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LARGE DEVIATIONS FOR THE THREE-DIMENSIONAL
SUPER-BROWNIAN MOTION

By TzonG-Yow LEe! AND BRUNO REMILLARD?

University of Maryland and Université du Québec a Trois-Riviéres

Let u,(dx) denote a three-dimensional super-Brownian motion with
deterministic initial state uy(dx) = dx, the Lebesgue measure. Let
V: R® —» R be Holder-continuous with compact support, not identically
zero and such that [sV(x) dx = 0. We show that

log P{fO‘fWV(x)#s(dx)ds > bt3/4}

is of order ¢1/2 as t — «, for b > 0. This should be compared with the
known result for the case [sV(x)dx > 0. In that case the normalization
bt3/4, b > 0, must be replaced by bz, b > Jr3V(x) dx, in order that the
same statement hold true. While this result only captures the logarithmic
order, the method of proof enables us to obtain complete results for the
corresponding moderate deviations and central limit theorems.

1. Introduction. We consider a measure-valued process known as the
Dawson—Watanabe process or super-Brownian motion. Its sample paths
(u,(dx), t > 0) are nonnegative Radon measures on R<. For u,(dx) = o(dx),
we denote by P, and E_ the corresponding probability measure and expecta-
tion, respectively. We shall simply write P, and E, when the measure o is
the Dirac measure at x, and write P and E when o is the Lebesgue
measure. The process is uniquely characterized by the following Laplace

functional of its transition function (see, e.g., [14, Theorem 1.1]):

Boexo( = [ w(x) ()|} = exp( = [ u(t, ) (@),

where ¢ denotes a continuous, nonnegative function with compact support
and u is the unique solution of

du
— =Au — u?, 0<t,xe€R?,
at

u(0,x) = ¥(x), x € Re.
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1756 T.-Y. LEE AND B. REMILLARD

For a construction of this process, see [14, Section 1]. Note that the use of the
Laplacian A, as opposed to 1A, indicates that the underlying Brownian
motion is being run at twice the standard speed.

The super-Brownian motion can be constructed (cf. [6]) as the weak limit of
a system of many Brownian particles (with generator A) of small mass
moving independently of each other and dying or duplicating with probability
%, after each small fixed time interval. More precisely, if we have initially one
particle of mass & < 1 at each site of the lattice {¢/?x; x € Z%} and if each
particle is dying or duplicating independently after time intervals of length &,
then the distribution converges to P as & — 0. For this reason, we classify
the super-Brownian motion as a branching model throughout the Introduc-
tion. Note that the process can also be constructed without passage to the
limit (cf. [9)).

Let V: R? — R be Holder-continuous with compact support. If V > 0 and V
is not identically equal to zero, it is known (cf. [15] and [19] for the super-
Brownian motion and [5] for the critical branching Brownian motions) that

. _1 t
lim 4, log P{fo fRdV(x),Ls(dx) ds > ct}

exists and is strictly negative for ¢ greater than and sufficiently close to
[raV(x) dx, where A, ;=t"% A,,=t/logt and A, , =t for d > 5. The
corresponding complete large-deviation principles are believed to hold true.
However, this is only proved in the case d = 3 in [15]. Similar problems have
been studied for systems of independent random walks and Brownian mo-
tions (e.g., [4], [8], [17] and [18]), with large-deviation principles proved for all
dimensions. Much less is known for models of interacting particles; see [2] for
the voter model and [16] for the simple exclusion random walks.
Interestingly, all the aforementioned models have in common a property of
dimensional dependence as follows. The logarithm of probabilities, given by

log P{'/:'/[IWV(x)us(dx) ds > ct},

V>0,V #0and ¢ > [geV(x)dx, has order ¢t/2 for d = & + 1, order ¢/log t
for d =%k + 2 and order ¢ for d >k + 3, as ¢t > «. Here the number %
depends on the specific model and [z« should be replaced by ¥, ., in
discrete-space models. For example, we have & = 0 for systems of indepen-
dent random walks (or Brownian motions) and for the simple exclusion
process; k = 2 for the critical branching Brownian motions (or the super-
Brownian motions) and for the voter models.

When the function V satisfies [paV(x)dx = 0, only the models of indepen-
dent nonbranching particles have been studied in [3], [22] and [20]. It is
known for the model of independent random walks on Z¢, d = 1,2, that the
large-deviation behaviors are different from the case of nonzero T, _,«V(x).

Our main theorem in this article is a corresponding result for the three-
dimensional super-Brownian motion. The corresponding moderate deviations
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and central limit theorem are also obtained. Define

1
o _ -1
o =V dy

(A71V)(x)

[ p(tx = )V(5) dyat,
where p(t,y) = (47t)~3/2 exp(—|y|®/4¢).

MAIN THEOREM. Let B, be the set of all Hélder-continuous functions V
from R? to R with compact support, [:V(x)dx = 0, and let B be the set of all
V € B, such that

fRa(A*V)z(x) dx = 1.

Then, for all V € B, there exists A > 0 such that AV € B. Moreover, for all
V € B, the following properties hold true:

(i) There exists a > 0 and two positive functions ¢, and c, on (0, a) such
that, for all a € (0, a),

—cy(a) < liminf¢71/2 log P{t_‘g/4 ftf V(x)p,(dx) ds > a}
tooe 0 ‘r?
< limsup ¢ 172 log P{t3/4 ftf V(x)u,(dx) ds > a} < —cy(a).
t—> 0 [RS

Gi) If 0 <6< 2 and b > 0, then
2

lim ¢~ 1/2 log P{t<6/2>-3/4 ftISV(x)Ms(dx) ds > b} = -
0 ‘R

t—>x

(iii) For anyc € R,

lim log E{exp(ct_l/2 ftf V(x)p,(dx) ds)} =c?,
too 0 ‘r®

which implies that (1/V2t)[¢[g:sV(x)u(dx) ds converges in law to a stan-
dard normal distribution.

REMARK 1. Applying this theorem to —V, we see that statements similar
to (i) and (ii) hold for below 0 as well as above 0.

One should compare this result with the corresponding known result for
one-dimensional random walks (see [3, Theorems 2 and 3] and also [22, (3.4)
and (3.5)]). The comparison reveals the same normalizing function ¢3/4. For
more complex models, one often makes predictions based on known counter-
part results for simpler models. Our main theorem is one more instance when
such a prediction turns out accurate. By plausible reasoning, we think that
the main theorem also holds for the three-dimensional voter model and
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one-dimensional simple exclusion process. It would be interesting to see this
worked out.

A crucial technique, commonly used in [3] and [20], is to stop the particles
when they first enter the support of the function V. We do not know how to
modify that method to prove the main theorem. Our proof method substan-
tially uses the analytic technique of PDE’s and can be modified to prove the
counterpart results in [3] and [20].

The remainder of this article contains nine lemmas, from which the main
theorem follows.

2. Auxiliary results and the proof of the main theorem. Let .# be
the set of Radon measures on R3. A super-Brownian motion pu,(dx), with
initial py(dx) = §,, the Dirac measure at x, can be looked at as an .#-valued
diffusion process with a linear drift and a linear diffusivity. More precisely,
we mean the following lemma (cf. [23, Theorems 1.3 and 1.6]).

Before stating the next lemma, define

(g,v> = [ g(x)vr(dx),
R3
for Radon measures v and continuous functions g.

LEMMA 1. Let h be in the domain of the Laplacian A. Let

M, =<h,pu — po) — fot<Ah,us> ds,

[M,] =2f0‘<h2,#s>ds

and
A(y) = exp[vM, - yzfot<h2,us> ds].

Then M, is a P,-martingale with increasing process [ M,]. Moreover A (y),
vy € R, are P,-local martingales, and they are P -martingales for t < T, pro-
vided that E {exp y2[ M}1/2} < .

Proor. Theorem 1.6 in [23], together with Theorem 1.3(i) in [23], yields
that M, is a P,-martingale with increasing process 2/{{h?, u,) ds. Moreover,

t = M, is a.s. continuous. The exponential martingale result follows from [13,
Theorems I11-5.2 and I11-5.3]. O

A basic analytic technique used in this paper is a comparison principle for
semilinear parabolic differential equations.

LEMMA 2. Suppose that f € CY(R) and
u,u € C%((0,T) x RY) nC([0,T] x R?).
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Suppose also that @ and u are bounded in [0,T'] X RY for all T' < T. If
7(0, x) > u(0, x) for all x € R? and

ou

— —Au>f(7), (t,x)€(0,T)xR?,
(2.1) gt

% - Au <f(u), (t,x)<(0,T)xRY

then u(t, x) > u(t, x) for all (¢t,x) €[0,T] x R%
Furthermore, for a continuous function ¢(x) satisfying

7(0, ) = ¢(x) 2 u(0,x), x€R,

there exists a unique solution u(t, x) € CH2((0,T) x RY) n C(0,T] x R?) of
the following problem:

du
(2.2) —7 = Au+f(u), (tx)€(0,T) xR,

u(0,x) = ¢(x), x € R9,

where u is assumed to be bounded in [0, T'] X R for all T' < T. This unique
solution u has the additional property that @ > u > u in [0,T] X R%.

REMARK 2. Lemma 2 is well known (cf. [1] for the first half of the lemma).
Interested readers are referred to [25], in which Lemma 2 is proved as a
special case by using a maximum principle (cf. [11, Theorem 9]) and a
monotone iteration method (cf. [24, Theorem 3.1]).

Let u(¢, x; h) denote the solution of

o
—8?=Au+u2, (t,x)G(O,OO)X]R3,
(2.3) u(0, x) = h(x), x € R?,
lim sup |u(¢,x)| =0, for all ¢, > 0.

lxl=>® 0<t<t,

It follows from Lemma 2 that the solution is unique if it exists. A special
result of Haraux and Weissler (cf. [12, Theorem 5(b)]) is important in our
approach. It implies the following lemma.

LEMMA 3 (Haraux and Weissler). There exists a positive radial function F
such that the following hold:

() lim, .|x/?F(x) =L > 0;

Gi) u(t,x; F) =1 +¢t)'F(1 + t)"2x), (t, x) € [0,%) X R3,

Let A, be the function defined by A;(x) = T~ '/*h(x), x € R3. An applica-
tion of Lemmas 2 and 3 yields the following bound on u(¢, x; Ar).
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LEMMA 4. Suppose h is continuous and satisfies the following condition:

) _

Then, for T > T, = K*, the solution u(t, x; hy) of (2.3) exists and

To\"* -1 ~1/2
lu(t,x;hT)|s(?) (L+¢) "F((1+1) /x).

PROOF. Suppose that T, = 1. Consider w(t, x; 7" '/*) and w(t, x; T~ /*),
the solutions of the equations

Jw

—, =Am+ TV, W(0,x) = T"V4F(x),  (¢,x) € (0,%) X RY,
Jw

— =Bw =TV’ w(0,x) = T ViF(x), (¢,x) € (0,%) X R".

Note that w(0, x; T~ **) > u(0, x; hy) = w(0, x; T~ '/*) and that the three

functions w = TY*w?, u — u? and w —» —T'*w? are also in decreasing

relation. Since T' > T, = 1, Lemma 2 then implies that
w(t,x;T V) > u(t,x;hy) > w(t, x; T 4.
Simple computations together with Lemma 3 yield
w(t,x; T4 =T Y41 +¢) 'F((1+¢) ?x)
and
w(t, o; TV = =T~ V41 + ) 'F((1L+1¢) ?x).
The proof is now completed for the case T, = 1. For arbitrary T, simply

replace all the T’s by T/T,. O

Both the probabilistic tool (Lemma 1) and the analytic tools (Lemmas 2
and 3) are useful in our approach. This will become clear in view of the next
lemma, which relates the cumulant generating functions to the solutions of

(2.3).
LEMMA 5. Let h be as in Lemma 4 and let u(t, x; h) exist for all t > 0.
Then, for all (t, x) € [0,) X R3,
log E {exp{h, u,)} = u(t, x; h).

Proor. Use the identity in the first paragraph of the Introduction and
analytic continuation (cf. [15, Lemma 1.7])). O

The next lemma concerns the limiting behavior of the solutions of (2.3).
Taking Lemma 5 into consideration, it is also a result for the cumulant
generating functions.
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LEMMA 6. Let BER, Ve B, and h = B(—A)"'V. Then h € L? and (i)
and (ii) hold:

(i)~ limsup| [ (u(T,x;hy) = hy(x))da
T-x R3
() Ifar > 0 as T — =, then

jl;w(u(T,x;aThT) — aphp(x))dx

< ©;

2

lim sup = 0.

T— <

ProOF. We first verify that the supremum K in Lemma 4 is finite for 4. If
x,y €R3 |yl <c and |x| > 2¢, then

_ _ [lx] — |2 — yl|
e —yI™t = 27| = —————
lx||x — yl
o 2xy -1y
lx|lx — yl(1x] + 1x — yl)
2¢lx| + ¢
= 2
lx|”(lx] = ¢)
< 6cl|x|72,

[Le24

where “-” stands for the inner product. Let the support of V be contained in
the ball of radius ¢ centered at the origin. Now, for any x # 0,

1
—h(x) =AWV (x) = — -yI"'V(y)d
(%) () = gz [ 12 =N V() dy
1

_ - -1 -1
i R3(|x yl lx1" )V (y) dy.

Combining the last expressions, we finally get
6¢
47| x|?

This upper bound, together with the fact that 4 is continuous, ensures that K
is finite. Moreover, it also follows that A € L?.
Let u(t, x; T) and u(¢, x; T) be the solutions of the equations

|h(x)| <

fR3|V(y)|dy, x| > 2c.

u
—(9—; =Au + g, (t,x)E(O,OO)XRs,
u(0,x) = aphp(x), x € R®,
and
Ju
- = (tx) €(0,2) xR,

l_t(O, x) = aThT(x)’ x € RB’
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where a; is a constant and
2

T, oA -1 -1/2
gT(t,x)=a%((7) (L+¢) F((1+1¢) /x)).

It follows from Lemma 4 and from the maximum principle for parabolic
equations that

u(t,x;T) <u(t,x;arphy) <u(t,x;T),
for T > a4T, and T > t > 0, x € R3. From the relation between 4 and V in
the assumption, it is easy to see that

u(t, %:T) ~aphy(x) = =T arB[" [ p(s,x=y)V(y) dyds.

Hence u — aphy € LNdx) and [gs(u(t, x;T) — aphp(x) dx =
Moreover, v =7 — u > 0, and v satisfies the equations

Ju
—(9—t=Av+gT’ (t,x)e(O,OO)XR3,
v(0,x) =0, x € R3.

So v has the following representation:
t
v(t,x;T) = ff p(t—s,x—y)gr(s,y)dyds.
0 ’'R3

Therefore

fR3v(T,x;T)dx—f ngT(s y) dyds
TT—) [Tfﬂau +5) PF2((1+s) y)dyds
T

|
(7) fo (1+5) V*F?(2) dzds

(=}

T,

2a2| —
22
hpy <v + u — aphy, we have

1/2 2
) (1+T) l)fR3F (2) dz.
Since u —aphy < u — ap

0= fRa(_zg(T, x;T) —aphp(x))dx
< fRa(u(T,x;aThT) — aphp(x))dx

< fRsv(T,x;T) dx + fRs(y(T,x;T) — aphp(x))dx

= Qa%(%)lﬂ((l + 1) - l)fRst(z) dz.
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Recall that |x|2F(x) is bounded, so F € L?(dx). Therefore, to finish the proof
of (i) [resp., (ii)], we just have to let T — =, observing that if a; = 1 (resp.,
ap — 0), then the right-hand side of the last inequality is bounded (resp., goes
to 0). O

Let v(#, x; 65,) be the mild solution of

av
E=Av+v2+050, (t,x) €(0,1] x R3,
v(0,x) =0, x € R3,
and let
A(8) = &30(1,35;050) dx, ifv(1,x;68,) exists,
+o, otherwise.
Further let

A= { ¢:R% — [0,), ¢ is nonnegative, Holder-continuous
with compact support and f \ é(x)dx=1.
R

It was proved in [15, Lemma 1.7, (0.4) and (0.5)] that v(1, x; 65,) exists when
0 is less than a certain positive number 6, and that it does not exist when 6
is greater than 6,. It was also proved that the function A is smooth, A(0) = 0,
A(@) =1, X(6) > 0 for 6 < 6, and

(24) %im T-1/2 log E{exp(@T“I/2 fT(¢, ) ds)} = A(9),
— % 0
for 6 < 6, and ¢ € A.

REMARK 3. One can prove that (2.4) also holds if we replace the condition
“¢ has compact support” by the weaker condition “¢ € L'.”

LEMMA 7. Suppose V € B and 6 € R. Then (i), (ii) and (iii) hold:
(i) limsupT'/2%log E{exp(GT‘I/4 fT<V, e ds)} < 3A(46% +);
T x 0
(ii) for any 0 < 8 < %,

limsup 7%~ /2 log E{exp(&T“‘s/z‘I/4 fT(V, ) ds)} < 0%
0

T—x

(iii) lim sup log E{exp(q‘)T‘l/2 fT<V, ) ds)} < 62
0

T—-x
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Proor. It follows from Lemma 1 that
T
exp(f0 (=Ah,pny) ds) =exp(M;p+{—h, pp—pgy)

=exp({—h, MT—M0>)eXp(vf0T<h2, M) dS)AT(7)1”~

Let «, B and y be positive numbers such that 3>y and 1/a + 1/8 +
1/v = 1. The Hélder inequality and Lemma 1 imply that

Ex{exp fT( —Ah,p) ds}
0

/B
= [Ex{exp< - ah, M — IU‘O>}] I/H[Ex{exp(YﬁLT<h2’ I'Ls> dS)}}

<[EfAr(]”.

By Lemma 1, the third factor on the right-hand side equals 1 as long as the
second factor is finite. If the second factor is infinite, then the inequality is
trivial. So we can write

Ex{exp fT< - Ah, pg) ds}
0

(2.5) . ’ 18

= [Ex{exp< — ah, M — /-"O>}] l/a[Ex{exp(’YB‘/;) <h2’ Ms> ds)}] ‘

Taking logarithms on both sides of (2.5) and integrating with respect to the
Lebesgue measure, we get

log E{exp f0T< - Ah, ug) ds} f[Rslog Ex{exp fOT( —Ah,ug) ds} dx

IA

1
— [ log B {exp( — ah, uy — po)} dx
o JR3
1 T

(2.6) +EfR310gEx{exp( B'yj;) (h2,M3>ds)}dx

1

= — [ (T, x; —ah) + ah(x)) dx

o JR3

1 E{x( IR >d)}
Bog exp Bvo y Mg as |,

where the last step uses Lemma 5.



SUPER-BROWNIAN MOTION 1765

Let h = 0T C/2+U/H(—A)"1V, so —Ah = T ©C/2+V/DV; also let ¢ =
(A~1V)2, It now follows from Lemma 6(i) for the case § = 0 and from Lemma
6(ii) for the case 0 < & < 3 that, for any 0 < § < 3,

lim sup 7%~ /2 log E{exp(()T‘(‘s/2+ 1/“)fT(V, ) ds)}
Tox 0
(2.7) 1 r
< limsup —T°% 12 log E{exp( ﬁyezT‘(‘”l/z)f (P, gy ds)}.
T-= B 0
To prove (i), set 6 = 0 in (2.7). By using (2.4) we obtain that the right-hand
side of (2.7) is equal to (1/B)A(yB62). Letting a« —» « and then B =17y — 2
from above, we obtain (i), since By > 4 whenever o < .
Next suppose that 0 < § < 1. Set

Ap(a) =T 1% log E{exp(aT‘l/2 [T<¢, M) ds)}.
0

We know that A, is convex, Ap(a) is finite for small positive a, A;(0) =0,
AN(©)=1 and Ay > A as T — ». Moreover, there exists a, > 0 such that
Ap(a) <o for 0 <a <a,. It follows that A;(a)/a is nondecreasing for
a, >a > 0.

Now, for arbitrary & > 0, we have T"° < ¢, if T is large enough. Thus

1 1
limsup T~ °A,( By92T~?) < limsup —A,(&By8?) = ;A( Bey6?).
T-x T — > &
Therefore, the last argument, combined with (2.7), proves that
1
lim sup 7%~ /2 log E{exp(()T‘(a/z“/“)fT(V, ) ds)} < —A(Beyd?).

T —oc 0 8B

The proof of (ii) and (iii) is completed by letting & go to 0 and by letting y go

to 1 in the last expression. O

LEMMA 8. Suppose V € B and 0 € R. Then the following hold:
(i)

— 92
lim inf 771/2 log E{exp(()T‘l/4fT<V, Ms>d8)} > —A( ),
T—> 0 2

for all 16| < 2\/-5;;
(i) for any 0 < 6 < %,

T— oo

liminf 7%~ 1/2 log E{exp(OT‘(5/2+1/4)fT<V, ey ds)} > 02
0

(iii) li;ninf log E{exp(()T'l/sz<V, ) ds)} > 602
— 0 0
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ProOF. Let a,B8,y>1and1/a+1/B+1/y=1
By Lemma 1, A,,,(1/y) is a P,-martingale for all £ >0, and
E{A;(1/y)} =1, as long as

1
Ex{exp fOT7<h2, ) ds}

2]l ()

X exp{fOT <_TAh,/.Ls>dS}

Holder’s inequality yields

-sfof2)
(2.8) sEx{exp<a—;l,,uT—u0>} {expf< Bh >ds}

T 1/y
X Ex{expf (= Ah, pg) ds} .
0

is finite.
Since

Taking logarithms in (2.8) and rearranging terms then give

T Y ah
log Ex{exp/; (- Ah,p,s>ds} > —Zlog E {exp T,[J..T - Mo

(2.9) _pn?
_%logE {expf < s>ds}.

Recall that ¢ = (A~1V)? is such that [zs¢(x) dx = 1. Now using the same
h as in the proof of Lemma 7, that is, A = T ¥/2*1/9(—-A)"'V, and
integrating (2.9) with respect to the Lebesgue measure, we get

li;ninf T% 12 log E{exp(OT‘('S/z“/“)fT(V, ) ds)}
— 0

(2.10)

_ BT (5+1/?)
> ——hmsup T% 12 log E expf < B 5 ¢,/ws>ds ,
:B T x Y

for any 0 < & < 2, using Lemmas 5 and 6.
To complete the proof of (i), we take § = 0 in (2.10) and use (2.4). Taking
B=v=2a/(a—1) > 2, we see that

Ex{exp 0% 2T-1/2 fT<¢, T ds}
0
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is finite whenever |6| < 2\/—50- . The proof is completed by letting « tend to
infinity.

To complete the proof of (ii), we just use the fact that Ap(—a)/a is
nondecreasing for a > 0. The rest of the proof is similar to the one for the (ii)
and (iii) in the previous lemma. O

Had the upper bound in Lemma 7 and the lower bound in Lemma 8
agreed, the Gartner—Ellis theorem (cf. [10]) would have implied a large-devia-
tion principle. Thanks to the following extension of a lemma of Cox and
Griffeath (cf. [5, Lemma 7, pages 1130-1131]), Lemmas 7 and 8 do guarantee
that the logarithmic order of decay of the probabilities is as asserted in our
main theorem.

LEMMA 9. Let (Y,, t > 0} be a sequence of random variables, and let a, be
a normalizing sequence increasing to infinity, with

%,(A) = a; " log E{exp AY}.

Let § and { be two functions such that, for some 0 < A, < ®, we have the

following:

(i) ¥ and ¥ are convex on [0, Ao), and Y(A)/A is not constant on (0, A);
(i) ¥(0) = y(0) = 0, and D*y(0) = D" Y(0) = w, where D*f is the right
derivative of f; -
(i) ¢ < liminf, ., ¢, < limsup, . ¥, < ¥, on [0, Ay).

Set c(a) = sup,c(o, \,) @A — W(A). Then there exist @ > u and a function c
such that, for all a € (u, @), c(a) > 0, c(a) > 0 and
—c(a) < liminfa; ! log P{a;'Y, > a}
t—>

< limsup a; ' log P{a;'Y, > a}

t—> o
< —¢(a);
@, ¢ and ¢ only depend on § and ¢, both restricted to A € [0, Ao)-

ProoF. The upper bound is an easy application of Chebyshev’s inequality.
For any A € [0, Ay), we have

P{a;'Y, > a} = P{exp(\Y,) > exp(a,Aa)} < exp[a,(¢,(A) — Aa)].
Thus
limsup a; ! log P{a; 'Y, > a} < —Aa+ ¢(A), A€[0,A).

Lo
Hence
limsup a; ' log P{a; 'Y, > a} < inf — (ra—¢(A)) = —c(a).
t— o )\E[O,)\o)

Since ¢ is convex on [0, Ay), ¥(0) =0 and D*¢(0) = u < a, Y(A)/A con-
verges to w as A} 0. Therefore ¢(a) > 0.
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Next set @ = lim,;, ¢¥(A)/A. Then @ > u. For if this is not the case, then
p=D%¢(0) < y(A)/A <, A€ (0, Ay,

proving that ¥(A)/A is constant over (0, A,), which contradicts assumption
. -

Let « € (u, @) be given. Then one can find A € [0, Ay) and 8 > 0 such that
A+ 8€[0, 1) and a < $(A)/A. Finally, let M > a be such that

(A +8) — ()
5 .

L=AM—-¢(A)>0 and M>

Then
0<L<U=min(MM—a),(A+8)M— §(r+8)).
Now
E{exp( AY) 141y, < a}} < exp(a,ra),
; Efexp(AY,)1, o4y, <)) < exp(a,AM)P{a;'Y, > a},
and )
E{exp( AY )1 y,> M)} = E{exp[(/\ +8)Y,]exp(—8Y,) 1, vy, > M}}
< exp(—a,8M)exp[a,y,(A + §)].
Therefore, ’
exp(—a,AM)exp[a,y,(A)] < P{a;'Y, > a} + exp[ —a,M(M — a)]
+ exp[a,(y,(A + 8) — M(A+ 8))].
Next
li?_l’iocnfot{1 logexp(—a,AM)exp[a,,(A)] = =AM + ¢(A) = —L,

and

limsup a; ! log{exp[ —a,A(M — a)] + exp[a,(4,(A + 8) — M(A + 8))]}

t—ox
<max(—MM - a), —(A+ 8)M + (A + 8))
= -U.
Since L < U, we obtain

li:lliwnfa[l log P{a;'Y, > a} > —L.
The proof is completed by setting c(a) = L. O
We are now in a position to prove the main theorem.
PROOF OF THE MAIN THEOREM. The first part of the theorem, namely, that

for any V € B, one can find A > 0 such that AV € B, has been proved in
Lemma 6. Next the function ¢: 6 — 3A(462 + ), appearing in Lemma 7(i), is
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strictly convex with derivative 0 at 6 = 0. Similarly the function
¢: 06— —A(—0%/2), appearing in Lemma 8, is strictly convex on |6] < 2‘/50_
and has derivative 0 at 6 = 0. Therefore Lemma 9 applies, completing the
proof of (i). Finally, statements (ii) and (iii) follow from the matching upper
and lower bounds in (ii) and (iii) of Lemmas 7 and 8. O

In view of the corresponding more complete result for independent parti-
cles [3, 22] one is tempted to make the following conjecture. It would be
interesting to prove or disprove it.

CONJECTURE 1. We have

lim ¢1/2 log P{t_3/4 [t[ V(x)p,(dx) ds > a} =I(a),
0 ’R3

t—> oo

where I(a) = sup, c g(@d — A(62)).

Combining the last theorem and results from [15], we obtain the analogue
of Theorem 1.3 in [22] and Corollary 3.1 in [21].

COROLLARY 1. Consider the occupation time process Lp(dx) =
T~ Tu(dx) ds with values in 4, the space of Radon measures on R® equipped
with the usual projective limit topology of the spaces {#y; K c R3, K compact}
where My is the space of finite Radon measures on K. Then {.#, LT, TY?}isa
large-deviation system with action functional I where

sup(cG—A(O)) if o =cA,
I(a’) = . ocEMA,
+ ®, otherwise,

and A is the Lebesgue measure.

PROOF. Let ¢, be a fixed continuous density function on R?® with compact
support. Then, for any continuous function V on R3 with compact support
and unit integral, it follows from the proof of Lemmas 7 and 8 that

2.11 lim T1/2 log Elexp| -2 [T(V = ¢y, u,) ds || = o.
T x 0 0

Using (2.11) and the Holder inequality, we see that (2.4) holds for all V; that
is, the nonnegativity assumption is not needed, and, for any continuous V
with compact support, we have

%im T-1/2 log E{exp(T‘ 172 fT(V, ) ds)} = A(V),
— X O
whenever V = [5V(x) dx < 6.

The Holder-continuity assumption can also be removed; see the second-to-
last paragraph of the introduction of [15]. Using Theorem 3.4 of [7], we then
obtain that, for any compact subset K of R3, {.#, LX), T'/?} is a large-devia-
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tion system with action functional [y, where LY is the restriction of L, to
K and

(2.12) Ix(o) = sup (V,0) — A(V),

Velyk
where Cy is the set of continuous functions on R® with support in K.
Although the limit of the cumulant generating function A(V) is infinity for
V > 6,, formula (2.12) persists because the steepness condition A (0 —) =
is verified in [15, Lemma 1.7]. See [15, Theorem 0.4] for more detail. Next we
show

. sup(cO — A(8)), if o=clg,
(218) [ (o) = | ser o sedy,
+oo, otherwise,

and Ag is the restriction of the Lebesgue measure to K.

If o =cAg for some ¢ > 0, then there is nothing to prove. Suppose next
that o # cAg for every ¢ > 0. Then one can find V € Cy such that V = 0 and
(V, o) = 1. Therefore,

Ix(o) = sup(6V,0) — A(6V) = sup = +oo.
>0 6>0
Hence I (o) = +=.
In view of (2.13) it is readily seen that

sup Ix(og) =1(0),
KcR3
K compact

where oy is the restriction of o to K.
Since the topology on .# is the projective limit topology of {.#; K compact},
we can apply Theorem 3.3 of [7] to complete the proof. O

Acknowledgment. We are grateful to the referees for their useful com-
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