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~ Let {X,} be, for example, a weakly stationary sequence or a lacunary
system with finite pth moment, 1 < p < 2, and let {a,} be a sequence
of scalars. We obtain here conditions which ensure the almost sure con-
vergence of the series Y a,X,. When {X,} is an orthonormal sequence,
the classical Rademacher-Menchov theorem is recovered. This is then ap-
plied to study the strong consistency of least squares estimates in multiple
regression models.

1. Introduction. We study in the present note the problem of the almost
sure convergence of the partial sums Sy = zﬁ N @nXp, where the X, have
some dependence structure. Although this problem is very classical, much re-
mains to be known when the-sequence {X,} is not assumed independent.
This is certainly due to the fact that dependence structures assume many
forms and are thus more intractable. Let us mention some known results, re-
lated to ours, and upon which we either improve or that we just complement.
The first and foremost result we have in mind is the so-called Rademacher—
Menchov theorem which asserts (see, e.g., [1] and [16]) that when {X,} is
an orthonormal sequence, Y |a,|2log?(1 + |n|) < oo guarantees the a.s. con-
vergence of the corresponding weighted series Y a,X,. Of course, for some
particular orthonormal sequences, for example, martingale differences, the
otherwise optimal factor log?(1 + |n|) is unnecessary (throughout, log is the
base 2 logarithm). Other related results we have in mind deal with S, (la-
cunary) systems (see, e.g., [6, 1, 16]), with quasistationary sequences [8] or
large classes of weakly dependent variables [20, 3]. Two main features of the
works just mentioned are the existence of moments of order p, 2 < p, and/or
estimates of the covariance of the random sequence. In addition to providing a
single framework for the above examples, these features will be reconsidered
here and, in particular, we mainly assume 1 < p < 2.

Received July 1993; revised October 1994. .

1Research supported in part by a NSF Mathematical Sciences Postdoctoral Fellowship while
at Department of Statistics, Stanford University, by NSF-NATO Postdoctoral Fellowships while
at CEREMADE, Université Paris Dauphine, and at CERMA, Ecole Nationale des Ponts et
Chaussées, and by AFOSR contract 91-0030.

AMS 1991 subject classifications. Primary 60F15, 60G10; secondary 60G12, 60E07.

Key words and phrases. Stationary sequences, series, almost sure convergence, Rademacher—
Menchov theorem, SaS harmonizable sequences, strong consistency, least squares, multiple re-
gression, S,-systems, stationary Markov chains, weak dependence, mixing.

1204

e]
y
Institute of Mathematical Statistics is collaborating with JSTOR to digitize, preserve, and extend access to é,% )z

The Annals of Probability. STOR ®

WWW.jstor.org



A.S. CONVERGENCE OF SERIES 1205

The form of dependency studied here includes, among others, weakly sta-
tionary sequences, harmonizable SaS sequences, 1 < a < 2, lacunary S,-
systems, 1 < p < 2, as well as large classes of weakly dependent or quasi-
stationary random variables. These classes of random sequences have in com-
mon a Fourier representation and an associated “spectrum” upon which our
results rely. Furthermore, only the finiteness of pth moments, 1 < p < 2, will
be needed. Even for the particular cases just mentioned, our results are often
optimal. For example, [8] provides optimal conditions for the a.s. convergence
of series Y a,X,, where {X,} is a quasistationary sequence. The conditions
given there are expressed in terms of the covariance of the process; ours are
expressed in terms of its spectrum (in the weakly stationary case). As is well
known, and except in some exceptional cases, for example, L2((—, 7]), func-
tions in L"((—m,]), r # 2, cannot be characterized via (the decay of) their
Fourier coefficients. Hence, when reduced to weakly stationary processes, our
results and those of [8] complement one another.

Let us now briefly describe the methods and content of the paper. In the
next section, we review some background material and provide examples. The
third section is where the main a.s. convergence results are presented. At the
heart of the methods developed there is a Rademacher—Menchov-type estimate
as well as a dilation argument. The relevance of these results to the ergodic
theory problem of pointwise convergence of Z,]Ll a,T", where T is a contrac-
tion on a Hilbert space, is also briefly indicated. More generally, we wish to
show that as far as a.s. convergence or summability is concerned, classical
results valid for orthonormal sequences remain true (when properly modified)
for random variables with more complicated dependence structure or without
finite second moment. As a sample application of our results, we also study
the strong consistency of least squares estimates in multiple regression models
complementing the results of [2] and [4].

2. Preliminaries. Let us recall some background elements and refer the
reader to [10] and [11] for more details and precise references. The class of
random sequences under consideration are the so-called (p,q)-bounded se-
quences defined as follows:

Let (Q, B, P) be a probability space and let L?(P), 1 < p < 2, be the
corresponding Lebesgue spaces (with E denoting expectation). A zero mean
sequence X = {X, },cz C LP(Q, B, P)is (p,q)-bounded, 1 < p < +00,1 <q <
400, if there exists a constant C > 0 (throughout, C is an absolute constant
whose value might change from an expression to another) such that
@1 (E

p\1/p - q 1/q
)" =e([7] & el )

for every finite sequence a_y,...,any € C. From (2.1), a (p, g)-bounded se-
quence has a spectral representation, X, = [ e dZ x(0), n € Z, where
Zx: B(—wm,w] — LP(P), the “random spectrum,” is o-additive (B(—m, 7]
is the Borel o-algebra of (—m, 7]).

N N

Z a, X,

n=—N

anemo
N

n=—
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Typical examples of ( p, g)-bounded processes are second order weakly sta-
tionary processes (p = 2, ¢ = +00) and SaS harmonizable processes (1 < p <
a, ¢ = 4+00). Under more stringent conditions on the spectrum or the control
measure, a weakly stationary sequence or a SaS harmonizable sequence is
(p,q)-bounded g < +oo. In fact, a weakly stationary sequence (resp. a SaS
harmonizable sequence) is (2, g)-bounded, 2 < g < +o0 [resp. ( p, q)-bounded
1< p<a a<qg < +o0]if and only if its spectrum (resp. its control mea-
sure) is in LY~ ((—7,7]) [resp. € LY9~*)((—,7])]. Further examples of
(2,2)-bounded sequences are provided by large classes of time varying linear
or ARMA processes [12]. For ¢ = 2, (2.1) corresponds to the defining property
of lacunary S, (also known as Hilbertian or S,2) systems. In particular, a
quasistationary sequence {X,}, that is, sup,.z |[EX wis Xkl < ®(n) for some
nonnegative @, such that " ®(n) < +o0o is (2,2)-bounded (see [8]). It is also
clear that by the Hausdorff-Young inequality, an S, , system, p > 1, r > 2,
is (p,r’)-bounded, 1/r + 1/r’ = 1. Less typical examples of (2, p)-bounded se-
quences are given by large classes of stationary Markov chains (essentially by
the proofs in [5] pages 225-227), or by large classes of sequences of bounded
random variables. Let us now present some new classes of examples stem-
ming from estimates obtained in [20] and in [3]. Let {X,}.cz C L2(Q, B, P).
Let also s = o{X,, n € S} be the o-field generated by the variables X,,,
neSCZ, and for S, T C Z, let finally

r(Fs, Fr) = sup{(|IEXY — EXEY|)/(E|X*)2E(|Y|?)'2,
X e L2(<73), Y € L2(57T)}.

The maximal correlation coefficient p(n) is then defined via p(n) =
supr(Fs, Fr), where the supremum is taken over all finite subsets S of
[—%, k] and subsets T of (—oo, —n—k]U[n+k, +00). Similarly, the strict maxi-
mal correlation coefficient p(n) is defined via p(n) = sup r(Fs, ¥7), where the
supremum is taken over all finite subsets S and 7' of Z which are at a distance
at least n from one another. It is shown in [20] that the condition }_ p(2") < o
ensures that E| Z]_VN X,|?2 < CN. A simple modification of the proof given
there actually gives E| >y @, X,|2 < C YNy |a,[?, that is, a weakly depen-
dent sequence such that Y p(2") < 400 is (2,2)-bounded. More recently, it
was proved in [3] that whenever g(n) < 1 for some n, and X, is centered with
finite pth moment, p > 1, then E| YV X,|? < CE(XY | X,2)?/2, forall N > 1
and all 0 < k£ < N. Again, a simple modification of the proof given in [3] as
well as Holder’s inequality show that (E| XYy a, X,|1?)V/? < C(XNy |an|?) V2.
In other words, a centered sequence {X,} ¢ L2(P)NLP(P),1 < p < 2,
such that E|X,|? < C, for all n, and such that g(n) < 1, for some n, is
(p,2)-bounded.

To finish this section, we present a rather useful decomposition of (p, q)-
bounded processes (see [11] for more precise references, and note the range of

p and q).

LEMMA 2.1. A sequence { X, }nez is (p,q)-bounded, 1 < p <2 < q < +o0, if
and only if X, = AQY ,, n € Z, where A is a random variable in L2P/2-P)(P),



A.S. CONVERGENCE OF SERIES 1207

Q is the orthogonal projection from L2(P) > L2(P) onto L%(P) and {Y n}nez C
L2(P) is a weakly stationary (2, q)-bounded, 2 < q < +o0o, sequence.

Lemma 2.1 is a purely geometric result, which a priori has little to do with
a.s. convergence. This lemma is, however, a crucial ingredient in extending
the classical results.

3. Development. We now have the necessary preliminaries to prove the
following theorem.

THEOREM 3.1. Let {X,}nez be (p,q)-bounded, 1 < p <2 < q < 400, and
let Y |a,|2|n|92/21og%(1 + |n|) < +o0o. Then Sy = YNy @, X, converges a.s.

PrROOF. First, by Lemma 2.1, it is clear that we just need to prove the
theorem for the nonstationary sequence {Z,},cz = {QY »}rcz. To do so, we
will adapt the proof of the classical Rademacher—-Menchov theorem and first
show that
2 N
< CN©@2/41og?(1+ N) Y laal®.

n=—N

J
Z.anZn

n=—j

(8.1) E&% = E max
1<j<N

Proceeding as in [1] or in [16] and without loss of generality let N = 27. Then,
from the dyadic decomposition of N as well as the Cauchy—Schwarz inequality,
it follows that

9 r 2k_1 (m+1)27* 2
H<(r+1)) Z > anZ,
k=0 m=-2k+1 'n=m2r-*41

Now by ( p, q)-boundedness (where again and throughout the paper, the sup
norm corresponds to the case ¢ = 00)

(m+1)2r* 2 | (mt1)2r* e 2/q
3.2) E Y a.Z, gC( / ane™? da) :
n=m2r—%+1 “Tln=m2r-k+1

Now, by the Hausdorff~Young inequality and since 2 < q < 400,

a2t g \2/q (m+1)2 N2 11
(f a,e™? de) < C( > Ianl") (- +—= 1)
(3.3) “Tlp=m2r-t+1 n=m2r-k+1 q q
’ . (myp2rt
<C@THEOL N jaal
n=m2r-k+1
Combining (3.2) and (3.3) we get
r.oo2k-1 (m+1)27*
’ Ef <Cr+1))y. > @ e 37 a,f
' k=0 m=—2k+1 n=m2r-k41

2k_1  (m+1)27*

sC(r+1)(2')<q—2>/qi )3 Y laal?

k=0 m=-2k+1 n=m2r—k+1
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r 2"
<C(r+1)(2") @243 3" |g,|?
k=0 n=-27

2r
=C(r+1)%2") 27 3" |a,?,

n=-2r

and this proves (3.1) since N = 2. With this estimate, we can now show, in
a very classical manner, that it is enough to prove the result along dyadic
sequences. Let S, =" a3 Z;. Then by (3.1) we have

ZE max |Sg» — Sp|?
n=1

2n5m<2n+1

) gntl —27-1
chn2<z")<q-2>/q( Yool 4+ Y |ak|2)
k

n=1 =2n4+1 p=—gn+1

oo 2n+1
<e3( 3 BP0+ Ry
k

n=1 =2n41 .

—on—1
+ Y |k|<q—2>/qlog2(1+|k|)|ak|2)
bh=—2n+1

<C Y |n|10g?(1+ |n|)|anl? < +o00;

n=—oo

hence lim, maxgr <y, <gni1 [Sor — S| =0 a.s. P.
To finish the proof we thus just need to show that Ss» = S + ZZ;(I)(SQM -
Sy:) converges with probability 1. However, since

00 2 00 gntl 2 —-27—1 2 o 1
(ZESzn+l—Szn) SCZn2E( Z arZy + Z ar”Zy ) Zﬁ’
n=1 . n=1 k=2"+1 —=—2n+l n=1
it is in turn enough to show that
oo 2n+1 2 —on_1 2
(3.4) Zn2E< Z arZy| + Z ar”Zy, ) < +00.
n=1 k=2"+1 h=—_9n+1

However, again using (p, q)-boundedness and proceeding as in the proof of
(8.1), we see that the series (3.4) is less than or equal to

. e’} . gn+l _9n_1
n=1 k=27+1 h=—9n+1

o0
<C Y |n|@]og?(1 + |n|)lanl® < +oo. o

n=—oo
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REMARK 3.2. (i) Of course, the condition Y |a,|2|n|9~2/910og?(1+|n|) < +oo0
does ensure the LP-convergence, 1 < p < 2, of Y a,X, to [7_a(0)dZx(0),
where a(8) = X% a,e™?. This is so because

(E ) < C(f Z ane™?

o0

2. an

n=—0oo

q 1/q
do)
n=—0oo

00 11/11' 1 1
o En) (e
n=Z—:oo " q q

< C Y lan?In|@ /9 1og?(1 + |n|).

neZ

(i) Whenever 0 < p < 1,2 < ¢ < 400 and X, = [” €™ dZx(6), where
Zx: Li((—m,m]) — LP(Q, B, P) is a continuous linear operator, a version of
Lemma 2.1 continues to hold (see [12]) and so does a version of Theorem 3.1,
namely, for such { X, } the condition 3" |a,|2|n|?-2/4 log®(1+|n|) < +oo implies
the a.s. convergence of }_a, X,

We now state some particular cases and consequences of Theorem 3.1.

COROLLARY 3.3. (i) Let {X,}nez be a weakly stationary sequence and let
Y lan|?|n| log2(1+ In|) < +00. Then Y a, X, converges with probability 1. Fur-
thermore, if {X }nez has its spectrum in L™((—m,7]), 1 < r < +oo, and if
S |anl?|n|Y log?(1 + |n|) < +oo, then Y a, X, converges almost surely

(ii) Let {X,}nez be an S, system, 1 < p <2, and let }_ |an|210g 1+ 1n]) <
+00. Then " a, X, converges almost surely.

PROOF. A weakly stationary sequence is (2,00)-bounded. It is (2,q)-
bounded, 2 < ¢ < +o00, if and only if its spectrum is in L9/~ ((—7,7]). O

REMARK 3.4. (i) It is shown in [8] that for a weakly stationary sequence
{X,} with covariance R(n) = [7_e"*du(6), n € Z, the optimal condition
Slanl?Yr__, IR(k)| log?(1+ |n|) < +oo guarantees the a.s. convergence of the
series Y a, X . Of course, when u = 8y, this condition and the one of the corol-
lary are identical. However, in general they are independent of one another
since they respectively involve the spectrum u and its Fourier coefficients.
Since

> lanl? Z |R(k)|log (1+]n)) < CZlan| Inllog®(1 + In|),

k=—n
1]

‘the conditions of Corollary 3.3 are stronger than the conditions in [8]. How-
ever, as is well known (see [17] Chapter 1, Section 4), the Fourier coefficient
functions in LY((—,7]) can decrease to zero arbitrarily slowly. Hence, if
du = fdo, where f € L((—m,w]) is such that its Fourier coefficients |R(n)|
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decrease to zero sufficiently slowly, we also have

n
3 lanPinlIR(n)|log?(1+ [nl) < C Y lanl* Y |R(R)|log*(1+ |n]).
k=—n
Similarly, no necessary and sufficient conditions on the Fourier coefficients
can characterize L"((—m,7]), r # 2, so Corollary 3.3 and the results of [8]
complement one another.

(ii) Corollary 3.3(ii) has to be contrasted with the case p > 2, where a.s.
convergence only requires Y |a,|? < 4+oo (see [6, 16]).

(iii) The conditions of Theorem 3.1 or the ones of Corollary 3.3 are sharp.
If b, = o(|n|Y?" log |n|), there exists a stationary sequence {X,} with L" spec-
trum, 1 < r < +oo, such that ¥ a, X, diverges a.s. and such that ¥ |a, |26, <
+00. A way of constructing such counterexamples is to start with a Menchov—
Tandori system of divergence ([1], Chapter 2, Section 4) and then to essentially
proceed as in [7] by building a moving average sequence based on this system
of divergence.

(iv) Let {X,} c L2%(Q, B, P) be a sequence such that sup,.z E|X,? <
+o00. Then it is clear from the proof of Theorem 3.1 that the condition
> |an|2|n|log2(1 + |n|) < +oo implies the a.s. convergence of > a,X,. This
last condition is independent of the results of [22] (see also [21]) requir-
ing >} %__lanllan||EX, Xn|log(1l + |m|)log(1l + |m|) < 400 for the a.s.
convergence of > a,X,.

COROLLARY 3.5. Let T be a contraction on L2(P), that is, T: L*(P) —
L2(P) is linear, bounded, with |T|| < 1, and let 3", lan|?n log2(1+n) < 4o00.
For any f € L%(P), X3 ,a,T"f(x) converges for a.a. x. The result remains
true if T: L2(P) — L2(P) is an invertible bounded linear operator such that
sup,z [|T"] < +o0.

PROOF. The result is true for unitary operators (equivalently for stationary
processes). Then a contraction can be dilated to a unitary operator, while T
such that sup,.z ||T"|| < +oo is similar to a unitary operator. In both cases,
we then proceed as in the proof of Corollary 4.9 in [13]. O

COROLLARY 3.6. Let { X, },cz be harmonizable SaS, 1 < a < 2, with control
measure w. Let Zlanlzlnllogz(l + |n]) < +oo. Then Y a,X, converges a.s.
Furthermore, if du = fd6 with f € L"((-m,7]), 1 < r < 2/(2 - a), then
Y |an [2|n|(@r—2r+2)/ar 1og% (1 + |n|) < 0o ensures the result.

PROOF. A harmonizable SaS sequence is (p, &)-bounded, 1<p<a
When du = f d6 with f satisfying the given hypothesis, then {X,} is (p,q)-
bounded, 1 < p < a,2<g=ar/(r—1)<+o0. O

Of course, from the above results and via Kronecker’s lemma the a.s. con-
vergence to zero of various averages follows. In particular, we get the following
corollary.
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COROLLARY 3.7. Let X = {X,}nez be (p,q)-bounded, 1 < p <2 < q < +o0.
Then for any € > 0,

: 1
13'1—1;20 NQ1-1/q9) 10g3/2+s N ngl Xn =0,

a.s.

One of our main purposes in writing this note was to illustrate how to
transfer results valid for orthonormal series to the (p, q)-bounded ones. In
fact, a great deal of the results of [1] and [16], Chapters 8-10, can be similarly
generalized. Such is the case for more recent results on, for example, Ceséro
a.s. convergence obtained in [18]. To further illustrate our point, let us sketch
the proofs of the following versions of three classical results.

THEOREM 3.8. Let {X,}nez be (p,2)-bounded, 1 < p < 2, and let
Y lax?(loglog(2 + |n]))?2 < +4oc. Then the arithmetic means onX =
(So+...+Sn)/(N + 1) converge a.s.

PrOOF. By Lemma 2.1 it is enough to prove the result for the (2,2)-
bounded sequence {Z, = QY ,}, and we first show that

(3.5) ZE max |opZ — omZ|* < +o0.

n— 2n <m <27+l

For any integer k > 2, we have

orZ —opa1Z = k(k+1) Z ra,Z

r=—*k
Hence,
2n+l 2
E max |owZ-0onZ?<E Z lorZ — op-1Z]|
2n<m<2n+1 b
=241
2n+l 2n+1 1
< X RElowZ-0raZl® 3 4
k=2"+1 k=27+1
(3.6) M
2n+1 k 2

k
E|> ra.Z

r=—k

<CY
2 P 1P

gn+l E

1
<C Y = 2 Iral,

k=2"41 r=—=%k

where the last inequality follows from (2, 2)-boundedness. From (3.6), we now
get

o0 2n+l 1 E
Z E max |opZ-onZP<C) Y - > Ira.?
n=1 2r=m<2nt i1 B

SCZ Z Ira,|®

r=—n
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00 o 1
<C Z |rar|22"‘1—3

r=—00 n=|r|

o0
<C Y las|* < +oo.

r=—00

Hence (3.5) is proved and we just need to show that o9 Z converges a.s. To
do so, we note that with probability 1, lim, ,,(S2:Z — 02:Z) = 0. Indeed,
proceeding as above we have

2

2",
D |klarZy
k=-2"

o0 o0 1
Y EISpZ-o0xZP=Y E
n=1

= — (1+27)2

0 1 2" 9
<C Z 920 Z |kal
n=1 k=-2n

o0
<C Y lanf® < +oo.
n=—oo
To finish the proof, it is thus enough to show that, under the stated hypothe-
ses, SgnZ converges a.s. First, it is easily seen that the random sequence
V. =A;! le,:lzznﬂ arZy, where A2 = Z?Z;2n+1 laz|?, is (2, 2)-bounded since it
verifies (2.1) with p = ¢ = 2. Hence, by Theorem 3.1, Sogn Z = Zév_l A,V, con-
verges a.s.if Y, A2 log?n < +oo, that is, if >, las2(loglog(2+|n|))? < +00. O

REMARK 3.9. (i) Again [see Remark 3.4(iii)] the factor loglog is optimal.

(ii) Let {Ry(n)} be the covariance sequence of the dominating stationary
sequence {Y,} as given in Lemma 2.1. Then it is clear from the proof given
above, as well as from Remark 3.4(i), that ) |anlzzz=_n |Ry(k)|(loglog(2 +
n))? < 4oo implies the a.s. convergence of oyY. This in turn gives the a.s.
convergence of oy QY , which ensures the a.s. convergence of oy X. A similar
comment also applies to the results given below.

THEOREM 3.10. Let {X,},cz be (p,q)-bounded, 1 < p <2 < q < 400, and
let

00 22n+1 1/2
Z( 3 |ak|2|k|(q‘2)/qlog2|k|) < to0.
n=0 \ |k|=22" +1

Then Y a, X, converges unconditionally a.s.

» PROOF. The proof of this result is a modification of the proof of the corre-
'sponding result for orthonormal variables. It can be obtained by replacing in
the proof of the classical result (as given in [16], Chapter 8) the maximal in-
equality there (which is a subset of our case ¢ = 2) by the maximal inequality
(3.1). O
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COROLLARY 3.11. Let {X,} be (p,q)-bounded, 1 < p < 2 < q < +09,
and let {b,} be a nondecreasing sequence such that 3~ 1/((1+ |n])|bs|) < +o0.
Let - |an|2|n|(2_q)/q 10g2(1 + |n|) log log(2 + |n|)|bloglogn| < +oo. Then Y a,X,
converges unconditionally a.s.

PROOF. The statement follows from 3" 1/((1+ |n|)|b,|) < +oo and the fact
that {b,} is nondecreasing. O

For orthogonal sequences, the following result is due to Garsia (see [9]). For
g = 2, the extensions presented below are rather immediate: The sequence
{Y,} of Lemma 2.1 can be defined on a probability space { @ ()’ and further-
more can be chosen orthogonal with constant second moment. Hence, since
A in the lemma preserves a.s. convergence, the orthogonal result implies the
desired conclusion. In particular, this result complements the one obtained in
[19].

THEOREM 3.12. Let {X,} be (p,q)-bounded, 1 < p <2 < q < 400, and let
also Y |an|?|n|9=2/4 < 4o00. There exists a permutation  of the integers such
that Y. @n(n) X n(n) cOnvErges a.s.

PROOF. First, use Lemma 2.1 to reduce the problem to studying the se-
quence {Z, = QY,}. Then a modification of the classical proof allows us to
incorporate the factor |n|(92/¢ in the maximal inequality there. The result
follows from this, still proceeding as in [9]. O

To date, in our approach to the a.s. convergence problem, we have only been
concerned with the case p < 2 < q. For other ranges of p and q and except [see
Remark 3.2(ii)] for 0 < p < 1, no version of Lemma 2.1 holds. Nevertheless,
it is possible to state partial results similar to Theorem 3.1 by examining the
proof of the Rademacher—Menchov theorem.

THEOREM 3.13. Let { X, }nez be (p,q)-bounded, 1 < p < 400, 1 < q < +00,
and let {b,} be a nondecreasing sequence such that 3~ 1/(|nb,|) < +o0.

(i) Let p,q > 2, (p,q) # (2,2), and let 3 |an|P|n|PA=YP=YD | bigg (4 |P/7
x log”’? (1 + |n|) < +oo. Then ¥ a, X, converges a.s.
(i) Let p > 2, q <2, and let Y |a,|?|n| P/~ |biog(1n) | P7 log”’? (1+|n|) <
+400. Then Y a, X, converges a.s.
(iii) Let p,q < 2and let ¥ |a,|?log?(1+|n|) < +oo. Then }~a, X, converges
a.s.

+ PROOF. Proceeding as in ‘the proof of Theorem 3.1 (with its notation), we
- have, when p > 1,

T 2k_1 (m+1)27* p
(3.7) 8% = (r+1)wP) 3" Y anZ,
k=0 m=-2k+1 'n=m2r—*+1
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where 1/p + 1/p’ = 1. Then by (p, g)-boundedness,

| (m+1)2r-*

r 2F_1
38 EL<Cr+12FY Y (f S ae

k=0 m=—2k+1 Tl n=m2r-k+1

However, now, for ¢ > 2 and by the Hausdorff-Young inequality, the r.h.s. of
(8.8) is itself less than or equal to

r 2k—-1 (m+1)2"* N\ Pl
3.9) Cr+1PP Yy » ( > |an|‘1) ,

k=0 m=—2F+1 \n=m2r-k+1

where again 1/q + 1/¢’ = 1. Under the conditions of (i), p/q’ > 1, hence we
get, from (3.9),

S 21 . (min2rh
E5§, < C(r + 1)11/11 Z Z (2r—k)(p/q )—1 Z lan|p
k=0 m=—2kF+1 n=m2r-k4+1
r 2"
(3.10) < C(r+ )PP N (2r- k)L 3 g, P

k=0 n=-2"
, N
5Clogp/p NNp(l—(l/p)—(l/q)) Z lan|P.
n=—N

With the maximal inequality (8.10), we first reduce the problem to studying
a.s. convergence along dyadic sequences by proving, as in Theorem 3.1, that

ZE max |S2n —Smlp

n< n+1
n—=1 2n<m<2

<C Z |an|P|n|P(1—(1/P)—(1/Q))logP/P’(l+ Inl)

n=-—0oo

+00 )
<C Y |anlPin PP~ by 1y PP TogP P (14 Inl)

n=—0oo

< +00.

To conclude the proof of (i), we then see that

o) p
(Z E|S2n+l - Sgn I)
n=1

, 00 ) R P 1 \?P
C oS ernE S ax| (To)
n=1 |k|=2"+1 In nl

o0
<C Y lanlPInP P D by 1y )PP ogP! P (14 In]) < +oo.

n=—0oo
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When p > 2, g < 2, we get, from (3.8),

s 2k41 (m+1)2r* p/2
Eol, <Cr+1)P7y 3 ( 3 |an|2)

k=0 m=-2%+1 \n=m2r-*+1
AL 2k-1 (m+1)2r—*
<C(r+DPPY 3 (@@l S g,
(3.11) k=0 m=—2k+1 nem2r—k11

r

r
<SClr+ 1P S (@ H)PRL % ag P
k=0

n=-2-"

N
< C(r+1)p/p’(2r)(p/2)—1 Z lan|P.
n=—N

We thus have in the case (ii) the following maximal inequality:

N
(3.12) E8%, < ClogP/?” NNP/2=1 3™ |g,|P.
n=—N

It now follows from (3.12) that

Z E max |Sy —Sn|?

e 2n <m<2n+1

<C Z |an P17 P72 Brog(1iap | PP log”/ P (1 + |n]) < +oo,

n=-—0oo

and to finish the proof of (ii) we again notice that, as in the proof of (i),
00 b
(Z ElS2n+1 — Sznl) < +00.
n=1

For (iii) and since p and g < 2, we get, from (3.8),

T 2k_1 (m+1)2"* p/2
Esy, <C(r+1)P/P 3" 3° ( > lanlz)

k=0 m=—2k4+1 \ n=m2r-*4+1
r 2k_1 (m41)2r*

< C(r+ l)p/p Z Z Z lan|p

(3.13) =0 m=—2k+1 n=m2r- k+1

r

<C(r+1PP Y Z |an|?

k=0 n=-2r

N
SCIngN Z lan|P.
n=—N

Using (3.13) and proceeding as in the proof of (i) or (ii), we get (iii). O
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As already mentioned, the conditions of Theorem 3.1 are sharp. One might
nevertheless wonder if a.s. convergence is ever possible when these conditions
are violated, for example, when a, = 1/n, n # 0,a¢ = 0. Rather optimal results
on that question are presented in [14]. It is shown there that a.s. convergence
can happen and, in particular, the results of [14] do recover the necessary and
sufficient condition for the a.s. convergence of 2 nz0 Xn/n which is obtained,
for {X,} weakly stationary, in [15]. This will not be further discussed here
and instead, to finish the paper, we apply the results presented above to study
some strong consistency questions arising from [2] and [4].

Let us recall some elements of the framework we have in mind. Let

(3.14) Yn=PB1Xn1+ -+ BmXnm + &, n=12,...,

where the Bi,...,B, are unknown scalar parameters, where the Xn; are
known scalars and where the &, are zero mean unobservable random distur-
bances. Then for any n > m, the least squares estimate b, = (b,1,...,bun ) of
B = (B1,...,Bm) based on the design matrix X, = (%ij)1<i<n, 1<j<m and the
response vector y, = (y1,...,¥,) is given by

(3.15) b, = (X,X,) ‘X, y,,

provided the matrix A, = (X;an)_1 is nonsingular. In this framework, the
following result complements the ones in [2] and [4].

THEOREM 3.14. Let {&,} be (p,2)-bounded, 1 < p < 2. Let A,, be nonsin-

gular for all n = m and such that lim,_, ;0\’ =0, j=1,...,m. Then,

(3.16) b}"’-ﬁ,:o( f(aj;?’)logn) a.s.,

for any positive function f on (0,+00) such that fOC f~Y(t)dt < +oo, for some
C > 0, and such that t~2f(t) t +ooas t | 0.

PROOF. Once more, via Lemma 2.1, £, = AQv, and we just need to prove
the result for the sequence {Qv,}. It is also clear from the proof of Lemma 2.1
(see [11]) that the sequence {v,} can be defined on a probability space Q @ '
and thus it is enough to prove the result for the disturbance sequence {v,}.
Furthermore, {v,} can be chosen to have zero mean if {¢,} has zero mean and
is orthogonal with constant variance (because g = 2). So the problem has been
reduced to studying strong consistency for a model where the disturbances
{vn} form a zero mean orthogonal sequence with constant variance. For such
a model and, say, for j = 1, we have (see [2])

—-m+1
ZZ:l CrVek

n-m+1 ,2

k=1 Ck

317 b — By =
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where Y- ¢2 = l/a(") However, for such a sequence, it is known (see
[1], Chapter 2, Section 3) that whenever f satisfies the requirements of the
theorem,

n—m+1

1 1
S Srmel 2 kgl Cka=O< f(zn — 2)log(n—m+1)> a.s.

Hence from (3.15), (3.16) and the form of a(l'{), the desired result follows. O

(3.18)

To finish, let us also mention that when &, is stationary with spectrum
in L",1 < r < +4oo, or is (p,q)-bounded, 1 < p < 2 < g < +oo, and if

= q/(q — 2), then 8" — B; = of./f(a'”)n'/2"logn). In particular, it is
J J JJ

enough that ag.’ ) = o(nV/7(log n)~2-%), 6 > 0, to have strong consistency.
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