T) - 0;

54 E 1, Sz 2 dt| - 0.
(54) H[/(o,u(sn (222 1/¢)

PrOOF. Step 1. Given any ¥ ,-measurable random variable U = U(W) on
(Q, <, P) with values in G, let us take an identical copy U = U'(W’) on
(Q',Z’, P’'), and consider the solution to the system (40) in the case where
(U;, Uy) = (U, U’) and where the {T,}-progressively measurable set H (which
can also be regarded as {Z,}-progressively measurable) is chosen to be

H={z)*>1/¢}.

It follows immediately from our previous estimate in Proposition 3.4 that

E[f 1, dt] < eE[j 1Z, |2 dt] < ey,
(0,7T] (0,7T]

where
(55) c; =¢(T,G) Esup{[f 1Z,|? dt]:O <e< 1}.
(0,7]
We see from (32) that for any §; > 0 there exists u(8;) such that
(56) Ex[IU - U'1?] < w(8,)ec, + 8.
Step 2. Next observe that from (40) we obtain the forward SDE
dY,(t) — dY!(t) = Z, dW — Z. dw’

-{r(v,,2,-2,) - I‘(Y;’,Z;-Z;)}i;-.
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It6’s formula now gives
dlY,(t) - /()"

1y = (ZF+1ZP - 22, Z}1,.) di + 2(Y,(2) - (1))

_ __ ., dt
-(Za aw -z, aw' - (1(Y,,Z,-Z,) - F(Y;,zs-zg)};).
For any 8; > 0, we may define an {¥}-progressively measurable set L by
L ={(¢, 0):1Y,(t) - Y/(t) < 8;/c'},

where ¢’ is the constant appearing in (52). It is evident from (52) that, on the
set L,

(Y(t) - ()T (Y.. 2, Z,) - T(¥.. 2, Z,))|
< 8,(12,1° +12.1%).

The process [(Y(t) — Y, (t)XZ, dW — Z, dW’) is a martingale, since (Y,,Y,)
spends its whole lifetime in G X G. Thus (57) shows that, for §; < 1,

J1anLdlYo(2) = ¥(0)P
is a submartingale. Moreover, for the {T,}-stopping time
(59) v=inf{t > 0: |Y,(¢) — Y/ (¢)l = 85/¢'} A T,
it is clear that stochastic interval 10, v L, and so for every &, < 1/2,

EH[/(-O’U] 15(12,1° +1Z.1%) dt/2]

(58)

(60)
< EH[/(0 L) - Y;<t)|2].

Replacing H by H¢, we also obtain from (58) by a similar argument that

EH[ [, redi¥e) = Y0

(61)
> —8,E 14(12,17 + 12 dt].
B[ T )
Step 3. To prove the proposition, with the stopping time v in (59) playing
the role of v(¢), we use the following estimate. From Proposition 5.3 we see

that for any 8, > 0 there is a A(8,) = X(8,, G, T'), not depending on §,, such
that

- (62) Eg[I%,(v) - Y2()] < A(85) By [IU - U] + 5,.
B& virtue of (56), we obtain
(63) Ey[IY,(v) = Y (v)P] < A(85)[ u(8;) ec; + 8,] + 5,
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As in Corollary 5.4, we have
(85/¢')’ Py(v < T) < Ey[IY.(v) -~ ¥ (v)I*],
and so (63) gives

(64) Py(v<T) < (c'/8) (N(8;)[ n(8y)ec, + 8,] + 85).
On the other hand, we have from (60) and (61) that, for §; < 1/2,

B[ 1z dt/z] SB[, 1% (0) - V(0P|
(0,v] (0,v]
< Ey[I%,(v) - ¥(v)’]
- B[ twdi¥(0) - V(0P|
(0,v]
< By[lY,(v) - Y(v)’]
+ 8,E 18Z2+Z’2dt].
Bl [ 1120 +122F)
Thus by formulas (55) (which of course applies to Z! as well) and (63),
(65) E[[ 1,412, )? dt] < 2{M(8;)[ m(8,) gcy + 8;] + ;) + 484c;.
(0,v]

By choosing 83, 8,, 8; and & (in that order) to be sufficiently small, formulas"
(64) and (65) show that the left sides of both (53) and (54) may be made
arbitrarily small. O

6.3. Approximating gamma-martingales. Assume Condition 6.1. To each
solution (Y, Z,) to (23) there corresponds a I'-martingale M, = {M_(¢), T}
obtained by solving the following forward SDE:
r(M,,

M,(t) = Y,(0) + f(o , Z, dw — Z,-Z,)ds/2,

(66) (0,¢]

O0<t<T,
where Z,=Z,/(1 + W&, Z,))/? as in (40). Such a solution exists for all
0 <t < T because the first stochastic integral is an L? martingale and the
integrand in the second integral can be expressed as bds + a(M_, s) dF.(s),
where b is the constant value of 2I'(y, 0) (see Remarks 6.1.1),

I(y,2,-Z,) —T(y,0)
21Z,- Z,|

(67) y—=a(y,s) =
: ‘is globally Lipschitz by Conditions 6.1 and

(68) F(t) = j(o , IZ, Z,|l ds,
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which is a bounded, increasing process. Note carefully that M, has the same
initial value as Y, but need not have the same terminal value, since the
martingale parts of M, and Y, are different. Indeed, there is no guarantee
that M, is confined to the compact set G. The strategy will be to show that
the terminal value of M, converges in probability to U as £ — 0, and that the
family {M,, 0 < & < 1} converges uniformly in probability on [0,T] to a
limiting I'-martingale M with terminal value U.

Although M, is adapted to the smaller filtration {Z}, it will be convenient
to work w1th1n the product probability space and the larger filtration {T,}
introduced in Section 4, taking H = {|Z, |* > 1/¢} as in Proposition 6.2.

LEMMA 6.4 (Stability of forward SDE). Suppose I satisfies Conditions 3.2,
5.1 and 6.1, and that the range of U is contained in the compact set G
specified in Condition 3.2, a.s. Then, for all n > 0,

P(sup{lY,(t) —M(t):0<t<T}>n)—>0 ase—0.

Proor. We are working with a pair of stochastic differential equations
which may be written concisely in the notation of (67) and (68) as

(89) Y(8) =4(t) bt = [ a(¥,s) dF(s),

(70) M(1) = &(t) bt~ [ a(M,,s)dF,(s).

Observe that, by Condition 6.1, |a(y, s) — a(y’, s)l < cly — y'l for all s, for c
as in (49). The Vy-valued martingales ¢, and ¢/ satisfy £,(0) = £,(0) and also

L(8) - &/(¢) = f( INCAE AL

_ _ e, 1/2 .
o {1 (1+h(e,2,)) "} dW

Observe that, by (19),
0<{1-(1+h(s,2))""} < Lzpsrje
Thus for the {T,}-stopping time v = v(¢) as in Proposition 6.2, we have

Ey[I4(v) - &(v)]
<E 1z s slzszdt]‘—ao
H[f(o,v] {1Z,*=21/¢€} |

.as & — 0. By Doob’s L? inequality,
(71) p, = E[sup{lg’e(t) - ()*:0<t< v}] -0 ase—0.

From this point on the proof follows the basic outline of Theorem 3.7.5 of
Métivier and Pellaumail (1980), so we shall give the main points only. It
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follows from (3) that the process F, is “ *-dominated” [in the sense of Métivier
and Pellaumail (1980)] by the process

A)=[ 1z ds,
(0,t]

implying that for every Hilbert-valued bounded progressively measurable
process ¢ and every {Z,}-stopping time 7 < T we have

EH[sup{’/;O ; wlZ,-Z,| ds

2
:Ost<7}

(72)
< EH[Ae(T)f(0 T]w dAe].

Introduce {¥,}-stopping times {v(&, n)} by
(73) ‘ v(e,n) =inf{t > 0: A (¢) =2n} A T.

It follows from Proposition 3.4 that E[ A (T)] is bounded uniformly in ¢ and,
therefore, sup{P(v(e,n) < T):0 < ¢ < 1} = 0 as n — «. Define {T,}-stopping
times o(e,n) = v(e) A v(e, n), with reference to (73) and Proposition 6.2.
Thus

(74) sup{P(o-(a,n)<T);O<a< 1} - 0.

Let X;* denote sup{|X,|: 0 < s < t}. Subtract (70) from (69), take the supre-
mum up to an arbitrary {¥,}-stopping time 7 < T, take the second moment
and apply (72) to obtain

By, - MY < 2E4[{12, - 1YY
+ 2EH[A€(T)f la(Y,,s) —a(M,,s)| dAg].
(0,7]
If ¢, = sup{|Y,(¢) — Ms(t)lz: 0 <t < s}, it follows that, for 7 < o(e, n),

EH[QD‘)'] < 2p€ + 2nc2EH[j[;) ]‘Ps dAe]’

using the notation of (71). By Lemma 3.7.1 of Métivier and Pellaumail (1980),
it follows that there exists a real number y = y(n, ¢) such that

EH[ ‘Pzr(s,n)] < psy(n’ C‘).

So given n > 0, first choose n so large that P(o(e,ny) < T) < n/2 for all ¢,
using (74), and then invoke (71) to choose &, so small that p,y(n,,c) < n/2
for ¢ < ¢;. Now

P(sup{lY(t) — M ():0<t<T}>n)<n

forall e < ¢gy. O
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7. Existence and uniqueness theorem. The basic result of this paper
is the following.

THEOREM 7.1 (Solution under convexity conditions). Suppose T < «», that
I' satisfies Conditions 3.2, 5.1 and 6.1 and that the range of U is contained in
the compact set G specified in Condition 3.2, a.s. Then there exists a unique
progressively measurable solution (Y,Z) to the Pardoux—Peng system (11)
associated with (W,T,U) such that Z € H%(0,T;V,). In particular, Y is an
H? T-martingale with terminal value U. Moreover:

G) Y@) e Gforallt, a.s.
(i) E[ Jo. oc)IZ |2 ds] satisfies the bound of Corollary 3.5.
(iii) The process Y depends continuously on the terminal value U in the
sense of Corollary 5.5.

ProOOF. Uniqueness. The technique is standard from Emery (1985), but
let us sketch it for the unfamiliar case of nonlinear connections. If there are
two solutions (Y, Z) and (Y, Z), one writes out the Itd formula for ¥(Y,Y"),
giving an expression similar to (42) but without the D2¥ terms. The convex-
ity of ¥ (Condition 5.1) shows that

V(Y (t),Y'(t)) — f(o , (DY (Y)ZdW + D,¥(Y")Z' dW)

is an integrable increasing process, and the stochastic integral above is a
martingale. Thus ¥(Y,Y’) is a bounded nonnegative submartingale converg-
ing to zero almost surely, and therefore identically zero. In view of the fact
that ¥ vanishes only on the diagonal (Condition 5.1), this shows that Y and
Y’ are identical (and so are the associated Z and Z’ by the reasoning below).

Existence. (Step 1). In the first step of the proof, take T' < . We wish to
construct '-martingales on the time interval [0,7'] whose terminal values
converge to U in L? as & > 0. Let B O G be the open set appearing in
Condition 5.1, which may be bounded if necessary so as to fit inside the
Euclidean ball of radius r, for some r > 0. For each I'martingale M, intro-
duced in Section 6.3, let

m'(¢) = inf{t > 0: M(t) ¢ B} A T,

which is an {¥ }-stopping time, and let M/ denote M, stopped at 7'(¢); this is
also a I''martingale. From the definition of r,

E[IMUT) - U] < 4r®P(s'(¢) <T) + E[IM(T).— UP;7'(¢) = T].
Since sup{|Y,(¢) — M_(¢)|: 0 < ¢t < T} goes to zero in probability by Lemma 6.4
and since Y, spends its whole life'in G, it follows that

P(7'(e) <T) >0 ase—0.

Lemma 6.4 also implies that M_(T') converges to U in probability as £ — 0.
Therefore, given any 6> 0, we can find ¢, such that, for all ¢ < g,
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4r’P(r'(¢) < T) < /4 and P(A) < 6/(16r?), where A ={M(T) - U|* >
8/2}. Thus, for ¢ < ¢,

E[IM/(T) - UP;v'(e) = T] < 8/2 + E[IM(T) - UP*; An {7'(e) = T}].

By the fact that U lies in G, the last expectation is bounded above by /4,
and we deduce that, for ¢ < ¢,

(75) E[IMy(T) - UP] <.

In other words, {M., 0 < £ <1} is a family of B-valued {¥,}-adapted T-
martingales on the time interval [0, T'] whose terminal values converge to U
in L? as & > 0. Now we apply Corollary 5.6 to the family {M/, 0 < & < 1} to
obtain a limiting G-valued I'martingale M with M(T) = U.

(Step 2). Finally we consider the case T = «. Recall from Remark 3.2.1
that G is convex in the Euclidean sense and, therefore, E[U|Z,] € G a.s. By
the previous step, there exists a I'-martingale Y with terminal value
E[U|Z,] and which takes values in G. Since E[U|Z,] —» U in L?, we apply
Corollary 5.6 again to obtain a limiting I'-martingale Y with Y(T') = U. To
construct the progressively measurable process Z as in (11), apply the Ito
representation theorem to the Vy-valued continuous local martingale Y +
(1/2)/T(Y,(dY ® dY)/ds) ds. Thus

| Zdw=U-Y(0) + (1/2)[ T(Y,(dY ®dY)/ds)ds.
0, (0, )

It follows from Corollary 3.5 that Y is an H? I'-martingale with values in G.
This completes the construction of (Y, Z) satisfying (11), for the case where
T = . The assertions (ii) and (iii) follow from Corollaries 3.5 and 5.5. O

CONJECTURE 7.2. The existence (but not uniquesness) assertion of Theo-
rem 7.1 remains valid without Condition 5.1 (i.e., Conditions 3.2 and 6.1
suffice). Such a solution satisfies (i) and (ii), but possibly not (iii).

8. Some generations and applications.

8.1. Application to nonlinear elliptic PDE’s. Suppose (N, g) is a Riemann-
ian manifold, and X is a Brownian motion with drift on (N, g), with
generator L. Alternatively, think of X as a diffusion process on a Euclidean
vector space Vy, which solves the SDE

(76) dX(t) = b(X(t))dt + a(X(t))dW(z), X(0) =x,
where Yoo/ = g/, the inverse metric tensor. Let K be a compact submani-
fold with boundary of N, with boundary 4K, and for x € K, let { denote the
first time that X hits the boundary; ¢ is assumed finite a.s. Given a
nonlinear connection I' as in (4) and a continuous (or perhaps more regular)
mapping °

¢:0K—-> GcVy,
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we wish to find a mapping ¢: K » G which solves the following Dirichlet
problem:

(77) Le(x) + %F((p(x), Y D, o(x)g"(x) DJ-(p(x)) —0, =xckK,

i,J
(78) o(x) = o(x), x € /K.

In the case where L = (1/2)A and T is a linear connection, (77) becomes the
familiar condition that ¢: (K, g) = (G,T) be a harmonic mapping [see Eells
and Lemaire (1978, 1988)], namely,

(79) Ap® + YT (¢) D;¢P g’ Dip" =0, 1l<a<m,

where Greek indices are used for coordinates in Vy and ¢ = (oY, ..., ™). The
procedure suggested by Kendall (1990, 1994), and more generally Peng
(1991), is as follows. Using the same Wiener process W with which we
constructed the diffusion X in (76), whose value at time ¢ (see above) for
X(0) = x is denoted X,({), solve the backwards SDE

(80) B(X(£) =Yu(t) + [ Z,dW—(1/D)[ T(Y. 2, Z)ds

and set ¢(x) = Y,(0). Note that, under the conditions of Theorem 7.1, Y,(0) is
nonrandom (by adaptedness), unique and lies in G, and provided x — X ()
is continuous in probability [see Métivier and Pellaumail (1980), Section 3.7],
¢ is continuous by Theorem 7.1, part (iii). The proof that this ¢ is “finely
harmonic,” in the sense that it sends L-diffusions to I'-martingales, is
relatively straightforward [Kendall (1990)]. For the case presented in (79),
conditions under which ¢ is smooth are presented in Kendall (1994). In a
different context, Pardoux and Peng (1992) use the Malliavin calculus to
show that Y,(0) is a differentiable function of x, but unfortunately under
Lipschitz conditions too restrictive for the present application.

8.2. Terminal value with noncompact range. To extend Theorem 7.1 to
the case where the range of U is not relatively compact, one takes an
increasing sequence of compact sets G; C G, C ‘- whose union G contains
the range of U, and C? functions ®,, f,, such that {G,, ®,, f,} satisfies
Condition 3.2 for each n. Assume that ¥: V; X Vi — [0, ) is a function with
bounded first and second derivatives which is doubly convex on G X G. If U
is in L2, one can take a sequence {U,} of ¥, -measurable random variables
which converges to U in L? and such that the range of U, is contained in G,.
Theorem 7.1 gives an H? I'-martingale Y with terminal value U, and
. which takes values in G,, for each n. Proposition 4.4 in Darling (1993) shows
that there is a [-martingale Y, the uniform limit in probability of the (Y},
with Y, = U, using the fact that ¥(U,, U) converges to zero in L'. We shall
not write out the full details because a similar result has already been given
in Theorem 5.2 of Darling (1993), together with some examples.
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8.3. The time-dependent case. One can replace the nonlinear connection I'
as in (4) by a time-dependent function
(81) A:[0,0) X Vi X (Vy ® V) > Vi,
A function ¢ € C?(Vy) is called A-convex on G C Vy if, for all y € G,
(82) D% (y)(z-2z) — Do(y)A(t,y,2:2) 20 V¢, VzeV,.

The definition of A®-convexity for ¥ € C%(Vy X Vy) is analogous. Thus
Conditions 3.2 and 5.1 can be interpreted in this case also.

THEOREM 8.4 (For the time-dependent case). Suppose A: [0,°) X Vi X
(Vy ® Vy) = Vy satisfies Conditions 3.2 and 5.1 in the sense described in
8.3, that A(t, ") satisfies Condition 6.1 uniformly in t and that the range of U
is contained in the compact set G specified in Condition 3.2, a.s. Then the
conclusions of Theorem 7.1 apply to the backward SDE (for t < )

(83) U=Y(t)+f(tT]ZdW—(1/2)f(tT]_A(s,Y,Z'Z)ds.

ProorF. Using Theorem 1.5, the construction of the approximations (23)
presents no problem and the rest of the proof goes as before. O

8.5. Application to nonlinear parabolic PDE’s. The following is based on
Peng (1991). Let us proceed as in Application 8.1 except that now the
generator L may be time-dependent, that is, of the form

(84) Lio(x) =(1/2) Zaij(t’ x) Dij¢(x) + Zbi(t’ x) D;p(x),
t,J i

and likewise the coefficients of the SDE (76) now depend on ¢, with Lo, g,/ =
a'/, the inverse of a (assumed to exist). Given T' < », a mapping A as in (81)
and a mapping ¢;: N - G C Vy, we wish to find a mapping :[0,T] X N -
G which solves the following quasilinear parabolic PDE:

o 1
(85) — F L+ —2-A(t,¢,(D¢/)a‘1(D¢//)T) =0.
(86) Y(T,x) = ep(x).

In the case where L = (1/2)A and G is a linear connection, (85) becomes the
heat equation for harmonic mappings [see Eells and Lemaire (1978)], namely,

a . N
(87) 28—‘1':’ + Ay + YT (¢) DyP giDp” =0, l<as<m,

in the notation of (79). Peng’s (1991) proposal is to construct the diffusion X
on a time interval [¢, T'] using the forward SDE

X,(s) =x+ f“ § b(r, X,(r))dr + f“ g o(r, X,(r)) dW
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and then to solve the backwards SDE on [¢,T]:

er(X(T) =Yu(s) + [ Z,dW
(88) (s,T]
—(1/2)[(3 T]A(r,Yx,Zx~Zx)dr.

Since {Y,(s), t <s < T} is adapted to the increments of W on [¢, T'], it is clear
that Y,(¢) is nonrandom, and Peng (1991) shows that, under conditions more
restrictive than ours,

¥(t, x) = Y,(¢)

solves the system (85) and (86). The study of the heat equation for harmonic
mappings using this method seems to be an open problem.
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