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THE FUNCTIONAL LAW OF THE ITERATED LOGARITHM
FOR STATIONARY STRONGLY MIXING SEQUENCES

By EMMANUEL RiIo
CNRS, Université de Paris-Sud

Let (X;);c 7 be a strictly stationary and strongly mixing sequence of
real-valued mean zero random variables. Let (a,), » o be the sequence of
strong mixing coefficients. We define the strong mixing function a(-) by
a(t) = a;; and we denote by @ the quantile function of | X,|. Assume that

(*) /Ola"l(t)QZ(t)dt <o,

where f~' denotes the inverse of the monotonic function f. The main
result of this paper is that the functional law of the iterated logarithm
(LIL) holds whenever (X;);., satisfies (*). Moreover, it follows from
Doukhan, Massart and Rio that for any positive a there exists a station-
ary sequence (X;), . ; with strong mixing coefficients a, of the order of
n~% such that the bounded LIL does not hold if condition (*) is violated.
The proof of the functional LIL is mainly based on new maximal exponen-
tial inequalities for strongly mixing processes, which are of independent
interest.

1. Introduction and results. Let (X)), , be a sequence of real-valued
mean zero random variables with finite variace. As a measure of dependence,
we will use the strong mixing coefficients introduced by Rosenblatt (1956).
For any two o-algebras & and & in (Q,.7, P), let

a(/,B) = sup IP(ANB)— P(A)P(B)|
(A, B)es/'xB
= sup [Cov(l,, 1p)l<1/4.
(A, B)e/ xB

The strong mixing coefficients (a,,), , o of the sequence (X)), . ; are defined by
@, = sup, .z a(%,, %, ,), where 7, = o(X;:i <k)and &, = 0(X,;: i > ]). We
make the convention that ay,=1/4. (X,);.; is called a strongly mixing
sequence if lim, , ,, a, = 0. Examples of such sequences may be found in
Davydov (1973), Bradley (1986) and Doukhan (1994).

For stationary strongly mixing sequences, the law of the iterated logarithm
(LIL) and the functional LIL may fail to hold when only the variance of the
r.v’s is assumed to be finite [see Davydov (1973)]. Let us recall what is
currently known on this topic.
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As far as we know, all the results concerning the functional central limit
theorem (CLT) or the functional LIL for stationary strongly mixing sequences
are of the following type. Assume that for some adequate function ¢, ¢(X§)
is integrable and that the mixing coefficients satisfy some summability
condition (depending of course on ¢). Then the CLT and the LIL hold.

The first result of this type was Ibragimov’s (1962) CLT: he took ¢(x) = x”
with r > 1 and gave the summability condition

(1.1) Y ol V" < 4o,

n>0

[By CLT, we mean that the distribution of n~1/2L_, X, is weakly convergent
to a (possibly degenerate) normal distribution.] The functional CLT [by
functional CLT, we mean that Donsker’s normalized polygonal line converges
weakly in the Skorohod space D([0, 1]) to some (possibly degenerate) Wiener
measure] was studied by Davydov (1968): he obtained the summability
condition ¥, a2 1/@" < +», Next, Oodaira and Yoshihara (1972) ob-
tained the functional CLT under condition (1.1).

Since a polynomial moment condition is not well adapted to exponential
mixing rates, Herrndorf (1985) introduced more flexible moment assump-
tions. Let 7 denote the set of convex and increasing differentiable functions
¢: R*—> R* such that ¢(0) =0 and lim, , ., x '¢(x) = . Assume that ¢
belongs to &; then Herrndorf obtained the functional CLT under the summa-
bility condition

(1.2) Y a, ¢ (1/a,) < +o,
n>0
where ¢! denotes the inverse function of ¢.

As far as we know, the most important result concerning the LIL was
obtained by Oodaira and Yoshihara: if the strong mixing coefficients satisfy
(1.1) for some r > 1 and if [EIXOI?'S < o for some s > r, then the LIL and the
functional LIL hold [see Oodaira and Yoshihara (1971a), Theorem 5 and
Oodaira and Yoshihara (1971b), Theorem 1(IV)].

Neither these central limit theorems nor this LIL are known to be optimal.
Recently, Doukhan, Massart and Rio (1994) improved on Ibragimov’s CLT
and Herrndorfs CLT: they obtained a sharp condition on the tail function
t —» P(1X,| > t) and on the mixing rate implying the CLT and the functional
CLT. By sharp condition, we mean that, given some rate of mixing and a tail
function violating this condition, one can construct a strictly stationary
sequence (X), . ; with corresponding tail function and mixing rate for which
the CLT does not hold. Moreover, they proved that this condition also is sharp
for the bounded LIL. So, the aim of this paper is to provide the functional LIL

,under this sharp condition. -

All the previous results rely on covariance inequalities [such as Davydov
(1968)] which hold under moment assumptions. The approach of Doukhan,
Massart and Rio (1994) to improve on the previous results is based on a new
covariance inequality recently established by Rio (1993), which introduced an
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explicit dependence between the mixing coefficients and the tail function. Let
us now introduce some notation that we shall use throughout this paper.

Notation. If (u,) is a nonincreasing sequence of nonnegative real num-
bers, we denote by u(:) the rate function defined by wu(t) = U4, where the
square brackets designate the integer part. For any nonincreasing function f,
let £~! denote the cadlag inverse function of f:

f 1 (u) =inf{t: f(t) < u}.

For any random variable X with distribution function F, we denote indiffer-
ently by Qx4 or Qp the quantile function, which is the inverse of the tail
function ¢ —» P X]| > ¢).

The main result. Our way to prove the functional LIL is to obtain a
strong invariance principle in the sense of Strassen (1964). Then the func-
tional LIL for the sequence (X)),., follows from the functional LIL for the
Brownian motion [see Strassen (1964)]. Since the proof needs the variance
inequalities established by Rio (1993) and the central limit theorem of
Doukhan, Massart and Rio (1994), we first summarize these results in a
single theorem.

THEOREM 1. Let (X));., be a strictly stationary and strongly mixing
sequence of real-valued centered random variables such that

(1.3) My, = [l (u)Q}(u) du < +.
0

Let S, = X7_,X;. Then:

(i) The series T, ; Cov(X,, X,) is absolutely convergent to a nonnegative
number a* and n~! Var S, converges to o 2.

(i) S,/ Vn converges in distribution to the ( possibly degenerate) normal
distribution N(0, o 2).

Let us now state our strong invariance principle.

THEOREM 2. Let (X));., be a strictly stationary and strongly mixing
sequence of real-valued centered random variables satisfying (1.3). Then there
exists a sequence (Y;),,, of independent N(0, o ?)-distributed random vari-
ables such that

M=

(X;-Y) = o(\/n loglog n) a.s.,

i=1

where a? is defined by Theorem 1(i).
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COMMENT. When o # 0, Theorem 2 and Strassen’s functional LIL for the
Brownian motion then yield Strassen’s functional LIL for the partial sum
process

{0-‘1(2n log log n)_l/zX[n,]: te|o, 1]}
We refer the reader to Strassen (1964) for more about this.

Applications. Let us now discuss the scope of (1.3) for strongly mixing
sequences. We start by treating the case of bounded random variables.

1. Bounded random variables. If X, is a bounded r.v., @ is uniformly
bounded over [0, 1], and (1.3) is equivalent to Ibragimov’s condition for the
CLT, L,.,a, < += [see Ibragimov and Linnik (1971), Theorems 18.5.3
and 18.5.4].

2. Conditions on the tail function. Let ¢ be some element of #. Assume that
there exists some positive constant C, such that the distribution of X,
satisfies

P(X§ >u) <1/¢(u/C,).

If x > x "¢(x) is nondecreasing for some r > 1, (1.3) holds as soon as the
summability condition (1.2) is satisfied. Hence the functional LIL is en-
sured by a weaker condition on the distribution of X, than Herrndorfs
moment condition for the CLT, E(¢(X2) < +c.

3. Moment conditions. Assume that E(¢(XE2)) < + for some ¢ €F. An
elementary calculation [see Rio (1993)] shows that (1.3) holds if

(14) Y (¢) (n)a, < +.

n>0

This summability condition is weaker than (1.2) [see Rio (1993)]. In
particular, when ¢(x) = x” for some r > 1, (1.4) holds if and only if the
series ¥, 5 k" " Va, is convergent, which improves on (1.1).

4. Exponential mixing rates. Assume that the mixing coefficients satisfy
a, = O(a*) for some a in 10, 1[. Then (1.3) holds if

(1.5) E(X§ log*|X,l) < +oo.

It is worth noticing that (1.5) cannot be derived from the classical covari-
ance inequalities [see Doukhan (1994) for a review of the previous inequal-
ities].

Theorem 2 is sharp for power-type mixing rates and strongly mixing
sequences, as proved by Proposition 8 in Doukhan, Massart and Rio (1994),
which we now recall.
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THEOREM 3. Let a > 1 be given and let F be any continuous distribution
function of a zero-mean real-valued random variable such that

/lu'l/“Q,%(u) du = +,
0

Then there exists a stationary Markov chain (Z,), ., of r.v.’s with d.f. F such
that:

() 0 <liminf, , .. n%, <limsup, , . n%, <x. Here (a,),., denotes
the sequence of strong mixing coefficients of (Z,); < 7.

(i) Setting S, = L!_1Z;, we have

S,,|

lim sup —————
n- +oop yrloglog n

Let us now give an outline of the proof of Theorem 2. Since Skorohod’s
embedding does not work for strongly mixing sequences, it is necessary to
extend Bernstein’s inequality for partial sums of independent sequences to
strongly mixing sequences [the available Bernstein-type inequalities for
strongly mixing sequences of Doukhan, Leén and Portal (1984) and Bosq
(1992) are far from being optimal]. However, there is some loss in these
inequalities. Contrary to the independent case, the truncation of the random
variables X, at a level of the order of (n/LLn)'/? does not work: we have to
use a blocking technique. So, it is essential to obtain precise upper bounds for
E(S, |15, s ) for some level of truncation a, to be defined later. This will be
done via an extension of the inequalities of Fuk and Nagaev (1971) to the
strongly mixing case, which improves on the previous inequalities of Utev
(1985). Since these inequalities are mainly based on Bennett’s exponential
inequality [see Pollard (1984), page 192] for independent summands, we will
start by proving an efficient Bennett-type inequality for strongly mixing
random variables.

= +® a.s.

Maximal inequalities for strongly mixing sequences. Let us first state the
main tool for proving these inequalities, which is the following new coupling
theorem for real-valued random variables. This result generalizes Berbee’s
(1979) coupling lemma for B-mixing random variables to strongly mixing
real-valued random variables.

THEOREM 4. Let & be a o-field of (Q,7,P) and let X be a real-valued
random variable taking a.s. its values in [a, b]. Suppose furthermore that
there exists a random variable § with uniform distribution over [0, 1], inde-
pendent of &/ V 0(X). Then there exists some random variable X* indepen-
deni‘ of & and with the same distribution as X such that

E(1X — X*)) < 2(b — a)a(¥, o(X)).

Moreover, X* isa &/ V o(X) V o(8)-measurable random variable.
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In Section 3, we will derive the following Bennett-type inequality from
Bennett’s exponential inequality for independent random variables and Theo-

rem 4.

THEOREM 5. Let (Y));,, be a strongly mixing sequence of mean-zero
real-valued random variables each a.s. bounded by some positive M, with
sequence of strong mixing coefficients (&)},  o. Suppose now that Y; = 0 a.s. if
i > n. Let k be any positive integer and let v, be any positive real such that

v, = Y Var(

i>0
Then, for any positive t,

j
LY,

i=1

IP( sup

Jj<n

< 4exp(

where h(x) = (1 + x)log(1 + x) — x.

> 2MEk — 2t) < 4exp(—

L )

ik—k<l<ik

vy thM a,

| — || +4n-t

(EM) v, k
log(1 + ZMN 4 42
Y v, "

In Section 4, we will derive the following Fuk—Nagaev-type inequality for
strongly mixing sequences from Theorem 5. The corresponding inequality for
independent random variables was done by Petrov (1989), who applied it to
moment inequalities. In a recent note [see Rio (1994)], we gave some applica-
tions of this new inequality for strongly mixing sequences to maximal mo-
ment inequalities for partial sums of a strongly mixing sequence. These
moment inequalities improve on the previous inequalities of Yokoyama (1980)

and Doukhan and Portal (1983).

THEOREM 6. Let (X,),., be a strongly mixing sequence of real-valued
integrable random variables with mean zero. For any positive integer i, we set

Q; = Qx,. For any u in [0, 1], let

Uy oy = i fl[a'l(t Vu) An|Q(tV u)dt.
i=170

Let the quantile function @, be defined by

(1.6) 1Q..(t) = sup [‘Qi(u) du.
i>0"°0

' Then there exists some positive constant c such that, for any positive integer n,
the following inequality holds: for any r > 1, any u in 0, al and any

t>[a 1w AnlQ,(w),

P(S* = crt) <c[1+ (rtz/vn,u)]_r +enu[a(u) A n]_1
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REMARK. Let
ikAn
k=a(u)An and U= Y XLy ow-
I=ik+1—k
It follows from the proof of Theorem 6 [see Section 4] that (a) still holds after
replacing v, , by 0, , = L;,, Var U,

2. A coupling result for strongly mixing real-valued random vari-
ables. In this section, we prove Theorem 4. The random variable X* will be
defined from the initial random variable X by means of the conditional
quantile transformation. The main idea behind the proof is that the quantile
transformation minimizes the L!-distance between X and X* [see Major
(1978)].

Let F, denote the conditional distribution function of X, which is defined
by

F,(t)=P(X<tl|l¥).
We set F,(t — 0) = lim, ,, F,(s). Let F denote the distribution function of X.

Since & is independent of ./ V o (X) and has the uniform distribution over
[0, 1],

(2.1) V=F,(X - 0) + 8(F(X) - F(X - 0))

is independent of . and has the uniform distribution over [0, 1]. It follows
that

(2.2) X*=F1V)

is independent of . and has the same distribution function as X. Now we
have to bound E(|X — X*)) from above. By (3.1), X = F;1(V) almost surely.
Hence

(2.3) E(1X — X*) = E(f()1|F;1(v) —F‘l(v)ldv).
Since X takes its values in [a, b],

(2.4) f()1|F;1(v) — FY(v)ldv = fabIFM(t) — F(¢)ldt.
So, we have

(2.5) E(IX — X*)) = fab[E(IFM(t) — F(t))) dt.

Now, for any real ¢, )
E(F, () - F(1))) < 2a(#, 0 (X)),
. which, together with (2.5), implies Theorem 4.
'3. A Bennett-type inequality for strongly mixing sequences. In

this section, we prove Theorem 5. The proof will be done using the coupling
result stated in Theorem 4.
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For any positive integer i,let U; = £;;, ; .;<;,Y;. Since Y, = 0if [ > n,
n
Uy, =U,;_,=0 as.ifi > [EZ] + 1,
where the square brackets designate the integer part. Since
J J
sup| £ <311 + supl £ 01,
Jjsnli=1 J>0 i=1
Theorem 5 follows from the inequality below: for any positive ¢,

vk tkM ap
>MFE+2¢t| <4exp|— sh|— || +4n—,
(kM)*\ v, k

j
IR

i=1

(3.1 P| sup
Jj>0

where A(x) = (1 + x)log(1 + x) — x. The second part of the inequality is an
immediate consequence of the elementary fact that

h(zx) = xfollog(l +tx) dt > x log(1 + x)foltdt = xlog(1 + x) /2.

To prove (3.1), let (8));5 o be a sequence of independent random variables
with uniform distribution over [0, 1], independent of (U})j> o- By Theorem 4,
for any positive i, there exists a measurable function F, such that U* =
F(U,,...,U,_,,U, §;) satisfies the conditions of Theorem 4 with & = o (U;:

1 <i — 1). The sequence (U;*),. , so defined has the following properties:

1. For any positive i, the random variable U* has the same distribution as
U.
2. The random variables (Uy), ., , are independent and the random variables
(Uy;_1); > o are independent.
3. Moreover,
Y. E(IU; — Uf) < 4nMa,,.

i>0
Now
J J J
(32) sup| L Uj| < sup| ¥ Usi| + sup| X Usiy |+ L IU; - UFl
j>0li=1 i>0]i=1 i>0li=1 i>0
By property 3 and Markov’s inequality,
o

(3.3) P(Z|U,.—Ui*|sz) <4n—>*.

i>0 k

In view of (3.2) and (3.3) it only remains to prove that

(3.42) p f}U* 2 ( Ok h(tkM))
4a sup =t < Zexp| — —
, olicn o (EM)* "\ vy
- and
(34b) P 5 o 2 ( O h( tkM))
. sup 1| =t| < Zexp| — — -
J>01]i=1 zi-t (kM)2 Uy
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The proofs of (3.4a) and (3.4b) being similar, we only prove (3.4a). By property
2, the random variables (Uy), . , are independent. Now, by property 1, for
any positive i, Var U* < Var U, and |U*|.. < Mk, so we may apply the
maximal version of Bennett’s inequality [see Pollard (1984), page 192], and
(3.4a) follows, therefore completing the proof of Theorem 5.

4. A Fuk-Nagaev type inequality for strongly mixing sequences.
In this section, we prove Theorem 6.

Throughout this section (X;);., is a strongly mixing sequence of inte-
grable real-valued random variables with mean zero. For the sake of brevity,
let @; = Qx,. In order to prove Theorem 6, we need the following upper bound
on Var S,, which is stated in Theorem 1.2 in Rio (1993).

PrOPOSITION 1. Let (X;),., be a strongly mixing sequence of real-valued
random variables. Then

Var S, < 8 f: fl[a_l(x) A n]QF(x) dx.
i=1°0

ProoF oF THEOREM 6. We set
Let £ = a (u) A n. When n < a4, & > 0. We set U, = Zi¥ ", X,. Clearly,

M=
1]

J
Y X |+
i=1 !

(4.2) sup|S;| < sup

Jj<n Jj<n

b

1
which, together with the elementary inequality |EX;| < [E(X'i) implies that

J

(4.3) suplS;| < sup| ). (}_(-i - [E()_fi)) + f: ([E(X'l) + X’l).
Jj=n Jsnji=1 =1

Let t(u) =[a '(w) A n]Q*(u). Noting that

(4.4) Qx(x) <@ (u)l, .,

and applying Markov’s inequality, we get

(4.5) IP( g; (E(X) +X) = t(u)) < 2"3?:)(1‘)‘ - a_l(zz)uA —

Combining (4.3) and (4.5), it is not difficult to check that the proof of Theorem
6 will be achieved if we prove that, for any ¢ > (),

(4.6) P| sup

Jj<n

é (X, - IE(X’,.))I zcrt) <c

i=1

a Y(u) An’
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To prove (4.6), apply Proposition 1 to the random variables X, and note that
Qx(x) <Q(u+x) <@(uVx).

Then we obtain

(4.7) Y. VarU, < 8v, ,.

i>0
So, we may apply Theorem 5 to the random variables (X; — E(X))), 1, n) With
M =2Q,(), k=a '(u) An and v, = 8v, ,, yielding

J

P|sup| 2 (X — E(X)))| = 2¢(w) + crt)
(4.8) sEn it
rt rt(u)t cnu
SCexp(—t(u) log(1+ — ))+ «(2) A n

for some positive constant c. Both the fact that ¢ > ¢(x) and the concavity of
u — log(1 + u) ensure that

log(l + rt(u)t) > t(tu) log(l + rt” ),

v

n,u n,u

and (4.6) follows; hence, Theorem 6. [

5. A strong invariance principle. In this section, we prove Theorem 2.
First we prove that the saturated function @, defined by (1.6) still satisfies
(1.3). Clearly, @ (¢) < 3sup, . ,(u/t)*3Q(u), which, together with Claim 1 in
Doukhan Massart and Rio (1994), ensures that

(5.1) fola-l(u)Qi(u) du < .

Second, we may assume, increasing the numbers «, if necessary, that («,),
is a strictly decreasing sequence. As usual in mixing sequences theory, the
proof is mainly based on a blocking technique. Let ¥ be the following class of
increasing functions:

n n
¥ = {dfﬁ N — N, ¢ increasing, lim v(n) = o, lim _1#_(5/_42 = 0}_
n

n—ow n n—owo

Let ¢ be some element of ¥, which will be defined later on. Let M, = 0,

n .
(5.2a) M,= Y (¢(k) +k)
k=1
" and define the random variables (U,),, - o, (V,),5 o and (U)), o by
M,l+|ll(n) Mn+1 Mn+1
(52b) U, = Y X, vV, = Y X;, u = Y IXl

i=M,+1 i=M,, ,+1-n i=M,+1
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(Note that the blocks U, and V, have different lengths.) We also define the
truncated random variables (U,), . , from the initial blocks by

(5.2¢) U, = (U, Aern/VLLn ) vV (—crn/VLLn ),

where Lx = max(1,log x).
The main step of the proof is the following almost sure approximation
result.

PROPOSITION 2. Let (X,);.; be a strictly stationary and strongly mixing
sequence of real-valued centered random variables satisfying (1.3). Then there
exists some function ¢ in ¥V and some sequence (W,),,, of independent
N, ¢(n)o ?)-distributed random variables such that

n

(a) Y (W, - T,) = o(yM,LLn) a.s.,
i=1
= E(IU, - G,l)
®) L <t
and
() U, =o(nVLLn) a.s,

where (M), and (U,), are defined from ¢ by (5.2).

Proor. We start by proving (b). Clearly,
U, — l_/'nl = sup(O, |U,| — ¢rn/VLLn )

Hence
5.3 WU, -TN=cr[ _ POU,I>¢)ds.
(53) (0, = Tl) =erf —_P(UI>1)
Let u, = influ > 0: & '(w)Q,(v) < n/VLLn). We set o = 8M, ,,
® 2 I
A= 1+ —— dt,
o fn/\/LLn ( y(n)oy )

A= [T -udQ,(w + T Qu(a)

{k: aksun)

(5.4a)

Applying Theorem 6 and noting that v, , < nol, we get
(5.4b) E(IU, - U,l) < C.(A,, + #(n) A, ,)

for some positive constant C,. On the one hand, since n~%/%(n) converges to
Oas n -, A , =0(n"?)if r > 4, which ensures that
Al, n

nz>:0 ny LLn

(5.5) <o,
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On the other hand, the series

P(n)A, ,
nso NVLLn
is convergent for some ¢ in V¥ if and only if
As n
(5.6) Y, =L < 4o,
n>0 LLn
Let

Agn=—[udQ,(u) and A= T Qu(a)3.

{k:a,<u,}

Clearly A, , = A3, + A, ,. Since —udQ,(u) = [Q,(v) — @w)] du, we have

(5.7) Ay, < founQ*(u) du.

Let x(w) =X, , -, LLn)"'/% Tt follows from (5.7) that the series
L,so(LLn)"'/?A, , is convergent if

(5.8) [ x()Qu(u) du < .

Clearly u, > u if and only if & ()@, (u) > n(LLn)~'/2, which ensures that
x@w ~ a ' (wQ,(u) as u v 0 [we may w.lo.g. assume that
lim, ., o "(w)Q4(u) = «]. Hence (5.8) is equivalent to (5.1). It only remains
to prove that ©, . A, ,(LLn) '/% < «. Now

_ _ @
(5.9) Y A, (LLn) = ¥ x(ay )@ (@) -,
n>0 k>0
which ensures that the series ¥, . A, ,(LLn)~'/2 is convergent whenever
(5.10) Y o [@u ()] <.
k>0
Since

L a]Qu(an)]’ < [« (w)[Qu(w)]* du,

E>0 Y
(5.6) follows. Hence (b) of Proposition 2 holds.
Next we prove (c). Let

Mn+1
i=M,+1

Clearly,
(5.12) U, = (¢(n) + n)E(I1X,]) + T,.
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We may, modifying ¢ if necessary, assume that ¢(n) = o(nVLLn ). Now,

(5.13) T, < + sup(O T, —n/VLLn )

< ‘/—
Arguing as in the proof of (b) of Proposition 2, we get that
5> E(sup(0, T, — n/VLLn ))

[ee]

n>0 n\/LLn ’
which, together with Kronecker’s lemma, implies that
(5.14) sup(0,7, — n/VLLn) = o(nVLLn) as.

Then (5.12), (5.13) and (5.14) yield (c) of Proposition 2.

Finally we prove (a). Throughout, (8,), ., and (7,), , denote independent
sequences of independent random variables with uniform distribution over
[0,1], independent of (X;),.;. Theorem 4 together with Skorohod’s (1976)
lemma ensures that there exists a sequence (U*),, . , of independent random
variables with the same distribution as the random variables U, such that
U} is a measurable function of (T, 8,), . , and

E— na,
(5.15) E(IT, - TF) < 4crm .
It follows from (5.15) that

E(ITU, — U}

o EO-T)

n>0 n
which implies that
(5.16) Z (T, - O*) = o(yM,LLn) as.

via Kronecker’s lemma.

By (i) and (ii) of Theorem 1, (y(n)) ' VarU, converges to o2 and
(¢(n))"12U, converges weakly to the normal distribution N, o?). It im-
plies the unlform integrability of the sequence (U?/(n)), ,, via Theorem
5.4 in Billingsley (1968). Since the random variables U* have the same
distribution as the random variables U, it follows from both the above facts,
Strassen’s representation theorem [see Dudley (1968)] and Skorohod’s (1976)
lemma that one can construct a sequence (W,), ., of o(U*,n,)-measurable
random variables with respective distributions N(0, #/(n)o 2) in such a way
that

(5.17) E((T - Wn)é) = o((n)) asn — +ew.

Let
W,= (W, An/VLLn) Vv (-n/vVLLn).
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Clearly
S E(IW, — W,)) <,

n>0

which ensures that
(5.18) i (W, - W,) = o(yM,LLn) as.
i=1

via Kronecker’s lemma.
In view of (5.16), (5.18) and Proposition 2(b), it only remains to prove that

n
(5.19) Y (W, + E(T*) - T*) = o yM,LLn) as.
i=1
Let us prove (5.19). By definition of W,
Var(W, — W,) =o(¢(n)) asn -,
which shows that
(5.20) Var(W, — Uy) < s,4(n)

for some sequence (&,), of positive reals decreasing to 0 as n tends to infinity.
Since the random variables (W, — U*), _ , are independent and a.s. bounded
by (cr + 1)n(LLn)"'/2, the maximal version of Bernstein’s inequality for
independent random variables [see Pollard (1984), page 190] yields

J
P(sup Y (W +ET*)-T*)| = Ct)
(5.21) e it .
t tVLLn

for some positive constant C. Now we may apply (5.21) with n = 2V and

n

1/2
2LLn Y, ai(p(i)) .

i=1

t=ty=2nVLLn +

Using (5.20) and the Borel-Cantelli lemma, we then get (5.19). Hence Propo-
sition 2(a) holds. O

PRrROOF OF THEOREM 2. By Skorohod’s (1976) lemma, there exists a se-
quence (Y));, of independent N(0, o?)-distributed random variables such
_that, for any positive n,
M, +¢(n)
w,= L Y.
i=M,+1
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An elementary calculation on Gaussian random variables shows that
k M)
(5.22) Y)Y, - )Y W,=o(VkLLEk) as.,
i=1 j=1
where n(k) = sup{n > 0: M, < k}. Using (5.22) and Proposition 2(c), it is
easily seen that it is sufficient to prove that

(5.23) i U, +Vv,-wW) = o(‘/Mn loglog n) a.s.

i=1

Clearly,
(524) L (U +V,-W)= L (T-W)+ ¥ (U-T)+ V.

i=1 i=1 i=1 i=1
On the one hand, by (a) and (b) of Proposition 2,

(525) ¥ (T, - W;) + Z (U, - T,) = oYM, Toglog n) a.s.

i=1
On the other hand, the sequence (V,), . , has the same properties as (U,), . .
Hence, using the same arguments as in the proof of (a) and (b) of Proposition
2, one can prove that there exists a sequence (W,),., of independent
N(0, no ?)-distributed random variables such that

i (V, - W)) = o(‘/Mn log log n) a.s.
i=1

Now, by the law of the iterated logarithm for Gaussian random variables,
X! W/ = O(nVLLn) a.s. Hence

(5.26) Y V.= o(‘/Mn log log n) a.s.
i=1

Equations (5.24), (5.25) and (5.26) then imply (5.23), and Theorem 2 fol-
lows. O '
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