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In the early 1940s, D. G. Kendall conjectured that the shape of the
zero cell of the random tessellation generated by a stationary and isotropic
Poisson line process in the plane tends to circularity given that the area of the
zero cell tends to ∞. A proof was given by I. N. Kovalenko in 1997. This
paper generalizes Kovalenko’s result in two directions: to higher dimensions
and to not necessarily isotropic stationary Poisson hyperplane processes. In
the anisotropic case, the asymptotic shape of the zero cell depends on the
direction distribution of the hyperplane process and is obtained from it via an
application of Minkowski’s existence theorem for convex bodies with given
area measures.

1. Introduction and main results. Let X be a stationary and isotropic
Poisson line process in R

2. It induces a random tessellation of R
2 into convex

polygons, the cells of the tessellation. The cell containing the origin of R
2 is

almost surely unique; it is called the zero cell or Crofton cell of the tessellation
and denoted by Z0. In his foreword to the first edition of [11], Kendall formulated
his conjecture, made in the early 1940s, that the conditional law for the shape
of Z0, given the area A(Z0) of Z0, converges weakly, as A(Z0) → ∞, to the
degenerate law concentrated at the circular shape. Strong support for the truth of
this conjecture came from papers of Miles [7] and Goldman [2]. A proof was given
by Kovalenko [4], and a simplified version in [5]. We will extend the methods
and results of the latter paper to higher dimensions and, adding a geometrically
interesting new aspect, to anisotropic hyperplane processes.

Let X be a stationary Poisson hyperplane process in d-dimensional Euclidean
space R

d , d ≥ 2, with intensity λ > 0. The induced tessellation T (X) and its zero
cell Z0 are defined in the obvious way. We assume that X is nondegenerate, in
the sense that there is no line with the property that almost surely all hyperplanes
of the process are parallel to this line. Under this assumption, the zero cell Z0 is
bounded almost surely.

The direction distribution ϕ of the stationary hyperplane process X is an even
measure on the unit sphere which describes the distribution of the unit normals of
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the hyperplanes of X. By Minkowski’s theorem, there exists a centrally symmetric
convex body B for which ϕ is the area measure (for explanations and details,
see Section 2). We call B the direction body of X. In the following, the shape
of a convex body K ⊂ R

d is understood as a homothetic shape: two convex
bodies K,M have the same shape if they are homothetic, which means that
K = rM + z with suitable r > 0 and z ∈ R

d . In order to measure the deviation
of the shape of a convex body K from the shape of B , we put

rB(K) := inf
{
s/r − 1 : rB + z ⊂ K ⊂ sB + z, z ∈ R

d, r, s > 0
}
.

Note that rB(K) is invariant under dilatations of B and homotheties of K . The
convex body K is homothetic to B if and only if rB(K) = 0. Now we can formulate
our main result. By P we denote probability, and V is the volume in R

d . We
consider intervals of the form I = [a, b) with 0 < a < b, where b = ∞ is allowed.

THEOREM 1. Let X be a nondegenerate stationary Poisson hyperplane
process in R

d with intensity λ > 0 and direction body B; let Z0 be the zero cell
of the tessellation T (X) induced by X. There is a positive constant c0 depending
only on B such that the following is true. If ε ∈ (0,1) and I = [a, b) is any interval
with a1/dλ ≥ σ0 > 0, then

P
(
rB(Z0) ≥ ε|V (Z0) ∈ I

) ≤ c exp
{−c0ε

d+1a1/dλ
}
,

where c is a constant depending on B,ε,σ0.

As a consequence, leaving aside part of the more precise information contained
in the theorem, we may formulate that

lim
a→∞ P

(
rB(Z0) ≥ ε|V (Z0) ≥ a

) = 0

for every ε > 0. This shows that the conditional law for the shape of Z0, given a
lower bound for the volume V (Z0), converges weakly, as that lower bound tends
to ∞, to the law concentrated at the shape of the direction body of the process X.
Here the intensity λ of the process X was kept fixed. Alternatively, one may fix a
lower bound a for V (Z0) and let λ tend to ∞.

We may also formulate the following consequences of Theorem 1.

COROLLARY 1. Under the assumptions of Theorem 1, and for any intervals
Ia ⊂ [a,∞),

lim sup
a→∞

a−1/d log P
(
rB(Z0) ≥ ε|V (Z0) ∈ Ia

) ≤ −c0ε
d+1λ,

uniformly for λ ≥ λ0 > 0.

COROLLARY 2. Under the assumptions of Theorem 1,

lim sup
λ→∞

λ−1 logP
(
rB(Z0) ≥ ε|V (Z0) ∈ I

) ≤ −c0ε
d+1a1/d,

uniformly for intervals I ⊂ [a,∞) with a ≥ a0 > 0.
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In addition to the zero cell, one may also consider the typical cell Z of the
Poisson hyperplane tessellation T (X). By a result of Mecke [6], it is known that
Z0 is larger than Z in a precise sense: There exists a suitable random vector ξ such
that Z + ξ ⊂ Z0 almost surely. However, this strong relationship does not seem
to be useful for deriving an analogue of Theorem 1 with the typical cell replaced
by the zero cell. Instead, our approach of such an analogue will be based on the
main estimates used for the proof of Theorem 1 and on a relationship between the
distribution of the zero cell and the volume weighted distribution of the typical
cell.

THEOREM 2. The assertion of Theorem 1 remains verbally true if the zero cell
Z0 is replaced by the typical cell Z.

A reader who has studied Kovalenko’s [5] paper will notice that the principal
ideas of that work are still present in our proof. However, the extension to
higher dimensions and to the anisotropic case requires not only more elaborate
techniques, but also the application of additional geometric tools, such as results
on the stability of Minkowski’s inequality for mixed volumes or on approximation
of convex bodies by polytopes with a given number of vertices. We have further
generalized Kovalenko’s result to the extent that the intervals in Theorem 1 need
not be sufficiently small. For the reader’s convenience, we also wanted to make
some of the arguments more explicit.

2. Preliminaries. We work in d-dimensional Euclidean vector space R
d , with

scalar product 〈·, ·〉 and induced norm ‖ · ‖. Its unit ball, {x ∈ R
d :‖x‖ ≤ 1}, is

denoted by Bd , and Sd−1 = ∂Bd (∂ is the boundary operator) is the unit sphere.
Hyperplanes can be written as H(u, t) := {x ∈ R

d : 〈x,u〉 = t} = u⊥ + tu, where
u ∈ Sd−1, t ∈ R, and u⊥ denotes the orthogonal complement of lin{u}. The set
H−(u, t) := {x ∈ R

d : 〈x,u〉 ≤ t} is a closed halfspace. The space of convex
bodies (nonempty, compact, convex subsets) in R

d is denoted by Kd , and Kd
0 is

the subset of bodies with interior points. Kd is equipped with the Hausdorff
metric δ. By P d ⊂ Kd we denote the subset of convex polytopes, and we set
P d

0 := P d ∩ Kd
0 .

For basic facts from stochastic geometry which are not explained in the
following, we refer to [10] and [11]. The employed notions and results from the
theory of convex bodies are found in [9].

Let X be a stationary Poisson hyperplane process in R
d , with intensity λ ∈

(0,∞). Its intensity measure EX(·) (E denotes mathematical expectation) has a
unique representation in the form

EX(·) = 2λ

∫
Sd−1

∫ ∞
0

1{H(u, t) ∈ ·}dt ϕ(du),(1)
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where ϕ is an even probability measure on the sphere Sd−1 (cf. [10], 4.1.2 and
page 115). The measure ϕ is called the direction distribution of X. We assume
that X is nondegenerate; this is equivalent to the assumption that the measure ϕ

is not concentrated on a great subsphere of Sd−1, and it implies that the cells
of the induced tessellation T (X) are almost surely bounded (cf. [10], page 272).
The zero cell of the tessellation induced by a hyperplane process X is denoted
by Z0 = Z0(X).

By Minkowski’s existence and uniqueness theorem from the geometry of
convex bodies (cf. [9], Section 7.1), there exists a unique convex body B ∈ Kd

0
with B = −B such that

ϕ = Sd−1(B, ·).
Here Sd−1(B, ·) is the area measure of B , which means that, for a Borel set
ω ⊂ Sd−1, the number Sd−1(B,ω) is the area [the (d − 1)-dimensional Hausdorff
measure] of the set of boundary points of B at which there exists an outer
normal vector belonging to ω. We call B the direction body of X. The dilated
body B(X) := λ1/(d−1)B has been called the Blaschke body of X (see [10],
page 172). In the following, it seems preferable to consider λ and B separately. The
usefulness of Minkowski’s existence theorem for certain questions in stochastic
geometry was first noticed in [8], there in connection with finitely many random
hyperplanes. Later, similar constructions were applied to hyperplane processes,
particle processes and special random closed sets; see [10], page 158, and the
notes on pages 178 and 179.

Using the direction body, we can rewrite (1) in the form

EX(·) = 2λ

∫
Sd−1

∫ ∞
0

1{H(u, t) ∈ ·}dt Sd−1(B, du).(2)

For K ∈ Kd , we write HK for the set of all hyperplanes H ⊂ R
d with H ∩K �= ∅.

Then

EX(HK) = 2λ

∫
Sd−1

h(K,u)Sd−1(B, du) = 2dV1(B,K)λ,(3)

where h(K, ·) denotes the support function of K and

V1(B,K) := V (K,B[d − 1]) := 1

d
lim

α→0+
V (B + αK) − V (B)

α

is the mixed volume of K and d − 1 copies of B (see [9] for an introduction to
mixed volumes). With this notation, the assumption that X is a Poisson process
implies that, for K ∈ Kd and k ∈ N0,

P
(
X(HK) = k

) = [2dV1(B,K)λ]k
k! exp{−2dV1(B,K)λ}.(4)
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At this point, we want to give a rough description of the idea that leads to
revealing the direction body B as the limit shape. We are interested (in the simplest
case) in the conditional probabilities

P
(
Z0 ∈ C|V (Z0) ≥ a

)
for large a, where C is a Borel set in Kd

0 , closed under homotheties (since we
are asking for the shapes of the zero cells with large volume). A lower bound for
P(V (Z0) ≥ a) is easily obtained. In fact, for K ∈ Kd

0 with 0 ∈ K and V (K) = a,
we have

P
(
V (Z0) ≥ a

) ≥ P
(
X(HK) = 0

) = exp{−2dV1(B,K)λ}.
Choosing K = (a/V (B))1/dB , we get

P
(
V (Z0) ≥ a

) ≥ exp
{−2dV (B)(d−1)/da1/dλ

}
.(5)

For an upper bound, we can estimate the mixed volume V1(B,K) by using
Minkowski’s inequality ([9], page 317)

V1(B,K) ≥ V (B)(d−1)/dV (K)1/d .(6)

Here equality holds if and only if K is homothetic to B . Let C ⊂ Kd be a closed
set which is also closed under homotheties. Suppose that B /∈ C. Then there is a
number τ > 0 such that

V1(B,K) ≥ (1 + τ )V (B)(d−1)/dV (K)1/d for K ∈ C.(7)

[Otherwise, for every τ = 1/n, n ∈ N, there is a convex body Kn ∈ C violating (7),
without loss of generality with 0 ∈ Kn and D(Kn) = 1, where D denotes the
diameter. The Blaschke selection theorem (see [9]) yields the existence of some
K ∈ C with D(K) = 1 for which equality holds in (6). This implies B ∈ C,
a contradiction.] If now K ∈ C and V (K) ≥ a, then

P
(
X(HK) = 0

) = exp{−2dV1(B,K)λ}
≤ exp

{−2d(1 + τ )V (B)(d−1)/da1/dλ
}
.

Since a convex body contained in the interior of the zero cell Z0(X) does not meet
any hyperplane of X, one might now hope, with a bold heuristic analogy, that
something like

P
(
Z0 ∈ C,V (Z0) ≥ a

) ≤ c′ exp
{−2d(1 + c′′τ )V (B)(d−1)/da1/dλ

}
,(8)

with positive constants c′, c′′, might be true. If that holds, then dividing (8) by (5)
immediately gives

lim
a→∞P

(
Z0 ∈ C|V (Z0) ≥ a

) = 0.

Since this holds whenever B /∈ C, we see that the shapes of the zero cells with
large volume concentrate at the shape of B .
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A large part of the proof to follow (besides aiming at greater generality) is
devoted to the replacement of the heuristic estimate (8) by solid arguments.

The proofs of the theorems, to be given in Section 7, require a number of
preparations of different types. We divide them into groups of lemmas giving
lower bounds for probabilities (Section 3), geometric tools (Section 4) and upper
bounds for probabilities (Section 5). Section 6 provides and uses an auxiliary
transformation.

We finish these preliminaries with two abbreviations which will be used
throughout the paper and should, therefore, be well memorized. Since intersections
of parameterized halfspaces will frequently occur, we put

n⋂
i=1

H−(ui, ti) =: P (u1, . . . , un; t1, . . . , tn) =: P (
u(n), t(n)

)

for u1, . . . , un ∈ Sd−1, t1, . . . , tn ∈ (0,∞). Further, for n ∈ N, we write

En := (Sd−1)n × (0,∞)n

and

µn := Sd−1(B, ·)⊗n ⊗ L⊗n,

where L is Lebesgue measure on (0,∞). Thus, the repeatedly needed integral∫
Sd−1

· · ·
∫
Sd−1

∫ ∞
0

· · ·
∫ ∞

0
f (u1, . . . , un, t1, . . . , tn)

× dt1 · · ·dtn Sd−1(B, du1) · · ·Sd−1(B, dun),

where f is nonnegative and measurable, will appear in the form∫
En

f (u1, . . . , un, t1, . . . , tn) dµn(u1, . . . , un, t1, . . . , tn).

3. A lower bound. In the following, c1, c2, . . . are positive constants. They
depend on various parameters, as indicated, and only on these. If they depend
on B and the dimension d , the latter dependence will not be mentioned, since
B determines d . If the existence of these constants is not explicitly substantiated,
it will be clear from the context.

For the proof of a lower bound, we need a geometric auxiliary result on the
approximation of B by polytopes with normal vectors taken from the support
of Sd−1(B, ·). This is stated in the following lemma. The condition on the normal
vectors of the facets is needed in order to obtain a positive lower bound at a crucial
step.

LEMMA 3.1. Let β > 0 be given. There exists a polytope P ∈ Kd with
0 ∈ intP , P ⊂ (1 + β)B , V (P ) = V (B), and such that the exterior unit normal
vectors of the facets of P are contained in the support of Sd−1(B, ·).



1146 D. HUG, M. REITZNER AND R. SCHNEIDER

PROOF. The set regB of regular boundary points of B is dense in ∂B . Let
{x1, x2, . . . } be a countable dense subset of regB . For i ∈ N, let H−(xi) be the
(unique) supporting halfspace of B which contains xi in its boundary; then

B =
∞⋂
i=1

H−(xi).

For n ∈ N, let

Pn :=
n⋂

i=1

H−(xi).

Then Pn ↓ B in the Hausdorff metric as n → ∞. Hence, there is some n ∈ N such
that

B ⊂ Pn ⊂ (1 + β)B.

Let u be an exterior unit normal vector of a facet of the polytope Pn. Since
u is an exterior normal vector of B at a regular boundary point of B , it is an
extreme normal vector of B and hence belongs to the support of Sd−1(B, ·) (cf. [9],
Theorem 4.6.3). The polytope P ′

n := [V (B)/V (Pn)]1/dPn satisfies P ′
n ⊂ (1+β)B ,

V (P ′
n) = V (B), and 0 ∈ int P ′

n. This completes the proof. �

The following lemma provides a lower bound for the probability that V (Z0) lies
in a prescribed interval. In contrast to the easily obtained lower bound (5), we will
need the following more delicate estimate in order to be able to deal with small
intervals in the statement of our main theorems.

LEMMA 3.2. For each β > 0, there are constants h0 > 0, N ∈ N and c3 > 0,
depending only on β and B , such that, for a > 0 and 0 < h < h0,

P
(
V (Z0) ∈ a[1,1 + h]) ≥ c3h(a1/dλ)N exp

{−2d(1 + β)V (B)(d−1)/da1/dλ
}
.

PROOF. Let β > 0 be given. By Lemma 3.1, there are a number N ∈ N,
distinct unit vectors u0

1, . . . , u
0
N in the support of Sd−1(B, ·) and numbers

t0
1 , . . . , t0

N > 0 such that the polytope

P 0 := P (u0
1, . . . , u

0
N ; t0

1 , . . . , t0
N)

has N facets (and thus normal vectors u0
1, . . . , u

0
N ) and satisfies

P 0 ⊂ (1 + β/2)B and V (P 0) = V (B).

We choose one such polytope (for given B and β); its facet number, N , then
depends only on β and B .

We can choose a positive number α = α(β,B) with t0
i − α > 0, i = 1, . . . ,N ,

such that, for all u1, . . . , uN ∈ Sd−1 and t1, . . . , tN ∈ R with

‖ui − u0
i ‖ < α, |ti − t0

i | < α, i = 1, . . . ,N,(9)

the following condition is satisfied:
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(i) P := P (u1, . . . , uN ; t1, . . . , tN) is a polytope with N facets and satisfying
P ⊂ (1 + β)B .

For the following, it is important to note that the values

V
(
P (u0

1, . . . , u
0
N ; t0

1 , . . . , t0
N−1, t)

)
, where |t − t0

N | < α,

cover an interval containing V (B) in its interior. Therefore, a continuity argument
shows that, if α has been chosen sufficiently small, we can choose a number h0 > 0
such that (9) implies condition (i) together with the following condition:

(ii) If 0 < h < h0, then

V (B)[1,1 + h] ⊂ {
V

(
P (u1, . . . , uN ; t1, . . . , tN−1, t)

)
: |t − t0

N | < α
}
.

Let ρ > 0 be a given number. If u1, . . . , uN, t1, . . . , tN satisfy (9), then the
following conditions also hold:

(iρ ) Pρ := P (u1, . . . , uN ;ρt1, . . . , ρtN ) is a polytope with N facets and
satisfying Pρ ⊂ (1 + β)ρB .

(iiρ ) If 0 < h < h0, then

V (ρB)[1,1 + h] ⊂ {
V

(
P (u1, . . . , uN ;ρt1, . . . , ρtN−1, t)

)
: |t − ρt0

N | < ρα
}
.

Let u1, . . . , uN ∈ Sd−1 and t1, . . . , tN−1 ∈ R satisfy (9). For t ∈ ρ[t0
N −α, t0

N +α],
we define

v(t) := V
(
P (u1, . . . , uN ;ρt1, . . . , ρtN−1, t)

)
.

The function v is strictly increasing and differentiable. The derivative v′(t) is equal
to the (d − 1)-dimensional volume of the facet of Pρ,t := P (u1, . . . , uN ;ρt1, . . . ,

ρtN−1, t) with exterior normal vector uN , and this can be bounded from above by
Vd−1(Pρ,t |u⊥

N), the (d − 1)-volume of the orthogonal projection of Pρ,t on to u⊥
N .

Since Pρ,t ⊂ (1 + β)ρB , we obtain

0 < v′(t) ≤ (1 + β)d−1ρd−1Vd−1(B|u⊥
N) ≤ c1(β,B)ρd−1

for t ∈ ρ[t0
N − α, t0

N + α]. Defining

I := {
t ∈ ρ[t0

N − α, t0
N + α] :v(t) ∈ V (ρB)[1,1 + h]}

and denoting by τ the inverse function of v, we deduce that the length |I | of I

satisfies

|I | =
∫

1I (τ (w))τ ′(w)dw

=
∫

1{w ∈ V (ρB)[1,1 + h]}τ ′(w)dw

≥ c1(β,B)−1ρ1−dρdV (B)h

= c2(β,B)ρh.
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To complete the argument, we set

P := {
P

(
u(N), t(N)

)
:‖ui − u0

i ‖ < α, |ti − ρt0
i | < ρα for i = 1, . . . ,N,

V
(
P

(
u(N), t(N)

)) ∈ V (ρB)[1,1 + h]}.
In the following, the symbol denotes the restriction of a measure; in

particular, (X H ′)(A) := X(A ∩ H ′) for Borel subsets H ′ and A of H . In the
subsequent computation (as well as at several places below), we use (4) and a
fundamental property of Poisson processes (Theorem 3.2.3(b) in [10]). It implies
that

P
(
X HK ∈ ·|X(HK) = N

) = P∑N
i=1 δHi

,

where δ denotes a Dirac measure and H1, . . . ,HN are independent, identically
distributed random hyperplanes with distribution 
 HK/
(HK) (
 = EX is
the intensity measure of X). By (2), for any Borel set A ⊂ H ,

(
 HK)(A) = 2λ

∫
E1

1HK∩A(H(u, t)) dµ1(u, t),

and by (3) we have 
(HK) = 2λdV1(B,K). If K = (1 +β)ρB , then V1(B,K) =
(1 + β)ρV (B). Thus, we get

P
(
V (Z0) ∈ V (ρB)[1,1 + h])

≥ P
(
X

(
H(1+β)ρB

) = N,Z0
(
X H(1+β)ρB

) ∈ P
)

= [2d(1 + β)ρV (B)λ]N
N ! exp{−2d(1 + β)ρV (B)λ}

× P
(
Z0

(
X H(1+β)ρB

) ∈ P
∣∣X(

H(1+β)ρB

) = N
)

≥ (2λ)N

N ! exp{−2d(1 + β)ρV (B)λ}
(10) ×

∫
EN

1
{‖ui − u0

i ‖ < α, |ti − ρt0
i | < ρα for i = 1, . . . ,N,

V
(
P

(
u(N), t(N)

)) ∈ V (ρB)[1,1 + h]}
× dµN(u1, . . . , uN, t1, . . . , tN )

≥ (2λ)N

N ! exp{−2d(1 + β)ρV (B)λ}c2(β,B)ρh(2ρα)N−1

×
N∏

i=1

Sd−1
(
B,Ui(α)

)
,

where Ui(α) is the open spherical cap with center u0
i and radius α. Since u0

i is in
the support of Sd−1(B, ·), we have Sd−1(B,Ui(α)) > 0. Finally, for given a > 0,
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we choose ρ > 0 such that V (ρB) = a. This gives

P
(
V (Z0) ∈ a[1,1 + h])

≥ c3(β,B)h(a1/dλ)N exp
{−2d(1 + β)V (B)(d−1)/da1/dλ

}
and thus proves the assertion. �

REMARK. In spite of the seemingly crude estimate (10), the lower bound
given by Lemma 3.2 is of the right order. In fact, from Lemmas 6.3 and 5.1 one
can deduce, for 0 < h < 1/2 and a1/dλ ≥ σ0 > 0, the upper bound

P
(
V (Z0) ∈ a[1,1 + h]) ≤ c4(B,σ0)h exp

{−c5(B)a1/dλ
}
.(11)

From this upper bound, one can conclude, in particular, that the distribution of
V (Z0) is absolutely continuous with respect to the Lebesgue measure.

4. Some geometric tools. As explained in Section 2, Minkowski’s inequal-
ity (6) (for K ∈ Kd

0 ) plays an important role. In the case where a lower bound
V (K) ≥ a > 0 is prescribed, we can choose ρ > 0 with V (ρB) = a and deduce
from (6) that

V1(ρB,K) ≥ V (ρB).(12)

If equality holds here, then ρB and K are homothetic, hence rB(K) = 0. The
subsequent lemma improves (12) if rB(K) ≥ ε > 0.

Let [0, u] be the closed line segment with endpoints 0 and u. In the following,
we denote by U0 an interval of unit length for which

V1(B,U0) = min{V1(B, [0, u]) :u ∈ Sd−1}.

LEMMA 4.1. There is a constant c8 = c8(B) such that, for K ∈ Kd , ρ > 0
and ε ∈ (0,1), the following is true. If V (K) ≥ V (ρB) and rB(K) ≥ ε, then

V1(ρB,K) ≥ (1 + c8ε
d+1)V (ρB).

PROOF. It is sufficient to prove the result for ρ = 1. From this the general case
follows. In fact, let K ∈ Kd and ρ > 0 satisfy V (K) ≥ V (ρB) and rB(K) ≥ ε.
Then we have V (ρ−1K) ≥ V (B) and rB(ρ−1K) ≥ ε. Hence, V1(B,ρ−1K) ≥
(1 + c8ε

d+1)V (B) and, therefore, V1(ρB,K) ≥ (1 + c8ε
d+1)V (ρB).

We consider the case ρ = 1. Assume that V (K) ≥ V (B) and rB(K) ≥ ε and set
D0 := 2V (B)/V1(B,U0). The constants c6, c7, c8 below depend only on B .

Recall that by D(K) we denote the diameter of a convex body K . If D(K) ≥ D0,
then there is some u1 ∈ Sd−1 such that

V1(B,K) ≥ D(K)V1(B, [0, u1]) ≥ D0V1(B,U0)

= 2V (B) ≥ (1 + εd+1)V (B).
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Now we assume that D(K) < D0. Then

D
(
V (K)−1/dK

) ≤ D
(
V (B)−1/dK

) ≤ V (B)−1/dD0,

so that

max
{
D

(
V (K)−1/dK

)
,D

(
V (B)−1/dB

)}
can be estimated from above by a constant depending only on B . From Corollary 1
of [3] (assuming, without loss of generality, that K has centroid 0), we obtain the
estimate

V1(B,K)d

V (B)d−1V (K)
≥ 1 + c6δ(K̃, B̃)d+1,

where δ denotes the Hausdorff distance, K̃ = V (K)−1/dK and B̃ = V (B)−1/dB .
Let µ denote the inradius of V (B)−1/dB . If δ(K̃, B̃) ≥ µ/2, then(

V1(B,K)

V (B)

)d

≥ V1(B,K)d

V (B)d−1V (K)
≥ 1 +

(
µ

2

)d+1

c6 ≥ 1 +
(

µ

4

)d+1

c6ε
d+1.

If δ(K̃, B̃) < µ/2, then δ(K̃, B̃) ≥ rB(K)µ/4, as we will check below, and
therefore again (

V1(B,K)

V (B)

)d

≥ 1 +
(

µ

4

)d+1

c6ε
d+1.

Setting c7 := c6(µ/4)d+1, we thus get

V1(B,K) ≥ (1 + c7ε
d+1)1/dV (B) ≥ (1 + c8ε

d+1)V (B),

where we choose c8 ≤ 1.
It remains to prove the stated estimate for the Hausdorff distance δ̃ := δ(K̃, B̃).

By definition,

K

V (K)1/d
⊂ B

V (B)1/d
+ δ̃Bd ⊂

(
1 + δ̃

µ

)
B

V (B)1/d
(13)

and

B

V (B)1/d
⊂ K

V (K)1/d
+ δ̃Bd ⊂ K

V (K)1/d
+ δ̃

µ

B

V (B)1/d
;

thus, (
1 − δ̃

µ

)
B

V (B)1/d
⊂ K

V (K)1/d
,(14)

since δ̃/µ < 1 by assumption. Relations (13) and (14) yield that

rB(K) ≤ (1 + δ̃/µ)V (K)1/dV (B)−1/d

(1 − δ̃/µ)V (K)1/dV (B)−1/d
− 1 = 2δ̃/µ

1 − δ̃/µ
≤ 4

µ
δ̃,
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which completes the proof. �

For a polytope P ∈ P d , we write f0(P ) for the number of vertices and extP
for the set of vertices of P . The subsequent lemma will later (in the proof of
Lemma 5.2) allow us to investigate the zero cell by taking into account only a
bounded number of hyperplanes, with controllable error.

LEMMA 4.2. Let α > 0 be given. There is a number ν ∈ N depending only
on B and α such that the following is true. For each P ∈ P d

0 , there exists a
polytope L = L(P ) ∈ P d

0 satisfying extL ⊂ extP , f0(L) ≤ ν and V1(B,L) ≥
(1 − α)V1(B,P ). Moreover, there exists a measurable selection P �→ L(P ).

PROOF. We need the following approximation result, which follows from a
result of Bronshtein and Ivanov [1]. There exist numbers k0 = k0(d) and b0 =
b0(d) such that the following is true. If K ⊂ Bd is a d-dimensional convex body
and k ≥ k0 is an integer, then there exists a polytope Q ∈ P d

0 with k vertices,
without loss of generality on the boundary of K , such that

δ(K,Q) ≤ b0k
−2/(d−1),

where δ is the Hausdorff distance.
Now let P ∈ P d

0 be given. We can assume that the circumball of P has center 0;
let R be its radius. Then there is a vector u ∈ Sd−1 such that [0,Ru] ⊂ P , which
implies that

V1(B,P ) ≥ V1(B, [0,Ru]) ≥ RV1(B,U0).(15)

For k ∈ N with k ≥ k0, there exists a polytope Q ∈ P d
0 with k vertices, all on the

boundary of P , such that

δ(R−1P,R−1Q) ≤ b0k
−2/(d−1) =: κ.

From this we infer that P ⊂ Q + κRBd and hence

V1(B,P ) ≤ V1(B,Q) + κRV1(B,Bd).

Together with (15), this gives

V1(B,Q) ≥ V1(B,P ) − κRV1(B,Bd)

= V1(B,P )

(
1 − κRV1(B,Bd)

V1(B,P )

)

≥ V1(B,P )

(
1 − κ

V1(B,Bd)

V1(B,U0)

)
.

It is now clear that, for given α > 0, there is a constant k1 = k1(B,α) such that the
choice k ≥ k1 implies V1(B,Q) ≥ (1 − α)V1(B,P ).
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Each vertex of Q lies in a facet of P and hence, by Carathéodory’s theorem, in
the convex hull of some d vertices of P . Thus, the convex hull L of a suitable set
of at most ν = dk vertices of P satisfies the conditions of the lemma.

By [10], page 236, the map ψ0 :P �→ extP is measurable as a map from P d to
F (F ′) (see [10] for the notation). Arguing as in the proof of Lemma 3.1.7 in [10],
one can show that there exists a measurable map

ψ :P d → (Rd)N, ψ = (ψ1,ψ2, . . . ),

such that, for every P ∈ P d ,

extP = {ψi(P ) : 1 ≤ i ≤ f0(P )}.
Now that we have a measurable enumeration of the vertices of all polytopes in P d ,
it is easy to construct a measurable choice P �→ L(P ), P ∈ P d . �

The next lemma will be used later, roughly, to show that very elongated shapes
of zero cells appear only with small probability. The “elongation” of a convex body
is measured by the quotient of diameter and width, and for a body for which this
quotient and the volume are in given intervals, we need lower and upper inclusion
estimates.

For K ∈ Kd , we denote by

�(K) := min
{
h(K,u) + h(K,−u) :u ∈ Sd−1}

the width of K . For m ∈ N, a > 0 and ε ∈ (0,1), we consider

Kd
a,ε(m) := {

K ∈ Kd : 0 ∈ K, V (K) ∈ a[1,2],
D(K)/�(K) ∈ [

md, (m + 1)d
)
, rB(K) ≥ ε

}
.

The condition rB(K) ≥ ε will not be needed until Lemma 5.2. We write Cd :=
[−1,1]d .

LEMMA 4.3. Let m ∈ N and K ∈ Kd
a,ε(m). Then:

(a) K contains a segment S(K) of length at least ma1/d ;
(b) K ⊂ c9(d)md−1a1/dCd =: C;
(c) there exists a measurable selection Kd

a,ε(m) ∩ P d � P �→ S(P ) such that
the endpoints of S(P ) are vertices of P .

PROOF. Let m ∈ N and K ∈ Kd
a,ε(m) be fixed.

(a) We can enclose K in a rectangular parallelepiped with one edge length
equal to �(K). This shows that

a ≤ V (K) ≤ �(K)D(K)d−1.

Since D(K) ≥ md�(K), this gives mda ≤ D(K)d , which implies that K contains
a segment of length ma1/d .
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(b) First, we note that

V (K) ≥ 1

d!�(K)d−1D(K).(16)

For the proof, let x, y ∈ K and u ∈ Sd−1 be such that x − y = D(K)u. The
hyperplanes through x and y orthogonal to u support K . Hence, V (K) ≥
d−1D(K)Vd−1(K|u⊥). Now the inequality (16) can be proved by induction, using
that D(K|u⊥),�(K|u⊥) ≥ �(K). We continue with

2a ≥ V (K) ≥ �(K)d−1D(K)/d! ≥ (m + 1)−d(d−1)D(K)d/d!
and

D(K) ≤ (2d!a)1/d(m + 1)d−1 ≤ c9(d)md−1a1/d.

(c) A longest segment contained in a polytope P has its endpoints at vertices
of P . The existence of a measurable selection now follows along the lines of the
corresponding argument in the proof of Lemma 4.2. �

5. Two upper bounds. Let a > 0, ε > 0 be given. For m ∈ N, we define

qa,ε(m) := P
(
Z0 ∈ Kd

a,ε(m)
)
.

We prove two estimates concerning the decay of qa,ε(m) as a1/dλ → ∞. The first
one will be used to estimate qa,ε(m) for almost all m ∈ N; the second is more
subtle and will be used to estimate qa,ε(m) for the initial values m = 1, . . . ,m0. It
is this second case that requires the stability estimate for Minkowski’s inequality.

LEMMA 5.1. For m ∈ N and a1/dλ ≥ σ0 > 0,

qa,ε(m) ≤ c13(B,σ0) exp
{−c14(B)ma1/dλ

}
.(17)

PROOF. Let C be the cube defined in Lemma 4.3(b). Then

qa,ε(m) =
∞∑

N=d+1

P
(
Z0 ∈ Kd

a,ε(m)
∣∣X(HC) = N

)
P

(
X(HC) = N

)
,(18)

where

P
(
X(HC) = N

) = [2dV1(B,C)λ]N
N ! exp{−2dV1(B,C)λ}.

Next we estimate the conditional probability:

pN := P
(
Z0 ∈ Kd

a,ε(m)
∣∣X(HC) = N

)
= [dV1(B,C)]−N

∫
EN

1
{
P

(
u(N), t(N)

) ∈ Kd
a,ε(m)

}
(19)

×
N∏

i=1

1{H(ui, ti) ∩ C �= ∅}

× dµN(u1, . . . , uN, t1, . . . , tN).
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Suppose that u1, . . . , uN, t1, . . . , tN are such that the indicator functions occur-
ring in the integral are all equal to 1. We may assume (excluding a set of mea-
sure 0 in the integration domain) that P (u(N), t(N)) is a simple polytope. The
segment S(P (u(N), t(N))), according to Lemma 4.3(c), connects two vertices of
P (u(N), t(N)), say x and y. Each of these is the intersection of precisely d facets
of P (u(N), t(N)). Hence, there exist mutually disjoint index sets J1, J2, J3 ⊂
{1, . . . ,N} such that x, y ∈ H(ui, ti) for i ∈ J1, x ∈ H(ui, ti) for i ∈ J2, and
y ∈ H(ui, ti) for i ∈ J3. The cardinalities ji := |Ji |, i = 1,2,3, satisfy 0 ≤ j1 ≤
d − 1, 1 ≤ j2, j3 ≤ d , j1 + j2 = j1 + j3 = d . Thus, we have

S
(
P

(
u(N), t(N)

)) ∩ H(ul, tl) = ∅ for l ∈ {1, . . . ,N} \ (J1 ∪ J2 ∪ J3)

and

S
(
P

(
u(N), t(N)

)) = CHJ1,J2,J3(u1, . . . , uN ; t1, . . . , tN),

where

CHJ1,J2,J3(u1, . . . , uN ; t1, . . . , tN ) := conv

( ⋂
i∈J1∪J2

H(ui, ti) ∪ ⋂
i∈J1∪J3

H(ui, ti)

)
.

We extend the latter definition by defining the left-hand side as the empty set if the
vectors (ui : i ∈ J1 ∪ J2) or (ui : i ∈ J1 ∪ J3) are linearly dependent. Subsequently,
we put j := j1 + j2 + j3 whenever j1, j2, j3 are given. The summation

∑
∗ below

extends over all choices of pairwise disjoint subsets J1, J2, J3 ⊂ {1, . . . ,N} whose
cardinalities satisfy 0 ≤ j1 ≤ d −1, j1 + j2 = j1 + j3 = d , j ≤ N . Then we obtain,
using Lemma 4.3(a) and denoting the length of a segment S by |S|,
pN ≤ [dV1(B,C)]−N

× ∑
∗

∫
Ej

∫
EN−j

1{H(ui, ti) ∩ C �= ∅ for i = 1, . . . ,N}

× 1
{∣∣CHJ1,J2,J3(u1, . . . , uN ; t1, . . . , tN)

∣∣ ≥ ma1/d}
× 1

{
CHJ1,J2,J3(u1, . . . , uN ; t1, . . . , tN ) ∩ H(ul, tl) = ∅

for l /∈ J1 ∪ J2 ∪ J3
}

× dµN−j (uj+1, . . . , uN, tj+1, . . . , tN)

× dµj(u1, . . . , uj , t1, . . . , tj ).

Observe that, for a segment S ⊂ C,∫
E1

1{H(u, t) ∩ C �= ∅, S ∩ H(u, t) = ∅}dµ1(u, t)

= dV1(B,C) − dV1(B,S) ≤ dV1(B,C) − d|S|V1(B,U0).
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Writing
∑

∗∗ for the sum over all j1, j2, j3 ∈ {0, . . . ,N} such that 0 ≤ j1 ≤ d − 1,
1 ≤ j2, j3 ≤ d , j1 + j2 = j1 + j3 = d , j ≤ N , we can estimate further

pN ≤ ∑
∗∗

(
N

j1, j2, j3,N − j

)
[dV1(B,C)]−N

×
∫
Ej

1{H(ui, ti) ∩ C �= ∅ for i = 1, . . . , j}
× [dV1(B,C) − dma1/dV1(B,U0)]N−j dµj (u1, . . . , uj , t1, . . . , tj )

= ∑
∗∗

(
N

j1, j2, j3,N − j

)(
1 − ma1/dV1(B,U0)

V1(B,C)

)N−j

.

This finally leads to the estimate

qa,ε(m) ≤
∞∑

N=d+1

∑
∗∗

[2dV1(B,C)λ]N
N ! exp{−2dV1(B,C)λ}

× N !
j1!j2!j3!(N − j)!

(
1 − 2dma1/dV1(B,U0)λ

2dV1(B,C)λ

)N−j

≤
∞∑

j1,j2,j3=0
j1+j2=d=j1+j3

1

j1!j2!j3! [2dV1(B,C)λ]j exp{−2dV1(B,C)λ}

× ∑
N≥j

1

(N − j)! [2dV1(B,C)λ]N−j

(
1 − 2dma1/dV1(B,U0)λ

2dV1(B,C)λ

)N−j

=
∞∑

j1,j2,j3=0
j1+j2=d=j1+j3

1

j1!j2!j3! [2dV1(B,C)λ]j exp
{−2dma1/dV1(B,U0)λ

}
.

By the definition of C [cf. Lemma 4.3(b)],

2dV1(B,C) = 2dc9(d)md−1a1/dV1(B,Cd) = c10(B)md−1a1/d .

In the summation, we have j ≤ 2d and hence (a1/dλ)j = (a1/dλ/σ0)
jσ

j
0 ≤

(a1/dλ/σ0)
2dσ

j
0 . This gives

qa,ε(m) ≤
∞∑

j1,j2,j3=0
j1+j2=d=j1+j3

1

j1!j2!j3!(σ0)
j−2dc10(B)jm2d(d−1)(a1/dλ)2d

× exp
{−c11(B)ma1/dλ

}
≤ c12(B,σ0)m

2d(d−1)(a1/dλ)2d exp
{−c11(B)ma1/dλ

}
≤ c13(B,σ0) exp

{−c14(B)ma1/dλ
}
,

where the latter estimate follows by splitting the exponential factor into a product
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(by splitting c11 into a sum of smaller positive constants) and using that m ≥ 1 and
a1/dλ ≥ σ0. This proves the lemma. �

LEMMA 5.2. For m ∈ N, ε ∈ (0,1) and a1/dλ ≥ σ0 > 0,

qa,ε(m) ≤ c17(B, ε, σ0)m
d2ν exp

{−2d(1 + c15ε
d+1)V (B)(d−1)/da1/dλ

}
,

where ν depends only on B and ε.

PROOF. Let ρ > 0 be defined by V (ρB) = a. We define C as in Lemma 4.3(b)
and use (18) and (19). Assume that u1, . . . , uN, t1, . . . , tN are such that the
indicator functions under the integrals in (19) are all equal to 1. Then, by
Lemma 4.1,

V1
(
ρB,P

(
u(N), t(N)

)) ≥ (1 + c8ε
d+1)V (ρB).(20)

Let α := c8ε
d+1/(2 + c8ε

d+1); then (1 − α)(1 + c8ε
d+1) = 1 + α. Set c15 :=

c8/(2 + c8); then α > c15ε
d+1 (which will be needed at the end of the proof). By

Lemma 4.2, there are ν = ν(B, ε) vertices of P (u(N), t(N)) such that the convex
hull L = L(P (u(N), t(N))) of these vertices satisfies

V1(ρB,L) ≥ (1 − α)V1
(
ρB,P

(
u(N), t(N)

))
.(21)

The inequalities (20) and (21) imply that

V1(B,L) ≥ (1 + α)ρV (B).

Excluding a set of measure 0 in the domain of integration, we can assume that each
of the vertices of L lies in precisely d of the hyperplanes H(u1, t1), . . . ,H(uN, tN),
and the remaining hyperplanes are disjoint from L. Hence, at most dν of the hy-
perplanes H(u1, t1), . . . ,H(uN, tN ) meet L; let j ∈ {d + 1, . . . , dν} denote their
precise number. Then there are subsets J1, . . . , Jν ⊂ {1, . . . , j}, each of cardinal-
ity d , such that the intersections⋂

i∈Jr

H(ui, ti), r = 1, . . . , ν,

yield the vertices of L. This leads to

P
(
Z0 ∈ Kd

a,ε(m)
∣∣X(HC) = N

)[dV1(B,C)]N

≤
dν∑

j=d+1

(
N

j

)∫
EN

1
{
P

(
u(N), t(N)

) ∈ Kd
a,ε(m)

}
× 1{H(ui, ti) ∩ C �= ∅ for i = 1, . . . ,N}
× 1

{
H(ui, ti) ∩ L

(
P

(
u(N), t(N)

)) �= ∅ for i = 1, . . . , j
}

× 1
{
H(ui, ti) ∩ L

(
P

(
u(N), t(N)

)) = ∅ for i = j + 1, . . . ,N
}

× dµN(u1, . . . , uN, t1, . . . , tN)
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≤
dν∑

j=d+1

(
N

j

)(
j

d

)ν

×
∫
Ej

∫
EN−j

1{H(ui, ti) ∩ C �= ∅ for i = 1, . . . ,N}

× 1

{
conv

{ ⋂
i∈Jr

H(ui, ti) : r = 1, . . . , ν

}
⊂ C

}

× 1

{
V1

(
B, conv

{ ⋂
i∈Jr

H(ui, ti) : r = 1, . . . , ν

})

≥ (1 + α)ρV (B)

}

× 1

{
H(ui, ti) ∩ conv

{ ⋂
i∈Jr

H(ui, ti) : r = 1, . . . , ν

}
= ∅

for i = j + 1, . . . ,N

}

× dµN−j (uj+1, . . . , uN, tj+1, . . . , tN )

× dµj(u1, . . . , uj , t1, . . . , tj )

≤
dν∑

j=d+1

(
N

j

)(
j

d

)ν

[dV1(B,C) − d(1 + α)ρV (B)]N−j [dV1(B,C)]j .

Summation over N yields

qa,ε(m) ≤
∞∑

N=d+1

1

N ! [2dV1(B,C)λ]N exp{−2dV1(B,C)λ}

×
dν∑

j=d+1

(
N

j

)(
j

d

)ν [dV1(B,C) − d(1 + α)ρV (B)]N−j

[dV1(B,C)]N−j

=
dν∑

j=d+1

(
j

d

)ν 1

j ! [2dV1(B,C)λ]j exp{−2dV1(B,C)λ}

×
∞∑

N=j

1

(N − j)! [2dV1(B,C)λ − 2d(1 + α)V (B)ρλ]N−j

=
dν∑

j=d+1

(
j

d

)ν 1

j ! [2dV1(B,C)λ]j exp{−2d(1 + α)V (B)ρλ}.
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Estimating [2dV1(B,C)λ]j as in the proof of Lemma 5.1 [and recalling that
ρdV (B) = a], we get

qa,ε(m) ≤ c16(B, ε, σ0)(a
1/dλ)dνmd2ν exp

{−2d(1 + α)V (B)(d−1)/da1/dλ
}

≤ c17(B, ε, σ0)m
d2ν exp

{−2d(1 + c15ε
d+1)V (B)(d−1)/da1/dλ

}
,

as stated. �

6. A transformation. Let a > 0 and ε ∈ (0,1) be given. For h ∈ (0,1] and
m ∈ N, we extend the definition of Kd

a,ε(m) by

Kd
a,ε,h(m) := {

K ∈ Kd : 0 ∈ K, V (K) ∈ a[1,1 + h],
D(K)/�(K) ∈ [

md, (m + 1)d
)
, rB(K) ≥ ε

}
.

Thus,

P
(
V (Z0) ∈ a[1,1 + h], rB(K) ≥ ε

) =
∞∑

m=1

q(h)
a,ε(m),

where

q(h)
a,ε(m) := P

(
Z0 ∈ Kd

a,ε,h(m)
)
.

The probability q
(h)
a,ε(m) is split further into

q(h)
a,ε(m,n) := P

(
Z0 ∈ Kd

a,ε,h(m), fd−1(Z0) = n
)

for n ∈ N; here fd−1(P ) denotes the number of facets of a polytope P . Then we
have

P
(
V (Z0) ∈ a[1,1 + h], rB(K) ≥ ε

) =
∞∑

m=1

∞∑
n=d+1

q(h)
a,ε(m,n).

Finally, we define

R(h)
a,ε(m,n)

:= {
(u1, . . . , un, t1, . . . , tn) ∈ En :P

(
u(n), t(n)

) ∈ Kd
a,ε,h(m),

fd−1
(
P

(
u(n), t(n)

)) = n,H(ui, ti) ∩ C �= ∅ for i = 1, . . . , n
}
,

where the cube C is again defined as in Lemma 4.3(b) for the given a, ε,m.

LEMMA 6.1. For m,n ∈ N, n ≥ d + 1 and h ∈ (0,1],
q(h)
a,ε(m,n) = (2λ)n

n!
∫
R

(h)
a,ε(m,n)

exp
{−2dV1

(
B,P

(
u(n), t(n)

))
λ
}

× dµn(u1, . . . , un, t1, . . . , tn).
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PROOF. Conditioning on X(HC) = N , N ∈ N, we get, for N ≥ n,

P
(
Z0 ∈ Kd

a,ε,h(m), fd−1(Z0) = n
∣∣X(HC) = N

)
= 1

[dV1(B,C)]N
∫
EN

1{H(ui, ti) ∩ C �= ∅ for i = 1, . . . ,N}

× 1
{
P

(
u(N), t(N)

) ∈ Kd
a,ε,h(m), fd−1

(
P

(
u(N), t(N)

)) = n
}

× dµN(u1, . . . , uN, t1, . . . , tN )

=
(N
n

)
[dV1(B,C)]N

∫
R

(h)
a,ε(m,n)

[
dV1(B,C) − dV1

(
B,P

(
u(n), t(n)

))]N−n

× dµn(u1, . . . , un, t1, . . . , tn).

Hence,

q(h)
a,ε(m,n) =

∞∑
N=n

P
(
Z0 ∈ Kd

a,ε,h(m), fd−1(Z0) = n
∣∣X(HC) = N

)

× [2dV1(B,C)λ]N
N ! exp{−2dV1(B,C)λ}

= exp{−2dV1(B,C)λ} 1

n!(2λ)n

×
∫
R

(h)
a,ε(m,n)

∞∑
N=n

1

(N − n)!
× (

2dV1(B,C)λ − 2dV1
(
B,P

(
u(n), t(n)

))
λ
)N−n

× dµn(u1, . . . , un, t1, . . . , tn).

Writing the sum under the integral as

exp{2dV1(B,C)λ} exp
{−2dV1

(
B,P

(
u(n), t(n)

))
λ
}
,

we obtain the stated result. �

Next, we will bound q
(h)
a,ε(m) from above by qa,ε(m) [= q

(1)
a,ε(m)]. To prepare

this, we need the following lemma.

LEMMA 6.2. Let w > 0 and h ∈ (0,1/2). Then, for n ∈ N,
∫ d

√
1+h

1
xn−1 exp{−wx}dx

≤ 1
2hw

[
1 + (

exp{w/(4d)} − 1
)−1] ∫ d√2

1
xn−1 exp{−wx}dx.
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PROOF. By the mean value theorem, there is some η ∈ (1, d
√

1 + h) such that

∫ d
√

1+h

1
xn−1 exp{−wx}dx ≤ h

2
ηn−1 exp{−wη},(22)

since d
√

1 + h ≤ 1 + h/d ≤ 1 + h/2. Furthermore, we can estimate

∫ d
√

2

1
xn−1 exp{−wx}dx

≥
∫ d√2

η
xn−1 exp{−wx}dx

(23) ≥ ηn−1
∫ d

√
2

η
exp{−wx}dx

= ηn−1(−w−1)
[
exp

{−w
d
√

2
} − exp{−wη}]

= ηn−1(w−1) exp{−wη}[1 − exp
{−w

( d
√

2 − η
)}]

≥ ηn−1(w−1) exp{−wη}[1 − exp
{−w

( d
√

2 − d
√

3/2
)}]

.

Using the estimate d
√

2 − d
√

3/2 ≥ 1/(4d), we obtain the assertion by combining
(22) and (23). �

LEMMA 6.3. For m ∈ N, h ∈ (0,1/2) and a1/dλ ≥ σ0 > 0,

q(h)
a,ε(m) ≤ c20(B,σ0)ha1/dλmd−1q(1)

a,ε(m).

PROOF. Let m,h be fixed according to the assumptions and let n ∈ N with
n ≥ d + 1. We define

Th :R(h)
a,ε(m,n) → (Sd−1)n × (0,∞)n−1 × (0,∞)

(u1, . . . , un, t1, . . . , tn) �→ (u1, . . . , un, t1/tn, . . . , tn−1/tn, tn)

and set

U(m,n) := {
ζ ∈ (Sd−1)n × (0,∞)n−1 : (ζ, t) ∈ Th

(
R(h)

a,ε(m,n)
)

for some t ∈ (0,∞)
}
.

Clearly, the map Th is injective, and U(m,n) is independent of h. For the
following, we note that (ζ, t) = Th(u1, . . . , un, t1, . . . , tn) is equivalent to

ζ = (u1, . . . , un, t1/tn, . . . , tn−1/tn) and t = tn.

For (ζ, t) = Th(u1, . . . , un, t1, . . . , tn), we set

K(ζ, t) := P
(
u(n), t(n)

)
.
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Since, for each ζ ∈ U(m,n), V (K(ζ, ·)) is continuous and increasing from 0 to ∞,
there is a unique t (ζ ) > 0 such that V (K(ζ, t (ζ ))) = a; consequently,

V
(
K

(
ζ,

d
√

1 + h t(ζ )
)) = (1 + h)a.

We apply Lemma 6.1, the transformation formula for integrals (in R
n, with fixed

vectors u1, . . . , un), and Fubini’s theorem, to obtain

q(h)
a,ε(m,n)

= (2λ)n

n!
∫
R

(h)
a,ε(m,n)

exp
{−2dV1

(
B,P

(
u(n), t(n)

))
λ
}

× dµn(u1, . . . , un, t1, . . . , tn)

= (2λ)n

n!
∫
U(m,n)

∫ d
√

1+h t(ζ )

t (ζ )
exp

{−2dV1
(
B,K(ζ, t)

)
λ
}
tn−1 dt

× dt1 · · ·dtn−1 Sd−1(B, du1) · · ·Sd−1(B, dun).

Here we substitute s = t/t (ζ ) and get

q(h)
a,ε(m,n)

= (2λ)n

n!
∫
U(m,n)

t (ζ )n
∫ d

√
1+h

1
exp

{−2dV1
(
B,K

(
ζ, t (ζ )

))
sλ

}
sn−1 ds

× dt1 · · ·dtn−1 Sd−1(B, du1) · · ·Sd−1(B, dun).

Lemma 6.2 now yields

q(h)
a,ε(m,n)

≤ (2λ)n

n!
∫
U(m,n)

t (ζ )nhdV1
(
B,K

(
ζ, t (ζ )

))
λ

×
(

1 +
(

exp
{

1

2
V1

(
B,K

(
ζ, t (ζ )

))
λ

}
− 1

)−1)

×
∫ d√2

1
sn−1 exp

{−2dV1
(
B,K

(
ζ, t (ζ )

))
λs

}
ds

× dt1 · · ·dtn−1 Sd−1(B, du1) · · ·Sd−1(B, dun).

Since K(ζ, t (ζ )) ∈ Kd
a,ε,h(m) ⊂ Kd

a,ε(m), we have

ma1/dS ⊂ K
(
ζ, t (ζ )

) ⊂ c9(d)md−1a1/dCd

by Lemma 4.3, where S is a suitable segment of unit length. Hence,

V1
(
B,K

(
ζ, t (ζ )

)) ≤ c18(B)md−1a1/d
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and

exp
{1

2V1
(
B,K

(
ζ, t (ζ )

))
λ
} ≥ exp

{
c19(B)ma1/dλ

}
.

Therefore,

q(h)
a,ε(m,n)

≤ c18(B)md−1ha1/dλ
(
1 + (

exp
{
c19(B)ma1/dλ

} − 1
)−1)

× (2λ)n

n!
∫
U(m,n)

∫ d√2t (ζ )

t (ζ )
tn−1 exp

{−2dV1
(
B,K(ζ, t)

)
λ
}
dt

× dt1 · · ·dtn−1 Sd−1(B, du1) · · ·Sd−1(B, dun)

≤ c20(B,σ0)m
d−1ha1/dλq(1)

a,ε(m,n).

Summation over n ∈ N, n ≥ d + 1, yields the required estimate. �

7. Proofs of the theorems. We prepare the proofs of Theorems 1 and 2 by
establishing an upper estimate for an unconditional probability.

PROPOSITION 7.1. Let ε ∈ (0,1), h ∈ (0,1/2) and a1/dλ ≥ σ0 > 0. Then

P
(
V (Z0) ∈ a[1,1 + h], rB(Z0) ≥ ε

)
≤ c25(B, ε, σ0)h exp

{−2d
(
1 + (c15/2)εd+1)

V (B)(d−1)/da1/dλ
}
.

PROOF. Using Lemma 6.3, we get

P
(
V (Z0) ∈ a[1,1 + h], rB(Z0) ≥ ε

)
= ∑

m∈N

P
(
Z0 ∈ Kd

a,ε,h(m)
) = ∑

m∈N

q(h)
a,ε(m)

≤ c20(B,σ0)ha1/dλ
∑
m∈N

md−1q(1)
a,ε(m).

We define c21(B) := 4(1 + c15) dV (B)(d−1)/dc−1
14 , where c14 = c14(B) is the

constant appearing in (17) in the argument of the exponential, and we set m0 :=
�c21�. Then

c14m ≥ 4(1 + c15) dV (B)(d−1)/d(24)

for m > m0. Using Lemma 5.2 for m ≤ m0 and Lemma 5.1 for m > m0, we get

P
(
V (Z0) ∈ a[1,1 + h], rB(Z0) ≥ ε

)
≤ c20(B,σ0)ha1/dλ

(
m0∑
m=1

md−1qa,ε(m) + ∑
m>m0

md−1qa,ε(m)

)
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≤ c22(B, ε, σ0)ha1/dλ

×
m0∑

m=1

md−1md2ν exp
{−2d(1 + c15ε

d+1)V (B)(d−1)/da1/dλ
}

+ c23(B,σ0)ha1/dλ
∑

m>m0

md−1 exp{−c14ma1/dλ}

≤ c22(B, ε, σ0)ha1/dλmd+d2ν
0

× exp
{−2d(1 + c15ε

d+1)V (B)(d−1)/da1/dλ
}

+ c23(B,σ0)ha1/dλ
∑

m>m0

md−1 exp{−c14ma1/dλ}.

Here we estimate

exp{−c14ma1/dλ}
≤ exp{−(c14/2)ma1/dλ} exp

{−2d(1 + c15ε
d+1)V (B)(d−1)/da1/dλ

}
,

which follows from (24) and ε < 1. Since m0 is bounded from above by c21(B),
and since

∑
md−1 exp{−(c14/2)ma1/dλ} converges, we obtain

P
(
V (Z0) ∈ a[1,1 + h], rB(Z0) ≥ ε

)
≤ c24(B, ε, σ0)ha1/dλ exp

{−2d(c15/2)εd+1V (B)(d−1)/da1/dλ
}

× exp
{−2d

(
1 + (c15/2)εd+1)V (B)(d−1)/da1/dλ

}
≤ c25(B, ε, σ0)h exp

{−2d
(
1 + (c15/2)εd+1)

V (B)(d−1)/da1/dλ
}
,

as asserted. �

PROOF OF THEOREM 1. Let ε ∈ (0,1), a > 0 and λ > 0 with a1/dλ ≥ σ0 > 0
be given. We define β := (c15/4)εd+1 and choose h0 and N (depending on
B and ε) as in Lemma 3.2. We set h1 := min{h0,1/2} and fix an interval I = [a, b),
where b = ∞ is allowed. Then we distinguish two cases.

CASE 1: h1 > (b − a)/a. Then we set h2 := (b − a)/a, so that a[1,1 + h2) =
[a, b). Now Lemma 3.2 (which obviously also holds if a[1,1 + h] is replaced by
a[1,1 + h)) implies that

P
(
V (Z0) ∈ I

)
(25)

≥ c26(B, ε, σ0)h2 exp
{−2d

(
1 + (c15/4)εd+1)V (B)(d−1)/da1/dλ

}
.
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By Proposition 7.1, we have

P
(
V (Z0) ∈ I, rB(Z0) ≥ ε

)
(26) ≤ c25(B, ε, σ0)h2 exp

{−2d
(
1 + (c15/2)εd+1)V (B)(d−1)/da1/dλ

}
.

Therefore, (25) and (26) imply that

P
(
rB(Z0) ≥ ε|V (Z0) ∈ I

)
≤ c27(B, ε, σ0) exp

{−d(c15/2)εd+1V (B)(d−1)/da1/dλ
}
.

CASE 2: h1 ≤ (b −a)/a. Then 1 +h1 ≤ b/a, a[1,1 +h1) ⊂ [a, b), and hence

P
(
V (Z0) ∈ I

)
(27)

≥ c26(B, ε, σ0)h1 exp
{−2d

(
1 + (c15/4)εd+1)V (B)(d−1)/da1/dλ

}
.

On the other hand, Proposition 7.1 [together with a1/d(1 + h1)
i/dλ ≥ σ0]

implies that, for i ∈ N0,

P
(
V (Z0) ∈ a(1 + h1)

i[1,1 + h1], rB(Z0) ≥ ε
)

≤ c25(B, ε, σ0)h1

× exp
{−2d

(
1 + (c15/2)εd+1)V (B)(d−1)/da1/d(1 + h1)

i/dλ
}

= c25(B, ε, σ0)h1

× exp
{−2d

(
1 + (c15/4)εd+1)V (B)(d−1)/da1/d(1 + h1)

i/dλ
}

× exp
{−2d(c15/4)εd+1V (B)(d−1)/da1/d(1 + h1)

i/dλ
}

≤ c25(B, ε, σ0)h1 exp
{−2d

(
1 + (c15/4)εd+1)

V (B)(d−1)/da1/dλ
}

× exp
{−d(c15/4)εd+1V (B)(d−1)/da1/dλ

}
× exp

{−d(c15/4)εd+1V (B)(d−1)/dσ0(1 + h1)
i/d}

.

Since

[a, b) ⊂
∞⋃
i=0

a(1 + h1)
i[1,1 + h1],

we obtain that

P
(
V (Z0) ∈ I, rB(Z0) ≥ ε

)
≤ c25(B, ε, σ0)h1 exp

{−2d
(
1 + (c15/4)εd+1)

V (B)(d−1)/da1/dλ
}

× exp
{−d(c15/4)εd+1V (B)(d−1)/da1/dλ

}
×

∞∑
i=0

exp
{−d(c15/4)εd+1V (B)(d−1)/dσ0(1 + h1)

i/d
}

(28)
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≤ c28(B, ε, σ0)h1 exp
{−2d

(
1 + (c15/4)εd+1)V (B)(d−1)/da1/dλ

}
× exp

{−d(c15/4)εd+1V (B)(d−1)/da1/dλ
}
.

Combining (27) and (28), we find that

P
(
rB(Z0) ≥ ε|V (Z0) ∈ I

)
≤ c29(B, ε, σ0) exp

{−d(c15/4)εd+1V (B)(d−1)/da1/dλ
}
.

Hence, in any case the required estimate has been established. �

PROOF OF THEOREM 2. We adopt the same notation as in the proof of
Theorem 1. We set β1 := β/2.

If f : Kd → [0,∞) is any translation-invariant and measurable function, then

E[f (Z0)] = λ(d)
E[f (Z)V (Z)],(29)

where λ(d) is the intensity of the particle process X(d) of the tessellation T (X)

generated by X; cf. Theorem 6.1.11 in [10]. From Theorem 6.3.3, (6.46), in [10],
we see that λ(d) = V (�X), where �X is the zonoid associated with X. Its support
function is given by

h(�X, ·) = λ

2

∫
Sd−1

|〈v, ·〉|ϕ(dv);

hence, λ(d) = c30(B)λd .
We apply (29) with

f (K) := 1{V (K) ∈ a[1,1 + h]}V (K)−1

to get

P
(
V (Z) ∈ a[1,1 + h])

= c31(B)λ−d
E

[
1{V (Z0) ∈ a[1,1 + h]}V (Z0)

−1]
≥ c31(B)λ−d

E
[
1{V (Z0) ∈ a[1,1 + h]}(a(1 + h))−1]

≥ c32(B,β)(aλd)−1
E

[
1{V (Z0) ∈ a[1,1 + h]}],

where we assumed that h ≤ h0, where h0 is chosen according to Lemma 3.2
(applied to β1). Hence, Lemma 3.2 shows that, for h ∈ (0, h0],

P
(
V (Z) ∈ a[1,1 + h])

≥ c33(B,β)hσN
0 (a1/dλ)−d exp

{−2d(1 + β1)V (B)(d−1)/da1/dλ
}

≥ c34(B, ε, σ0)h exp
{−2d(1 + β)V (B)(d−1)/da1/dλ

}
.
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Similarly, applying (29) with

f (K) := 1
{
V (K) ∈ a[1,1 + h], rB(K) ≥ ε

}
V (K)−1

(and assuming h ≤ 1/2), we deduce for ε ∈ (0,1) that

P
(
V (Z) ∈ a[1,1 + h], rB(Z) ≥ ε

)
= c31(B)λ−d

E
[
1
{
V (Z0) ∈ a[1,1 + h], rB(Z0) ≥ ε

}
V (Z0)

−1]
≤ c31(B)σ−d

0 E
[
1
{
V (Z0) ∈ a[1,1 + h], rB(Z0) ≥ ε

}]
≤ c35(B, ε, σ0)h

× exp
{−2d

(
1 + (c15/2)εd+1)

V (B)(d−1)/da1/dλ
}
,

where Proposition 7.1 was used for the last estimate. With these two estimates
instead of Lemma 3.2 and Proposition 7.1, respectively, we can continue as in the
proof of Theorem 1. �
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