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SELF-NORMALIZED CRAMER-TYPE LARGE DEVIATIONS FOR
INDEPENDENT RANDOM VARIABLES

BY BING-Y1 JING,! QI-MAN SHAO? AND QIYING WANG
HKUST, University of Oregon and NUS, and University of Sydney

Let X, X», ... be independent random variables with zero means and
finite variances. It is well known that a finite exponential moment as-
sumption is necessary for a Cramér-type large deviation result for the
standardized partial sums. In this paper, we show that a Cramér-type
large deviation theorem holds for self-normalized sums only under a finite
(2 4+ 8)th moment, 0 < § < 1. In particular, we show P(S,/V, > x) =
(1= @)1 + O()(1 + )20 /a7 4?) for 0 < x < dy 5. Where dyy 5 =
(Cjy EXPV2 /(0 EIX PO CH) and vy = (27, XP)'/2. Appli-
cations to the Studentized bootstrap and to the self-normalized law of the
iterated logarithm are discussed.

1. Introduction. Let X, X;,... be a sequence of independent random
variables with £EX; =0and 0 < EXl-2 < oo fori > 1. Set

n n n
So=YXi,  Br=) EX}, Ve=> X7

i=1 i=1 i=1

The classical central limit theorem states that if the Lindeberg condition

1 n
(1.1) EZEXZZI{‘Xi|>SBn}_>O for every fixed ¢ > 0

n =1
is satisfied, then

sup|P(S, >xBy) — (1—®x))| >0  asn— oo.
X

The central limit theorem is useful when x is not too large or when the error is
well estimated. There are two approaches for estimating the error of the normal
approximation. One approach is to study the absolute error in the central limit
theorem via Berry—Esseen bounds or Edgeworth expansions [see, e.g., Petrov
(1975)]. Another approach is to estimate the relative error of P(S, > xB,) to
1 — ®(x). One of the typical results in this direction is the so-called Cramér
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large deviation. If X, X»,... are a sequence of independent and identically
distributed (i.i.d.) random variables with zero means and the finite moment-
generating function Ee’X1 < oo for ¢ in a neighborhood of zero, then for x > 0
and x = o(n'/?)

P(S,>xB 1
(1.2) M:exp{xZ)L(i)”l—i—O(ﬂ)],
1—®x) Jn Jn
oy = ()] ()]
1.3 = M — 1+ 0 ,
(1.3) B (1) expyx NG + N
where A(¢) is the so-called Cramér’s series [see Petrov (1975), Chapter VIII, for
details]. In particular, if Ee’ X' oo for some ¢t > 0, then
P(S,>xB P(S, <—xB
(1.4) (Sn>x n)_)l, (Sn <—x n)_)l
1—®(x) @ (—x)

holds uniformly for x € (0, o(n'/%)). Similar results are also available for
independent but not necessarily identically distributed random variables under a
finite moment-generating function condition.

It is well known that moment conditions in these classical limit theorems
are also necessary. On the other hand, limit theorems for the self-normalized
sums S,/V, put a totally new countenance on classical limit theorems. When
X1, Xy, ... are 1.i.d. random variables, in contrast to the well-known Hartman—
Wintner law of the iterated logarithm (LIL) and its converse by Strassen (1966),
Griffin and Kuelbs (1989) obtained a self-normalized LIL for all distributions
in the domain of attraction of a normal or stable law. Shao (1997) showed that
no moment conditions are needed for a self-normalized large deviation result
P(S,/V, > x+/n). The tail probability of S,/V, is Gaussian like when X is
in the domain of attraction of the normal law and sub-Gaussian like when
X is in the domain of attraction of a stable law, which in turn enables him to
find the precise constant in Griffin and Kuelbs’ self-normalized LIL, while Giné,
Gotze and Mason (1997) proved that the tails of S,/ V,, are uniformly sub-Gaussian
when the sequence is stochastically bounded. Shao (1999) established a (1.4) type
result for self-normalized sums only under a finite third-moment condition. More
precisely, he showed that if E|X |2+‘S <oofor0<é <1,then
(1.5) PSnzxVi) 1, PSn=—xVn) 1

1 —d(x) d(—x)
holds uniformly for x € (0, 0(n/22+9)))  Self-normalized sums have been
studied previously in connection with weak convergence by Darling (1952),
Logan, Mallows, Rice and Shepp (1973), LePage, Woodroofe and Zinn (1981),
Csorgd and Horvath (1988), Csorgs, Haeusler and Mason (1988, 1991), Hahn,
Kuelbs and Weiner (1990), Griffin and Mason (1991), Griffin and Pruitt (1989)
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and Maller (1988, 1991). We refer to Bentkus and Gotze (1996) for Berry—
Esseen inequalities, Giné, Gotze and Mason (1997) for the necessary and
sufficient condition for the asymptotic normality and Shao (1998) for a survey
on recent developments in this area. Recently, several papers have focused on
the self-normalized limit theorems for independent but not necessarily identically
distributed random variables. Bentkus, Bloznelis and Go6tze (1996) obtained the
following Berry—Esseen bound:

[P(Su/ Vi =x) = (1= @(x))|

(1.6) n n
< A(Bn_z Y EXIyxi =5,y + B0 ) ElXi|31{|Xian})’
i=1 i=1

where A is an absolute constant. Assuming only finite third moments, Wang and
Jing (1999) derived exponential nonuniform Berry—Esseen bounds. Chistyakov
and Gotze (1999) refined Wang and Jing’s results and obtained the following result,
among others: If X, X», ... are symmetric independent random variables with
finite third moments, then

(1.7)  P(Sp/Vp=x)=(1— CI>(x))<1 +oMA+x)1°B7> ) E|Xi|3>
i=1

for 0 <x < B,/(37_, E|X;|>)'3, where O(1) is bounded by an absolute
constant.

Result (1.7) is useful because it provides not only the relative error but also a
Berry—Esseen rate of convergence. Although the assumption of symmetry allows
us to assert that

P(Sy/Vy=x)=(1— CI>(x))<1 + O(I)min(l, (1+x)°B,? me,ﬁ))
i=1

for all x > 0, it not only takes away the main difficulty in proving a self-
normalized limit theorem but also limits its potential applications. The main aim
of this paper is to establish a Cramér-type large deviation for general independent
random variables. In particular, we show that (1.7) remains valid for nonsymmetric
independent random variables. One of the main contributions of this paper is
that the exponential moment condition needed for the normalized sum can be
considerably reduced to only the finite moment condition of low order, which
significantly expands the applicability of such a large deviation result to other fields
and especially to statistics.

This paper is organized as follows. The main results are stated in Section 2.
Applications to the Studentized bootstrap and to the self-normalized LIL are given
in Sections 3 and 4, respectively. Major steps of the proof of Theorem 2.1 as well
as proofs of the corollaries of Theorem 2.1 are provided in Section 5. Section 6
presents some preliminary lemmas. Proofs of four propositions used in the main
proof are offered in Sections 7-10.
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2. Main results. Throughout the paper, we assume that X, X»,... are
independent random variables with EX; =0 and 0 < E Xl.2 < 00. Further to our
earlier notation, we introduce

(14x)?2 & ) (1+x)° & 3
Anx="p3 > EX; 1{\X,-|>Bn/<1+x>}+TZE|Xi| L{iX;|<B./(14x))
n

i=1 n i=1

for x > 0.

THEOREM 2.1. There is an absolute constant A (> 1) such that

PSnzxVi) _ oman: gy POn==2Va) _ oma,.
1 —®(x) D (—x)

for all x > 0 satisfying

2.1

(2.2) x? max EX,-2 < B,%
1<i<n

and

(2.3) Ay < (1+2)2/A,

where |O(1)| < A.

Theorem 2.1 provides a very general framework. The following results are
direct consequences of the above general theorem.

THEOREM 2.2. Let {a,,n > 1} be a sequence of positive numbers. Assume
that

(2.4) a2 < B2/ max EX?

1<i<n

and

n
(2.5) Ve>0, Bn_2ZEX?I{‘XZ.‘>SB”/(1+Q”)} —0 asn — oQ.
i=1
Then
InP(S,/Vy = x) InP(Sy/Vy < —x)
(2.6) — 1,
In(1 — ®(x)) In®(—x)

holds uniformly for x € (0, a,).

The next corollary is a special case of Theorem 2.2 and may be of independent
interest.



SELF-NORMALIZED CRAMER-TYPE LARGE DEVIATIONS 2171

COROLLARY 2.1. Suppose that B, > ci/n for some ¢ > 0 and that
{Xiz,i > 1} is uniformly integrable. Then, for any sequence of real numbers x,
satisfying x, — 00 and x, = o(/n),

(2.7) In P(Sy/ Vi = xp) ~ —x2/2.

When the X;’s have a finite (2 + §)th moment for 0 < § < 1, we obtain (1.7)
without assuming any symmetric condition.

THEOREM 2.3. Let0 <6 <1 and set

n

1/(2+6

Lus=Y EIXi"™,  dys=B./L/3.
i=1

Then

P(Sy/Va=x) 14 x>
(2.8) Toom 't 0(1)( i )
and

P(Sp/Vu<—x) 14 x\*
(2.9) i 0(1)( i )

for 0 <x <d, s, where O(1) is bounded by an absolute constant. In particular,
if dy, s — 00 as n — oo, we have

(2.10) PGuzxVu) 0 PEn=—xV)
- o) ®(x)

uniformly in 0 <x <o(d,.s).

By the fact that 1 — & (x) < 2e~*"/2/(1 +x) for x > 0, it follows from (2.8) that
the following exponential nonuniform Berry—Esseen bound

@11 P8/ Va2 x) — (1= ()| < A(l +x)'F0e77/2g24

holds for 0 <x <d,; s.

The next corollary shows that the range of uniform convergence in Theorem 2.3
can be extended to [0, O(d; s)] when 0 < § < 1 under certain circumstances and
especially for i.i.d. cases.

COROLLARY 2.2. Let 0 <8 < 1. Assume that {|X;|*T%,i > 1} is uniformly
integrable and that B, > cnl/? for some constant ¢ > 0. Then (2.10) holds

uniformly for x € [0, O (n%/(4+29)],

For i.i.d. random variables, Theorem 2.1 simply reduces to the following
corollary:
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COROLLARY 2.3. Let X1, X», ... be i.i.d. random variables with EX; =0
andc? =EX 12 < 00. Then there exists an absolute constant A > 2 such that
P(S,=xVy) _ O0(A,, P(Sp <—xVy) — O,

=e *  and
1—d(x) d(—x)

for all x > 0 satisfying Ap x < (1 +x)2/A, where |0(1)| < A and
Apx =410 2EXTL x> Jiio/(142))
+(1+x)0 0 2E|X, |31{|X1|5ﬁa/(1+x)}-

We end this section with the following remarks:

REMARK 2.1. If the Lindeberg condition (1.1) holds, then A, , — 0 for every
fixed x. Hence, it follows from Theorem 2.1 that

|P(Sp>xV,)—(1—®(x))|—>0  asn— oo,

which is the central limit theorem for the self-normalized sum.

REMARK 2.2. If X;, X», ... are i.i.d. random variables with o2 = EX% < 00,
then condition (2.2) simply reduces to x < /n and (2.3) to

-2 2 —-1/2 -3 3
o PEXT x> io /) + (00" Pa P EIXP Ly, < oy < /A

which in turn implies (1 + x) < 4/n. Hence, (2.3) implies (2.2) in the i.i.d. case.
However, (2.3) does not imply (2.2) in general. On the other hand, it could be
interesting if condition (2.2) in Theorem 2.1 or condition (2.4) in Theorem 2.2 can
be removed.

REMARK 2.3. An example given in Shao (1999) shows that in i.i.d. cases,
the condition E|X|>*% < oo for (1.5) cannot be replaced with E|X;|" < oo for
some r < 2+ 8. We believe that condition (2.3) in Theorem 2.1 is the best possible
condition.

REMARK 2.4. When Xj, Xy, ... are i.i.d. random variables, d, s is simply
equal to n(S/(A"*‘z(S)(EX%)1/2/(E|X1 |2+8)1/@2+5)

3. An application to the Studentized bootstrap. Since Efron (1979) in-
troduced the bootstrap, its properties have been studied extensively. One useful
application of the bootstrap is to the construction of the confidence intervals for
a population quantity of interest. There are many variants of the bootstrap de-
veloped for this purpose, including the percentile method, the percentile-7, the
ABC method, the iterated bootstrap. See the monographs of Hall (1992), Efron
and Tibshirani (1993) and Davison and Hinkley (1997), for instance.
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In this section, we restrict our attention to bootstrapping the Studentized
t-statistic (more commonly referred to as the “percentile-¢”” method) to construct
a confidence interval for a population mean. Suppose that X = {X1,..., X,}isa
random sample from some population F. Let X* = {X7, ..., X'} be a resample
drawn randomly with replacement from X. Write X = n~! > X; and X* =
n~! > i X; for the sample mean and resample mean, respectively. Also, write
62=mn -1 (X; — X)? and 6% = (n — 1)"' YL (XF — X*)? for the
sample variance and resample variance, respectively. Define

T,=vn(X—-w/6,  T,=n(X"—X)/6"

as the Studentized mean and its bootstrap version. Also, define their corresponding
distribution functions by

F(x)=P(T, <x),  Fy(x)=P*T} <x),

where P*(-) denotes the conditional probability given the sample X. Note that if
the distribution function F,,(x) were known, then a one-sided confidence interval
I = (=00, X —n~2%5 Fn_1 (o)) would have the exact coverage probability 1 — «
in the sense that P(u € I1) = 1 — « for any prescribed significance level «. The
bootstrap percentile-¢ confidence interval with nominal level 1 — « is defined to be
I = (=00, X —n 126 F~(a)).

The accuracy of the percentile-r method critically depends on how well the
bootstrap distribution function P*(7," < x) approximates the true distribution
function P (7;, < x). One of the very useful approaches in bootstrap analysis is the
Edgeworth expansion [see Singh (1981) and Hall (1988)]. Although this approach
reveals many important properties of the bootstrap, it does not give a complete
picture. It is well known that Edgeworth expansions focus only on absolute errors
and can be very inaccurate when employed to estimate tail probabilities. It is in
just those cases, however, that we usually wish to use the bootstrap to approximate
distribution functions.

In this section, we are concerned with the relative error properties of the
bootstrap. This line of work was initiated by Hall [(1990) and (1992), page
324] who showed that the bootstrap provides an accurate approximation to large
deviation probabilities for values of x as large as o(n'/3) for the standardized mean
under the assumption that the parent distribution has a finite moment-generating
function in the neighborhood of the origin and that the characteristic function
satisfies Cramér’s condition limsupy,_, o |E ¢""X1] < 1. Jing, Feuerverger and
Robinson (1994) extended Hall’s results to the Studentized ¢-statistic by applying
the saddlepoint approximations for the Student’s ¢-statistic developed by Daniels
and Young (1991). However, the moment condition required is

Eexp{tX%} < 00

for some ¢ > 0. Note that this condition is extremely strong since it requires that



2174 B.-Y. JING, Q.-M. SHAO AND Q. WANG

the tail probability of the underlying distribution drops to zero at least as fast as a
normal random variable.

Our next theorem shows that the bootstrap still possesses some large deviation
properties under only finite moment conditions. It is worth mentioning that Wood
(2000) also recently studied similar issues to those in this section but only for the
percentile bootstrap method.

THEOREM 3.1. If E|X | < oo for some 0 < 8 <1, then
PX(T) > PX(T) <—

PO 20 oty ang Z0w =70
P(T, = x) P(T, < —x)

holds uniformly in 0 < x < o(n%/(4+29)),

(3.1) =140(1) a.s.

PROOF. We shall only prove the first part of (3.1). Without loss of generality,
assume that u = 0. Note that the distribution functions of 7,, and S,/ V,, are closely
related via the following identity:

n 1/2
(3.2) {Tu ZX}={SnZX<m> Vn}-
Applying Theorem 2.3, we see that
P(T, = x)
33 — =1 |
(3.3) oo = Tem

holds uniformly in 0 < x < o(n%/2+8)),
For the bootstrap distribution, we can apply Theorem 2.3 again [see (3.2) and
Remark 2.4] to obtain

P*(T > x)
1—®(x)

for0 <x <d s, where

(3.4) — 1| < A0 +x)*P/ar it

—1 2\1/2
_ e @ S xHY
- (n—lzl(lzl |Xi|2+8)1/(2+8)'
By the law of large numbers, we have
(3.5) df5/n®/ ) — (EXD2/(EIXPPHYED asiasn — oo,
The theorem thus follows from the relationships (3.2)-(3.5). U

Theorem 3.1 states that the bootstrap provides an accurate approximation of
large deviation probabilities for Studentized ¢-statistics for values of x as large
as o(n® 29y In particular, if § = 1, the region becomes 0 < x < o(n'/%). Note
that the region is smaller than 0 < x < o(n!/3) obtained in Jing, Feuerverger and
Robinson (1994) since the moment assumption is much weaker here.
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4. An application to the self-normalized law of the iterated logarithm. It
is known that the law of the iterated logarithm (LIL) is usually a direct consequence
of a moderate deviation result. Following Griffin and Kuelbs (1989) and Shao
(1997), we have the following self-normalized LIL as another direct application
of Theorem 2.1.

THEOREM 4.1. Let X1, X»,... be independent random variables with
EX; =0 and 0 < EXi2 < 00. Assume that B, — 00, maX|<k<p EXi2 <
%B,% /loglog By, for sufficiently large n and that

n
(41) Ve > 0, Bn_2 ZEXiZI{\Xi\>8B,,/(10g10an)1/2} —0 asn — oQ.

i=1
Then

. Sn
42 I —1
(42) PV, (2loglog By) 172

In Theorem 4.1 and the remainder of this paper, log x denotes In max(x, e). One
can refer to Wittmann (1987) and Shao (1995) for the LIL for the standardized
sums S, /By,. Shao (1995) proved that if (4.1) and

o0
(4.3) Ve>0, Z P(1X,| > £B,/(loglog B,)'/?) < o0

n=1
are satisfied, then
(4.4) li Sn 1
. imsu =
i B, (2loglog B,)'/?

The following example shows that the self-normalized LIL (4.2) holds but the
LIL (4.4) fails. Let X1, X5, ... be independent random variables satisfying

a.s.

3 1 1
PX,=0)=-— ,
(Xn =0) 4 n(loglogn)3 +4loglogn
P(X, =+2) = !
" 8 8loglogn’
P(X, =+n"?logl = —.
(X =Fnloglogn) = 2 logn)?

Then it is easy to see that EX, =0, EX% =1 and {X,%,n > 1} are uniformly
integrable. Hence, by Theorem 4.1, (4.2) holds. On the other hand, note that

[e.e]
Ve>0, > P(1Xu| > eB,(loglog B,)'/?) = 00

n=1
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with B, = \/n. By the Borel-Cantelli lemma, (4.4) does not hold.

PROOF OF THEOREM 4.1. We follow the proof of Theorem 5.1 in Shao
(1997). We first show that
Sn

4.5 li <1 S.
*3) oy V. (2loglog B,)1/2 — s

For 6 > 1, let my := my(8) = min{n : B, > 0*}. It follows from condition (4.1)
that

(4.6) By, ~ ok as k — oo.
Let x; = (2loglog Bmk)l/z. Then, for0 <& < 1/2,

S
P( max =« — > (1 +78)xk>

Mg <N=<Mj41 n

4.7)

Smk Sn - Smk

<Pl—=04+2)x )+ P max ———— > Sexg ).

Ving M <n<mj] '

By Theorem 2.2, we have
S
(4.8) P(V—’"k >+ 28)xk> <exp(—(1 +2&)x7/2) < Ck~'7¢
m

for every sufficiently large k.
We estimate the second term in the right-hand side of (4.7) below. Let n =
(6% — 1)"/% and define zx = By, /xk. Set Ty = Y1, 1 Xil{jx;|<z)- SO,

S, — S
P( max quem)

Mg <N<mji Vi

4.9) < P( max 1, > 28kamk)

Mg <N=<mjy|

Mi+41
+ P (Vi < B, /2) +P< Z I(x;1>2) >(8xk)>

i=14my
Note that
Miy1
Y EX7Iyx, <z ~ 07 — 16
i=14my
and

Mi+1

max |ET,|<zg' Y. EX;~z;'(0*—1o*

Mg <n=<Mjy| -

~ (0% = 1)'"2x; By, < exi B, /2
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for 1 < < 14 ¢2/8. By the Bernstein inequality for large &,

lnP< max T,,zZekamk)

Mg <n=<mjy|
- (exx Bmy)*
(4.10) T 2((0? = 1)0% + ext By, 21)
£2x2
T TA@ =D+ e@ =D
< —xt,

provided that (> 1) is close enough to 1. By the Bernstein inequality again,

P(Vin, < B, /2)

my
= P(inzl{lxiﬂk} = Br%zk/4>
i=1

@.11) < exp<_

(B, /4)? )
200 EXHyx; 1<z + B2, 23)

By,
8Bmk Tk

< exp(—x,%)

for 0(> 1) close to 1. Let ¢t :=1;, = ln{(z?)ck)z/(zlr~n:k1+1 zk_zEXizI{|Xl.|>Zk})}. Then
t — oo by (4.1). From the Chebyshev inequality, it follows that

Mg+
P( Z I{|Xi|>zk}2(8xk)2>

i=1+my
, i
<e @ T (14 = DP(X] > )

i=14+my

4.12) 9 ; Mkt 1 oo
<exp|—t(exx) "+ (e — 1) Z 2 CEXi I x5 20

i=1

(exp)?
<exp (—(exk)zlni —
3V G P EX x50

< exp(—x})

for sufficiently large k. Combining the above inequalities yields (4.5) by the Borel—-
Cantelli lemma and the arbitrariness of ¢.
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Next, we prove that

S
(4.13) limsup ——————— > |
n—oo Vp(2loglog By)

Let ny = min{m : B,, > ¢*1°2%} Then, By, ~ e*klogk  Opgerve that

Sn
.
lr?lsolép V,(2loglog B,,)'/2

> lim sup S
koo Vn,(2loglog By, )!/?

. Snk - Snk_1 .. Snk_1
4.14) > lim sup + liminf
koo Vn,(2loglog B, )2 "~ k—oo V,, (2loglog B,,)!/?
2 2 4\1/2
— limsu (Vﬂk B V”k—l) / Sne — Smi_y
P V VZ — V2 )I22loglog By )2
k— 00 i (Ve — Vi) /“(2loglog By, )
V, S
+ lim inf —%-! Rk

k—o00 Vnk Vnk—l (2 IOgIOg B'lk)l/2 ‘

Since {(Sp, — Su,_,)/ (Vnzk — V2 Y2 k> 1} are independent, it follows from

ng—1
Theorem 2.2 and the Borel-Cantelli lemma that
Sy, — S
4.15) lim sup “k k=l 1 a.s.

>
n—00 (Vnzk — Vnzk_l)l/z(2loglog By )12~

Similar to (4.11) and by the Borel-Cantelli lemma, we have

v,
liminf =X >1/2  as.
k—o0 Dp,

Note that

2 2 2p2
P<V _ B,,k> _REVR, BB
ne_1 = 5 | = = < .

k—1 B}%k B}%k

Then by the Borel-Cantelli lemma again,

. V"k—l
(4.16) lim =0 a.s.

k—oo V.

This proves (4.13) by (4.14)-(4.16). [
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5. Proof of the main results. Throughout the remainder of this paper, we
use A to denote an absolute constant, which may take different values at each
occurrence.

PROOF OF THEOREM 2.2. NotingthatV0<e<1land0<x <a,

n n
B2 Y EX7Iyx,>B,/(4x) + (1 +X)B Y E|Xil I x;1<B,/(14x)
i=1 i=1

n n
=B, ?Y EXIyx;>B,/04+0) + (L + 0B Y E|XiPIx; 1268, /(14a)
i=1 i=1

n
+ (L4 x)B, 2 > EIXi P B, /(1-4an) <X |<Bu/(142))

i=1

n n
< B2 EX?Ix,>B,/040) + (1 +X)B 2 /(1 +ay) > E|X;|?
i=1 i=1

n
+ B2 Y EIXiPIieB,/(1+an <|Xi | <By/(142))

i=1

n
<&+ B2 Y EIXiPIx;1>¢B,/(1+ay)-
i=1

we have by (2.5)
Anx=o0((14+x)?) as n — 00

uniformly for 0 < x < a,,. Now Theorem 2.2 follows from Theorem 2.1. [

PROOF OF COROLLARY 2.1. For any a, satisfying a, — oo and a, = o(B,,),
the uniform integrability implies that (2.4) and (2.5) are satisfied and hence the
corollary follows. [

PROOF OF THEOREM 2.3. (2.8) and (2.9) follow from the Berry—Esseen
bound (1.6) for 0 <x <8A. When x > 8A, it is easy to see that

14+x
Apy < (1 +x)2L, 5/B2H = (d—

n,s
and that d,%’ smaxj<, E Xi2 < B,%. Thus, conditions (2.2) and (2.3) are satisfied.
Now, the result follows from Theorem 2.1. [

245
) <(1+x)?/A

PROOF OF COROLLARY 2.2. Letd > 0 and x,, = d n%/@+20 1t suffices to
show that

(5.1 Ap x, =0(1) asn — oo.
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Similarly to the proof of Theorem 2.2, we have, forany 0 < ¢ < 1,

n
Ay < (L4+2)°B2 Y EXTI X, B,/ (14}

i=1

n
&' 1+ x) 2Byt EIXG PP I X <6y (140)

i=1

n
+ (1 + 'xn)2+aBn_(2+5) Z E|Xl |2+6I{8B,,/(1+xn)<|X[|§B,,/(1+x,,)}

i=1

n
< (1 +xn)2+(SBn—(2+5) Z E|Xi |2+61{|Xi\>83n/(1+xn)} + 0(1)81—5
i=1

=o(1)+ O(1)e' 9,

since {|X;|**%, i > 1} is uniformly integrable. This proves (5.1) by the arbitrari-
ness of ¢ and hence the corollary. [J

PROOF OF THEOREM 2.1. We use the same notation as before. We shall only
prove the first part in (2.1) since the second part can be easily obtained by changing
x to —x in the first part. The main idea of the proof is to reduce the problem to that
of a one-dimensional large deviation. It suffices to show that

(5.2) P(Sy=xVy) = (1 — d(x))e A0nx
and
(5.3) P(Sy = xVy) < (1 — ®(x))eAtn
for all x > 0 satisfying (2.2) and (2.3).

Let
(5.4 b:=b,=x/B,.

Observe that, by the Cauchy inequality,
XV, < (x* +b2V2)/(2b).
Thus, we have
P(S, = xV,) = P(Sy = (x> +b>V?)/(2b)) = P(2bS, — b*V? > x?).
Therefore, the lower bound (5.2) follows from the following proposition immedi-
ately.
PROPOSITION 5.1.  There exists an absolute constant A > 1 such that
(5.5) P(2bS, —b*V? > x) = (1 — ®(x))el DA
for all x > 0 satisfying (2.2) and (2.3), where |O(1)| < A.
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As for the upper bound (5.3): when 0 < x < 2, this bound is a direct
consequence of the Berry—Esseen bound given by (1.6). For x > 2, let

(5.6) T:=T,x=B,/(1+x)
and define
X; = XiIx; <) SnZZXi, Vnz:ZXiz’
i=1 i=1
. . - n -
SO =5, — X, v =wz-xH'"?  Br=>Y EX}.
i=1

Noting that for any s, ¢ € R ¢>0andx > 1,

x\/c-l—tzzx/(xz—1)c—i—t2+c-i-(xz—1)t2

> \/<x2 —De+2242tv(x% = e

=14+ V(x? =1,
we have
(5.7) [s+t>xvVe+t?}c{s>@?-D2/c).
Hence,
P(Sy = xVy)

<P(S,>xV,)+ P(Sn >xV,, max |X;| > ‘r)
1<i<n

n
<SPSy =xV)+ Y P(Sy=xVy,1Xi|>1)
(5.8) i=1
n
<P zxV)+ Y P(SY > > = D2V x> 1)
i=1
- - n . .
<PS=xV)+ Y PSP = = D2VO)P(X;] > 1).
i=1
By the inequality (1 + y)!/> > 1+ y/2 — y? for any y > —1, we have
n 1/2
P(_nZx‘;n)=P<SnZX<B£+Z(X1'2_EX3)> )
i=1

_ _ 1 2 _, )
(5.9) SP(S'! ZXBn{l‘FﬁZ(X,- — EX?)

nij=1

n 2
- %(Z(ff? - EX,?)) })

i=1
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Thus, the upper bound (5.3) follows from the next three propositions.

PROPOSITION 5.2. There is an absolute constant A such that

(5.10) P(SW >xv®) <1 +x7h exp(—x2/2+ AA,.x)

1
V2T x
for any x > 2 satisfying (2.2) and (2.3).

PROPOSITION 5.3. There exists an absolute constant A such that

(5.11) Kn < (1= ®(x))enr 4 Ae™

for all x > 2 satisfying (2.2) and (2.3).

PROPOSITION 5.4. There exists an absolute constant A such that
(5.12) Ky < (1= ®@0))et™ms + A(A, /(1 +x)°) "

for x > 2 with A, /(1 +x)?> < 1/128.
In fact, Propositions 5.3 and 5.4 imply that

(5.13) Ky < (1 — ®(x))edtns

for all x > 2 satisfying conditions (2.2) and (2.3). To see this, consider two cases.
If A, /(1+x)?< (1 —®(x))>/128, then by (5.12)

Ky

IA

(1= @)™ (14 (140728 1 (An /(1 +2)7) /(1 = 0(x)))

< (1 — @)™ (14 Ay r /(1 +2)%)
(1 — @ (x))e> A0,

A

When A, /(1 +x)? > (1 — ®(x))3/128, by (5.11)

Ko< (1—®@)e*®nr (1 + Ae™3 /(1 —®(x)))
< (1= @) (1+ A(1 — d(x)))

< (1= ®(x))e™ (1412844, /(1 +x)?)
<( )

1 —®(x) 8129AA,,X

as desired.
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On the other hand, for x > 2, we can use Proposition 5.2 and the fact that
Q)" V2 (x—1 - x_3)e_x2/2 <1—®(x) forx > 0to get

P(SY > (x2 — )12y D)

<(14+@*=17173) exp(—x?/2 4+ AN, x)

1
NI

A 2
exp(—=x"/2+ AAp x)

(5.14) =

X

> 4
)

1 1

— <— — —3> exp(—x2/2 + AA, x)
2m\x X

(1= ®(x))exp(AA, x).

It follows from (5.8), (5.9), (5.13) and (5.14) that

IA

<A

n
P(S,=xV,) < P(Sy=xVy) + Y P(SY = (> = D2V P(Xi| > 1)
i=1

<(1—@@)e + > A(l — @(x)) exp(AA, ) P(IXi| > 1)
i=1

< (1 — ®(x))ettns (1 +AY P(Xi|> r))

i=1
n
< (1= ®(x))etns (1 +AY TTPEXTI(X:| > r))
i=1
<(1—@@)e* (1 +AA, )
< (1 — ®(x))e*Asnr,

This completes the proof for the upper bound (5.3). [

6. Preliminary lemmas. We first provide some lemmas that will be used in
the proofs of the propositions.

LEMMA 6.1. Let X be a random variable with EX = 0 and EX?* < oo. Then,
forany 0 <b < oo, A >0and6 >0,

6.1) EMX—00X" 1 1 3272 — 0)b*EX? + 0598,

where §p = szX21{|;,X\>1} + b3E|X|3I{|hX\§1} and O, g denotes a quantity that
is bounded by a finite constant depending only on A and 9. In (6.1), |0, g| <
max(A + [A2/2 — 0] + &*/49 | 20 1+ 62/2 + (. + 6)3e/6).
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This is Lemma 2.1 in Shao (1999). See the Appendix for a detailed proof.

LEMMA 6.2. Let X be a random variable with EX = 0 and EX?* < oc.
For0 <b <00, let & :=&,=2bX — (bX)?. Then, for » > 0,

(6.2) Ee™ =14 (2A% = MB*EX? + 05,00,
(6.3) E&e™ = (4 — DV*EX? 4 05,16,
(6.4) E&%* =4b’EX? + 052, 8p,

(6.5) E|EPe™ = 0, 38,

(6.6) (E€€**) = 0; 48,

where 8y, is defined as in Lemma 6.1,
|05.0] < max(2x + [24% — A 4 €%, 2.50% + 423¢*/3),
|05.1] < max(2 + 4% — 1| + max(e*, e/1), 5x + 13.52%¢*),
|05.2] < max(4 + max(e*, (e/(21))%), 5 + 27re*),
053] < 27¢",
|0y,.4] < 2max((max(e*, e/1) +2)*, (1 + 9re*)?).

In particular, when . =1/2,10; 0| <2.65,|0;.1] <8.1,|0;. 2| <28,|0; 3] <45,
|0y 4| <150, and

(6.7) Eet?=e%%  where|Os| <5.5.
PROOF. Proofs of (6.2)—(6.5) are similar to those in Lemma 2.2 in Shao
(1999). See the Appendix. As for (6.6), we have
|E§H)
< 2(max(e*, e/A) +2)*b*EX Ipx» 1) + 2(1 + 92N (BPEX Iy <1y)”
<2(max(e*, e/A) 4+ 2)* B2 EX Iy =1y + 2(1 + 90e™) D> E|X P Ipx <1y
Next, we prove (6.7). Since (6.2) implies
Eet/? < o265
it suffices to show that
(6.8) Eet/2> 7%,
When 2.655, < 0.8 by (6.2), again,
Eet/? > 1 —2.658, > exp(2.658,(In(1 — 0.8))/0.8) > ¢ 4%,
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When 8, > 0.8/2.65 and if E(bX)*Ijpx|=1) > E(bX)?/11, then by the Jensen
inequality,

EéE/? > oFE/2 — e~ E0X)?)2 > ¢35

If E(bX)*Ipx)=1y < E(bX)?/11,by the fact that EY? Iy <1y < EY?>P(Y < 1) for
any non-negative random variable Y, we get

Eet? > Eeé I px1<1y = e P P(bX] < 1)
> e (EBX) | px <13/ E(BX)?) > e71°10/11

6_5'5(0'8/2'65) > 6_5'561’.

Y

This proves (6.8).

LEMMA 6.3. Let {§,1 <i < n} be a sequence of independent random
variables with Ee" < oo for 0 <h < H, where H > 0. For 0 < A < H, put

m(\) =Y E&e™i/Ee,  o*(W) =) (E&le |Ee™ — (E& e |Ee)?).
i=1 i=1

Then

(69) P(iél > y) > %( ﬁ Eekéi)e—kzn(k)—Zko()\)

i=1
provided that

(6.10) O<A<H and m()=y+20().

The proof follows from Lemma 4.1 of Shao (1997) with a simple modification.
See the Appendix.

LEMMA 6.4. Let {§,1 <i < n} be a sequence of independent random
variables with E&; = 0 and Eéi2 < 00. Then, for a > 0,

n n 1/2
Y &= a(4Dn + (Z&z) )) <8~/
i=1 i=1

where D, = (31, E€i2)1/2~

(6.11) P(

The proof is a special case of Lemma 3.1 in He and Shao (2000), but with some
specified constants. See the Appendix for a detailed proof.
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7. Proof of Proposition 5.1. Throughout the rest of the paper, O(1) will
denote a quantity bounded by an absolute constant.

We first consider the case of 0 < x < 2. Let 7 :== 1, , = B, /(1 4+ x) and
Y; = 2bX; — (bX:)H)Ix, <1} With b = x/B,. Then,

EY; = —b*EX] + b*EX7Ix,1>1) — 2bEX; I} x,|>7)
= —b?EX? + O(Hbt 'EX?I| x>},
EY} =4b’EX] — 40 EX] I x,|>0) — 40  EX}Ijx <0y + DY EX} x, <0y
=40’ EX? + OV (EXH x>0y + T EIXi P Ix,1<0))
ElY,l’ = OB’ EIXi P I x; <o),
Var(Y;) = 402 EX? + O()b*(EX?Ix, >0y + T EIXi P Ix,1<0))
2
— (=0’ EXPIx,1=0) — 2DEXiljix; 1)
=4b’EX? + OV (EX?Iyx,1>v) + T E1Xi P Ix, <o)
2
+ O((B*EX I x,1=0)” +4D*EXTIx,1>0))

=40 EX? + OV (EXH x>0y + T EIXi P Ix,1<0))-

Thus
n n
(7.1) =3 EY; =22+ 0(Obr 'Y EXP x5y
i=1 i=1
and, by (2.3),
n n
3 Var(¥y) = 4x> + 0D Y (EX x,o0) + T EIXi P I xy1<0)
(12) o i=1
= 4x%(1+ O()(1 +x) 2 Ay ) > 322

It is easy to see that

n
P(2bS, —b*V? > x?) — P(Z Y; > x2>
i=1

(7.3) "
< . < -2 2 .
< P(g@n IXi| > r) < i;f EXi Lipx;|>7)-

Leta=Y"_, E(Y;) and 0> = Y7_, Var(¥;). By (7.1) and (7.2), we have

x*—a)o=x+0)(14+x)"2Any
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and hence by the Berry—Esseen inequality we have
n n
P(Z Y; > x2> =1-®(x*—a)/o)+ 0o > EIY;]’
i=l i=1
=1-®dx)+ 0o +x) A4,
which, together with (7.3), yields
PQ2bS, —b*Vi=x)=1-0x)+ 01 +x) A, = (1 — B(x))eODAnx

as desired.

We next consider the case of x > 2. It suffices to show that
(7.4) P(2bS, —b*V? > x%) < (1 — ®(x))ettns
and
(7.5) P(2bS, —b*V? > x%) > (1 — d(x))e A0,

Let & =2bX; — (bX;)? and define
Vi(u) = Ee5? Iz, <y J E€572.

Let n1, n2, ..., n, be independent random variables with 7; having the distribution
function V;(u). Setm, =3_7_| En;, 0, = (O}, Var(n;))'/? and

n L . 2
Gn(t) — P( i:l(’h E’?z) St)’ &y = X mn‘
oy On
It follows from Lemma 6.2 that
(7.6) Eebil?2 — 80(1)517,1',
(7.7) E& 5?2 =’ EX? 4+ 0(1)8p.;,
(7.8) Eg?e5/? = 4b*EX? 4+ 0(1)8p.;,
(7.9) E|&Pe5? = 0(1)8p,
(7.10) (E&:e5i7%)? = 0(1)8p,

where 8p; = B> EX?Ipx; =1y + > E|X;|*Ijjpx,|<1). Noting that (2.2) implies
’EX? <1for 1 <i<nandthat Y0 | B’ EX?Ipx, =1y + B> E1X: P Iypx, <1y <
A, x, we have

n n
(7.11) my =Y Eni=Y E(&e?)/Ee* =x>+ 0(1) Ay,
i=1

i=1

o7 = 3 Vartn) = SB[ — ()
(7.12) i=1 i=1

=4x> + O(1)A, , > x*
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and

(7.13) ve =Y Elnil> =Y E(I&Pe5/?) JEe5/? = 0(1) Ay,
j i=1

where the O(1)’s above are bounded by an absolute constant, say c;. The
inequality in (7.12) holds provided that A in (2.3) is greater than 4c;.
By the conjugate method [cf. (4.9) of Petrov (1965)], we have

P(2bS, —b*V? > x?)
n
= P(Zéi > x2>
(HEeE’ﬂ) _”/zdP(meu)
i=1

i=1

[1Ee 51/2> —mn/2/°° 2 4G, ()
&n

n

i=1

n 00

(nE s,/z) mn/zf e 4G, (1)
_ClAn,x/Utz

i=1

n
(ﬂ Ees! 2)e‘mﬂ/z{Ln,l + Ry}

i=1

(7.14) (

IA

= Kn 1a
where

[e.e]

L1 =/ e 124 (1),
_ClAlz,x/Un
[e.e]

R :/ 192 4(G (1) — (1)),
_ClAlz,x/Un

By (7.11) and (7.12),
—top/2 <c1Ap x/2

for t > —c1 A x/0on. Thus, by integration by parts, the Berry—Esseen inequality
and (7.12) and (7.13),

(7.15)  |Ry.1| < 16(vy/0,)) exp(c1 Anx/2) < c2An xX 7 exp(c1 Anx/2).
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As for L, 1, we have

_ exp(o*,%/S) o0
LV, 2 —C1Ap,x/On+0on/2
exp(o*,%/S) x
A/ 2 —ClAlz,x/O'n+0'n/2

Ln,l e_lz/z dt

= exp(02/8)(1 — ®(x)) + e 2
(7.16) < exp(o, /8)(1 — ®(x))
+exp(0,2/8) exp(—(04/2 — ¢18n.x/n)?/2)
X |on/2 —x —c1Ap,x/0nl
<exp(0,/8)(1 — ®(x)) + ¢3(Ap 1 /x) exp(ci Ay x/2).
Therefore, by (7.6), (7.11), (7.15) and (7.16)
Kn1 < exp(1.5¢1 Ay x = x7/2)(Ly1 + R 1)
< exp(1.5¢c1Ap, —x%/2)
x (exp(x?/2 4+ c1A, ) (1 — D (x))

7.17
(7.17) + c4(Ap x /%) exp(c1 Ap 5 /2))

2
e X /2
= (1 — CD(.X)) eXp(ZCIAn’x)(l + C4An’x m)
< (I —®(x))exp(csAn x).
This proves (7.4).
Next we prove (7.5) by considering the following two cases.
CASE 1. Assume
(7.18) Apx <x.
Similar to (7.14), we have
n
(7.19) P(2bS, — b*V? > x%) > (]‘[ Ee%”)e—m"/z{Ln,z + Rp2) =Ko,
i=1

where

o0
Lo =/ e 124 d (1)
ClAn,x/Utz

and

o0
Rus :/ e 192 4(G (1) — (1)),
ClAn,x/Glz
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Following the proof of (7.15), we have

(7.20) |Rp2| < c28nxx 7> exp(—c1An x/2).
Observe that

_exp(o,;/8) [

B vV 21 ClAn,x/O-n"FO'n/z

_ ©XP(0,;/8) eXp(—(c1 An.r /0w + 0n/2)/2)
(721) - \/E 1 +ClAn,x/Un +Un/2

> csexp(—c1 A /2 — (c1Dnx[on)*[2) [ x

anz e—z2/2 dt

> ceexp(—c1An x/2)/x
by (7.18). Similarly to (7.16),

Ly =exp(o, /8)(1 — ®(x))

B eXp(o’}%/S) /Cl Ap x/On+04/2 e_lz/z dt
A/ 21 X

2 J—
(7.22) > exp(0, /8)(1 — @ (x))

—exp(a,; /8) exp(—x>/2)|0y /2 — x — ¢1 Ay x /0]
exp(—x2/2) )
x(1 - o (x))
> exp(o,%/S)(l — D)1 —2c3A,,1).
It follows from (7.21) for c3A, » > 1/4 and from (7.22) for c3 A, » < 1/4 that

> exp(a,2/8)(1 — CI>(x))<1 — A

(7.23) Lpo > exp(x?/2 —csAp ) (1 — ®(x)).
Now (7.20), (7.21) and (7.23) yield
Knp > exp(—1.5¢1 Ay« = x%/2)Lyo(1 = |Ry21/ Ly 2)
(7.24) > exp(—c6Anx) (1 — @) (1 — c7A,, ¢ /x7)
> exp(—cgAp ) (1 — P (x))

provided A, x < x2 /(2¢7). This proves (7.5) under condition (7.18).

CASE 2. Assume

(7.25) Ay > x.
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By Lemma 6.2, for any 0.5 < A <0.55,

(7.26) Ee™i =14 @202 = VP’ EX? 4+ 018y,
(7.27) E&e5/? = (4n — DP*EX? + 0(1)dp.;,
(7.28) Egfe5/? =4b*EX? + 08y,

where |O(1)] <cg =35 forall 0.5 <X <0.55. Let
A= 1/2+C9An,x/x2,

where c¢9 = 6 + 7cg. Choose A > 40cg in (2.3) so that 0.5 < A < 0.55. We now
apply Lemma 6.3 to estimate the lower bound (7.5). Let m(X) and o (1) be as in
Lemma 6.3. Define

Gi={1<i<n:(4—Db*EX? > cs8p.)
and
Go={1<i<n:(4r—Db*EX? < cs8p.;}.

By (7.26)~(7.28), (7.6) and the fact that Ee*é > max(e 0" EX? | (Eebi/2)M/2), we
have

" (4 — DPPEX? — cg8p i

I’I’l()\.) > Zl Ee)\gi
1=
= Y (4r— DB*EX? — csdpi)
ieGy
_ A
5o (1 = Ee*s)
+ ‘Z ((4r— DHP°EX; — Cng,i)W
ieG
(4r — DP2EX? — cgdp,;
+ Z Ee)‘%_i
ieGy
> 3 ((4h— DP2EX}? — cs8p1)
(7.29) i€G,
+ > (@r — DB EX? —2c38,)
ieGy
_ Z (4r — 1)[;2EX1.2((2)L2 - A)bZEXi2 + 08317,;')8'\
ieGq
— Z C85},’,‘€A
ieGy

> (4r — Dx? — (4r — D227 — Vetx? — Teg Ay
> (1+ oA /x)x> = TegAn x
= x4 (co — Tcg) Ay
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Similarly, we obtain from (7.26) and (7.28) that
" (4 — DD*EX? + csdp,i

m(L) < :
(7.30) l:ZI (Eeg:z/z))\/z
<@r—Dx>+c100nx =x>+c11 A
and
" EEZeM
M=)
(7.31) i=l

<Y @L*EX] + cgdpi)e* <8x* +2cgA, x <9x°
i=1
for A > 40cg in (2.3). Therefore, (6.10) is satisfied by (7.29) and (7.31). Thus, by
Lemma 6.3, (7.6), (7.30), (7.31) and (7.25)

n
P(2bSn _ bZVnZ Z x2) Z %(1_[(Ee%'i/z)}»/Z)e—)\mo\)_ZKO'()L)

i=1

(7.32) > 3 exp(—x?/2 — c12Ay » — 5x)

v

3
a
(I = @(x))exp(—ci12Ayx — 8x)
(

- <I>(x))exp(—c13An’x).
This proves (7.5) for the case of (7.25).

=

8. Proof of Proposition 5.2. The proof of Proposition 5.2 follows from the
next three lemmas.

LEMMA 8.1. For x > 2, we have

P(S, > xV,, V2 >9B>) <2exp(—x> + AA, ).

PROOF. Let S, = Y1 Xilipx;<A,) Where b = x/B,, and Ay is an absolute
constant to be determined later. Observe that

P (S, > xV,, V2> >9B%)

n
< P(8, >xV,/2,V}>9B2) + P(ZXiI{bX,->A0} ZXVn/2>

i=1

8.1)

n
< P(S, >3xB,/2) + P(Zl{|hXi>A0} > x2/4>
i=1

=Ji1(n) + Jo(n).
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Since E(bXiIipx,<Ag) = —EbBXiIpx,>a,)) <0 for every i and
e <l+s+ s2/2 + max(s>, 0)e’ /6,

we have

3
{1 + S EOXilpxi<ao)

340/2

27e
7E|bX,‘|3I{|hXi|§Ao}}

9
ZEbX;)?
+8 (bX;)” + 13

9
{1 + §E(bX,-)2 + O(I)EIin|31{|hXisAo}}

Ne)
=
(3]

n n
(8.2) < exp(—T> exp{g Z EMbX):+ 0() Z EIin|3I{in|§A0}}
i=1

i=1

9x2 Z
—exp(— 5 ) expl O() Y- EIbXi Pl i<r/aron
i=1

n
+o))Y. E|in|3I{x/(1+X)<inEA()}}
i=1

9x2 o(Hx* &
§exp<——> expi Y EIXilPIx1<B,/(140))

8 B 5
o(1)x*
+ g D EIXilP I x> B,/(40)
n i=1

9x?2
< exp(—? + O(I)An,x>.

As for Jo(n), let Y; = Ijpx;|>4A,)- For t > 0 we have, with the help of ¢® <
1 + max(0, s)e® and the Chebyshev inequality,

Jr(n) = P(ZtYi > tx2/4>

i=1

n
(8.3) <e WM Ee™

i=1
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n
< e ™A + ¢ P(bXi| > Ag)]
i=1

n
< 1¥/4 expiet szEXiz/Ag}
i=1
= exp(—tx? /44 x%e' | AD)
< exp(—x?)
if we choose t =5 and Ag = 30, for instance.

The lemma is thus proved by combining (8.1)—(8.3). [

LEMMA 8.2. There is an absolute constant A such that

(8.4) P(Sp=xVy) <(1+x7h exp(—x*/2+ AA, x)

1
N N 2mx
for any x > 2 satisfying (2.2) and (2.3).

PROOF. For 0 <€ < 1/2, note that

2 2

1 —
{S, =xV,} C {SnZE(anz'i‘x b € )}

U{S,,Zan,Sn<§an+ : )

C (2bS, —b*V? > x? — &%)
U{s, =xV,, 2xbV, < szn2 +x2— 62}
and
{S, > xV,, 2xbV, < bZVn2 +x%— 62}
={S, = xV,, [bV, — x| > €}
C{Sp = xVy, [B*V? —x*| > ex)
C {8y =xV,, V?>9B2)
U{S, > xV,, 2t ex < bZVn2 < 9x2}
U{S, > xV,, sznz <x?— €x}.
1 e—x2/2

Using Proposition (5.1) and the well-known inequality 1 — ®(x) < ir ,

x >0, we get

1
8.5) P(2bS, —b*V?> x> —€?) < ———exp(—x2/2+ €22+ Ay x)
(8.5) P( e me p(—x~/ / ,
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for x > 2.
Set By ={(s,1):5 > x+/1, x> 4+ €x <t < 9x2}. Then,

P(Sy > xV,, x* +ex <b*V? <9x?)
= P((bS,, *V?) € By)

< Eexp<x—1(x2 +ex)2(bS, — b*V?/9)
— inf x7'(x? +ex)V2(s — z/9)>
(s,t)eB;

=11 Eexp(x'(x* + ex)2(bX; — b*X}/9))

X exp(—x_l(x2 + e)c)l/z{x(x2 + e)c)l/2 — (x2 + ex)/9}>

x24+ex  (x24ex)/?
<exp — —
2x 9x

}b232+0<1>25b,i) [by (6.1)]

i=1
X e>(p<—x_1()c2 + ex)l/z{x(x2 + ex)l/2 — (x2 + ex)/9})
<exp(—x?/2 —ex/4+ O(1)A,,).
Similarly, letting By = {(s, ) :s > x/1,0<t < xz— ex} yields
P(S, >xV,, Vn2 §x2 —€X)

= P((bS,,b*V?) € By)
< Eexp(x‘l(x2 — ex)l/Z(bSn — 2b2Vn2)
— inf x4 ex)2(s — 2t)>
(s,t)eBy
n
= l_[ Eexp(x_l(x2 —ex)'2(bX; — 2b2Xi2))
i=1

X exp(—)c_l(x2 —ex) 2 x(x? —ex)!? —2(x% - ex)})

2 2 \1)2 n
- exp({x ex  2(x7 —ex) }szrf +0() Z(Sh,,) [by (6.1)]

2
2x X =
x exp(—x 1% — ) x(x? — ex)!2 = 2(x? — ex)))

<exp(—x2/2 —ex/4+ O()A,,).
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Now letting € = 1/x!/2, the term ¢’/2 in (8.5) can be bounded by
€/ = o1/ 20 < 1+iel/(2x) < l—i—l for x > 2.
- 2x X -
Then inequality (8.4) follows from all the above inequalities. [

LEMMA 8.3. Let By, = By — EX} and

2 n
o (4x) 5
AP = B Y EX7Ix;|>B,./(14x)
x+1D3 & 3
Tt Y EIXiPlyxi<B,/(40)-
nk i=1,i#k

Then

max Aﬁli))c <8A,
I<i<n ' ’

for any x > 2 satisfying (2.2).

PROOF. It follows from (2.2) that

{ EX? } 11
max { —=~; < < -.
1<i<n B,% x2
Therefore, for any 1 <k <n,

1 1 1 4

- = < .
By, BI(1—EX}/B) 3B;

As aresult, we get

2 n
o (14X )
A’(”B‘ZT Y EXTIxi>Byi/(140))
nk i=l,i#k
1+x)3 &
+—=— Y EIXiPIyx,<B,./0+0)
B, i=1,ik
4040 &)
=35 2;Exi1{\x,-|>3n.k/<1+x>}
n i=
AN A +x)? &
+<‘> ——— > EIXiPPIyx,1<B,/(40)
3 Bl ~
41+ x)2 &

2
357 2 EXi <im0
=
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2 n
- 4(1+x)

2
= 3p EX7 1 x;|> B, /(14x))

i=1

3/2(x+ )3 n
+2<—) Y EIXiPIyx,1<B,/14x))

3 B3

n i=1

<8A, . g

9. Proof of Proposition 5.3. To prove (5.11), let

n
=>"EX!, mi=X}-EX}, b:=by.=x/B,
We have

Y i

\ 1/2
K, <P( > 6x<4D +(Zn,2> ))
i=1 i=1
B B 1 n 1 n 2
+P< nZXBn{l‘f‘ﬁzni_B_ﬁ(iZlni) },

nj=1 =
an

n 1/2
(54
i=1

<8¢ 4 Ky
by (6.11), where

_ _ " 12x2(16 D2
Kn,lsP(SnszilJr—Zn, <2160, + Y 1)

n i=1 B;4l

2 n 2 2 n 4

<p(5, =iy a2y k2 20O E L XD
2b 0 Bﬁ.

n
_p (2135n RV 4245 Y (R4 16E 1Y x2).
i=1
Let & =2bX; —b>X? +24b*(X} + 16 EX?). Then it is easy to see that (6.3)~(6.7)
in Lemma 6.2 remain valid for & when A = 1 /2 with O, _; bounded by an absolute
constant for/ =1, ..., 5. Hence, it follows from the proof of (7.4) that

n

P <2BSn —b*V7? +24b* Y (X! + 16EX]) > x2> < (1= @ (x))ettnr.
i=1

This proves (5.11).
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10. Proof of Proposition 5.4. Let

/7 > > - X - _
0= %)~ 5 (V- ER + (- ER?
n

F
Uj(x)=U;x)— EU;(x),
Wik(x) =2x(X7 — EX)(X; — EXD).

We can rewrite

K,,:P( ZU )+ = ZW]k(x)>x——ZEU (x))

B} = B,
Sett=B,/(1+x) and
A=Ay/(14x)?

n n
=B, Y EX{ x>0y + (1 + 0B Y EIXilIx <0).

i=1 i=1
Note that the condition A < 1/128 yields
(10.1) $B2 < B2 < B2,
~ l+x 5 3 3
(10.2) |EU;(x)| < B—EXjI{\Xj\N} + EEIX]‘I Iix ;)<<
n n

_ 14x
(10.3) |EUF(x) — EX3| < EX ljx;)>0) + B—nE|Xj|3I{\Xj\Sr}»
(10.4) E|U;x)P < 64E|X; P I, 1<),

1 ) 3/2 1 ) 3/2
Az (EEXjI{|Xj|>T}> + (EEX]‘I{XJ‘ET})
n n

1 EX3\32
> —7
=5(%)
forevery 1 < j <n.

Throughout the remainder of this section, we use the following notation:

(10.5)

o =~ 1 2
gj(t,x) = E/ Ui/ B, Ty=—= > U (), Ap= —4 > Wi
n ;_— }’l

I<i<j<n

The proof of (5.12) is based on the following lemmas.
LEMMA 10.1. [f|f] < A‘1/64, then forall 1 <i, k <n,

(10.6) /8,

i (1, x)

<e

JF#ik
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If |t] < A=13 /64, then

(10.7) [1ei@.x)—e 2| < AN + 1[0/
j=1
and
n 2 n t2
[Tejt.x)—e 2114+ (git,x)— 1)+ 7
(10.8) j=1 j=1

SAA4/3(2‘2+Z6)6_t2/2.

PROOF. By using Taylor’s expansion of e*, we have

zZEU}(x)
2B2

_PEIU; P

10.9 i(t,x)—1+ _
( ) g]( X) 6B,3l

It can be easily shown from (10.3), (10.4) and (10.9) that

2
t -
lgj(t, x)| <1~ W(EXJZ- — EXlx;1>1))
n
N 972 + 16|71’ (1 + x)

3
B E1X;I L x;)<0)-

Recalling A < 1/128, we get EX? < {E|X;*I{x;<0}}*? < B2/(16 - 41/3),
Therefore, for |f]| < A_1/64,

[1 & x

J#ik
< exp{—f (1 - LR+ E)'ﬂ)) + (917 + 16|z|3>A} <e /8
- 2 2B2 k = '
This proves (10.6).

Next we prove (10.7) and (10.8). Assume |t| < A~!/3/64. By (10.9), we can
write

git,x)=1—r;, x),

where

2 3

4 2 It 3
ri(t,x)=—FEU(x)+0—==E|U;(x and |0 <1.
10,5 = 55 EUF0) + 0 s EIU; ) 9]
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It follows from (10.3)—(10.5) that |r;(z, x)| < 1/4 and

0P < S (EUemp? + L
ri(t,x = = i(X
! B+ 18BS

n

——(EIU; ()] 3)?

n

Al
< B—((EX%2 (E|X,~|21{X,.>f}

(10.10) n
14+x 3 2
B J ‘Sf}> )

A 252
B4<EX>

Writing In(1 + z) = z + 0z% for |z| < 1/2, where || < 1, we have for |t| <
A~1/3 /64

In[]g;t,x)=> In(1+4(g;(,x)—1)

j=1 j=1

(10.11) =Y (gjt.x)—1)+0_ |rjt,x)

j=1 j=1

_Z gjt,x)—1) +0(1)( Z:(EX2 )

Jj=1 ”] 1
where |O(1)] < A. By (10.3), (10.4) and (10.9)
n t2
Z(gj(t,x)— 1)+5
j=1
(10.12) 12 5 5t
EU —EX +
< 23’% le (x) I F
J
<A@ +tP)A,

i EIVi 0P

which, together with (10.11), yields

lanJ(t x)—l—

j=1

n 2

> (g(t.x) = 1)+ |+ 0D <B4Z<EIX | ))

j=1 nj=l1
<A+ 1PH)A+APA< A + 11D)A

(10.13)

=

for || < A™1/3/64. In terms of (10.11)—(10.13), by using |e* — 1 —z| < % e'fl we
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find that if |¢| < A~1/3/64, then

" 2 2 " t2
[[gjt.x)—e " 2=e"/2 In[]g;. —t—1
gjt,x)—e e expiln | | g;(z, x) + 7

j=1 j=1

2 u :
ot /2{ > (gjtx) — 1)+ r +r*(t,x)},

j=1 2
where
2
1] & 12 " 12
K (2, x)| < At* A3 + S|in [Tgit.0)+ 3 eXp{ In [] gt x) + 3 }
j=1 j=1

< A(t* +19HAY3,
This proves (10.8). (10.7) follows directly from (10.8) and (10.12). 0

LEMMA 10.2. If|t| < A~'/64, then

(10.14) |EAe"T] < AN e /8,
n
(10.15) Eei!(TuithAn) _ l—[ gt x)| < AA(|tP2 +t26—z2/8)‘
j=1

PROOF. Observe that E(W; ;(x)|X;) = 0 for j # L. It follows from (10.4),
Holder’s inequality and the independence of U; and U; that

|EW; 1 ()t Wi @+ UI0))/ By

— ’EWj’l(x)(ei[Uj(x)/Bn _ 1)(eitUl(x)/Bn _ 1)’

2
§2<g—|) E{IW;.1001U; ()| U (o)1)

n
2

2
< é{E|Wj,l(x)|3/2}2/3{E|Uj()€)|3}1/3{E|Ul(x)|3}l/3

n

Axt? 3 3
< 2 (EIX]] Iyx ;1<) (E1X1 P I x) <o)

n

Thus by independence of U, (x)’s and (10.6),

) 1 . _
’EAne”T”‘ < = Z ‘EWJ,J(x)elf(Uj(XHUz(X))/Bn‘ 1_[ gk (2, x)|
n j<l k#j.1

< AA22e18,
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This proves (10.14). .
As for (10.15), since |e/? — 1 —iz| < 2|z]*/? for every real z, we have

|Ee!"Tnthn) _ EeltTn it EA,e'Th|

<20tPPPE|A,?

32
6|t|3/2 = o) 2 ) 2 3/2
(10.16) T E|Y (X} - EX}) Z (X2-EX})| «x
n i=1 Jj=i+1
A|t|3/2 n

= g6 Z > (EIXilPIyx <o) (E1X P x <o)
n i=1 j=i+1

< Alr2A%,
where, in the second to last inequality, we used a moment inequality for the

U -statistics [see, e.g., Dharmadhikari, Fabian and Jogdeo (1968)].
Now (10.15) follows easily from (10.16) and (10.14). O

LEMMA 10.3. [f|f] < A‘1/64, then for any 0 <m(t) <1,
|Eeil(7;1+An)|

(10.17) 5

< (1 42|t)e ™D L AN m* B (1) + ANt Pm(r).

PROOF. We follow the randomization method used in Bentkus, Bloznelis and
Gotze (1996). See Alberink (2000) as well. Let X7, ..., X be independent copies
of X1,...,X, andleteq, ..., €, beii.d. random variables with

Ple=1)=1—P(e=0)=m(t)
independent of all other random variables. Let X jf, U *(x) and W* ' (x) denote the

random variables X ; j»Uj(x) and W; ;(x) with X ; and X replaced by independent
copies Xj and X}. Furthermore we let W*k(x) 2x(XJ2- - EXJZ-) (X,’(k2 - EX,’fz)
and define

1 n
Tl*nzé—Zerj<x), Ty = Z(I—GJ)U (),
nj=1

Ze,e] Wij@), A= Zela W (x),

nl<] nl<]

A}, = F YA —e)d —e)) W (x).
ni<j

It is easy to see that [cf. Alberink (2000)]
(10.18) Ty + A LT0 + TS, + AL, + A5, + AL,
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where < denotes the same in distribution. It follows from (10.18), |e'’ — 1| < |¢]
and |e/" — 1 —it| <2|t|*/? that

‘Eeil‘(Tn‘FAn)’
= |E€il(Tl}‘;l+T2n+A* +A§n+A* )|
< |Eeit(T1’§l+T2’jl+A§n+A§‘,,)| + |t|E|ATn|
(10.19) < E|E(e" T 23| X*, €)| + |t|E|AT,|
§E|E(€ilT{t’|X* )|+|t|E|E( * ”Tl*an*,E)|
+21t1E|A5, P72 + 1| E| AT,
= E1(f, x) + Ea(t, x) + E3(t, x) + Ealt, x),

where X* = (X7,..., X)) and € = (€1, ..., €).
We first estimate E3(¢, x) and E4(, x). Recalling that €;’s are i.i.d. random
variables independent of all other random variables, we get

3/2
8x3/2
EIAS, 1P < = Ze,(x2 EX?) Z (1 - €)X - EX?)
n Jj=i+1
Ax3/2E|61|3/2 n
=T g Z > (EIXiPIgx, <o) (EIX 1 I x 1<)
i=1 j=i+1
< AN’m(1).

Similarly,
E[A},| < (EIAT, PP < AN Pm* B @0).
These facts imply that
(10.20)  Es(t,x) + Ba(t,x) < AAY3(t|m*3 (1) + ANt 2m(1).
Next we estimate Z1 (¢, x). Note that
E‘E(gi[EjUj(x)/Bn |€j)’2
— E{E(e"’Ej(Uj(X)—Uj‘(X))/Bn|Ej)}

_ Eeilej(Uj(x)—UJ’-k(x))/B,,’

because U;?‘ (x) is an independent copy of U (x). Using (10.3), (10.4) and Taylor’s
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expansion of ¢'? yields

Eoit€iUj (x)—U;f(x))/B,,

<1-— t_—zEefEU?(x) + £E|€1|3E|Uj(x)|3
B2 / 3B;
mtr, -, 2
=1 -~ (EX] = EXjljx;1n)
n
m(t)(1812 + 32| ) (1 + x)
+ E|Xj|3l{|Xj|§T}'

B;
Therefore, by Holder’s inequality,
E‘E(eizejuj(x)/én l€))]

< (E[E(e" Y10 Brlej) [1)V2

(10.21) mt?, )
< exp{— 252 (EXj — EXjI{\Xj\>r})
n

m(t)(9t> + 16¢>)(1 + x)

+ 3

Bn
which, together with the independence of U;(x) and €;, implies that if [7] <

A~1/64, then

E|Xj|31{|xj|5r}}’

n -
E1(1,x) = E|E(e"Tin|e)| < [T E|E("iYi/Brle ;)]
j=1

(10.22) +m(1)(91% + 16|t|3)A}

2
Ht
fexp{—m(z)

<e—m(l)t2/8'
Finally, we estimate E(t, x). Since A < 1/128, we get EX? < {E|X;|® x

Iyx;1<ry}?/3 < B2/(16 - 41/3). Hence, similarly to (10.22), it follows from (10.21)
that, forall 1 < j <n,

Q= E‘E(eit(Tltl_erf(x))/B"|61, B 25 T < T P én)’
<T] E|E(e"Uk®)/Bujg)|
(10.23) ki

2
< exp{_m(t)t

(1= B, ?EX7) +m(t)(9r + 16|t|3)A}

< e—m(;)ﬂ/s'
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On the other hand, we have
. ) o2 ite;Ui(x)/Bny,
Q) = E|E{(X] — EX7)e"'sVit)/Buie |

= E|E{(X] = EXD(" 90/ 5 —1)ie

(10.24)
2|t |EX2 |t|
=B,

(ElU;(x)P)"°

12)¢] ;
=< E|X ;" Ix )<z}

n

In terms of (10.23), (10.24) and the independence of U (x), U;.‘(x) and €, we get

(1, x) = [t|E|E(A%,e T X*, €)]

4t = = = it T*
l il ZEIX EX;§2|E\E{(X§ - EXJZ-)e”Tln|e}]
By JFk
(10.25) filtxlzQ O EX2
1j8a2j k
noj#k

<9612~/

< 2|t|e—m(t)t2/8‘

Putting the above estimates (10.19), (10.20), (10.22) and (10.25) together, we have
(10.17) immediately. The proof of Lemma 10.3 is complete. [J

LEMMA 10.4. Let F be a distribution function with the characteristic
function f. Then, for all y € R and M > 0, it holds that

(10.26) 12;3 F(z) < % + V.P. /j; e_iy’il((%>f(t)dt,

(10.27) lim F(z) > Lovp Y e—iy’iK<—i)f<z) dt,
z1y 2 -M M M

where

V'P'[Z_klig(/_h—i_/ )
K(s)=Ki(s)/24+iK>(s)/(2ms) and

Ki(s)=1-—1s|, Ky(s) =ms(1 — |s])cot(mws) + || for|s| <1
and K (s) =0 for |s| > 1.
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This lemma can be found in Prawitz (1972). The result was also used by
Bentkus, Gotze and van Zwet (1997) for an Edgeworth expansion for symmetric
statistics.

LEMMA 10.5. There exists an absolute constant A such that

U(x)+_ w (x)>y)
(10.28) ( Z B 2 r

< (1 — D)+ A +x)Ae V24 ANY
for |yl <4(1+x).

PROOF. By using (10.27) in Lemma 10.4, we have, for any y € R and
M= A"1/64,

( ZU<x>+_ ZW1k<x>>y)< (I1+|J = 1)),
n]<k

where K (s) and K;(s) are defined as in Lemma 10.4,

| ! it (Ty+A
1=—f eV —— | Ee!Tnthn) gy
M J-m M

/ M
_ Lv'p'/ e—iyzK2<_L)Eeir<Tn+A,,) dr.
b4 -M M t

It suffices to show that

and

(10.29) 1] < AAe™"/2 4 ANY3
for y € R and
(10.30) I =11 <2(1 —®()) + A +x)e > 2A + AN

for |y| <4(1 + x).
Without loss of generality, we assume that A < 1/(6- 64)4. LetM,=A"1/3 /64.
Rewrite I = I} + I, where

1M ! it Tyt D)
=—/ e VK| —— |Ee'" TR dt,
M J-u, M

I, = i e_iytKl (—L)Eeit(T"_'_A”) dt.
M Jm <jt1<m M
It is easy to see that M} > 6 and 0 < [36: 21In|t|] < 1 for |z| > M,. Hence, by
Lemma 10.3 with m(z) = [36t 2 In |t|],

1 .
(10.31) L] < — |Ee!"Tnthn)| gy < AN,
M JIm <=M
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Noting K1(s) =1 — |s|, for |s| < 1, we obtain |I1| < |I11]| + |I12]|, where

LM (Tt
IHZM/ e Ly Ee’ (Tt ”)dl‘,
—-M,
2 M T A
IIZZW A t‘Ee " " ‘dt

It is obvious that | 11| < # fOMl rdt < AAY3. Note that

1 / % miyi—[2 gy _ 2
N2 J—o
It follows from (10.7) and (10.15) that
oo .
|111|§i’/ e_lyl_tz/zdt“i‘i e_l2/2dt
M| J-co M Jit>m,

1 M it(Ty+An) _12/2 d
+ M y \Ee —e ’ t
— M

< AAe 12 4 ANZ.

This proves (10.29) by the above inequalities.
To prove (10.30), let

n t2
fult, x) = (1 +) (gt x)—1)+ 5>e—f2/2.
j=1
We may write
J=Ju+Jp+Jiz+ 1o,
where
] My dt
iy = iV.P./ e fr ) L
T —M, t
dt
l‘ ’

i M, . ,
J12 — ;VP/ " e_lyt(Ee”(T;rf‘An) _ fn(t’ _x))
— M

j M
J13 = l—VP/ : e_iyt<K2<_L) — I)Eeil‘(Tn‘FAn) ﬂ’
b4 -M, M t

t

D= iV.P.f e—"ny2<——)Ee"’(T"+A") dt
T My <|t|<M M t

and M; = A™1/3/64. Similarly to (10.31), it follows that |J,| < AA%/3. By us-
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ing (10.8), (10.15) and the fact that 4 Yh_[(EX5)? < A*3, we have

M,
|J12| </ | ||Eell(7}1+l\n fn(t,x)|dt
1
M, 1
5/ —|Ee
—M; |t]
/ wy It

< AAY3,

n
il(T;1+An) _ l_[ g](t7x) dt

dt

H gj(t,x) — fult, x)

It is easy to check that |K»(s) — 1| < 4s? for |s| < 1/2 [cf., e.g., Lemma 2.1 in
Bentkus (1994)]. Hence,

M, ‘
T3] < AAZ/ jt]|Ee' Tt
—M;

M,
< AAZ/ ltldt < AAY3.
—M,
On the other hand, simple calculation shows that

i v dt 1
—V.P./ eV, x) —=—=4+ D) + La(y),
27'[ —00 t 2

where

- Ui
£n<y)—Z{E<I>(y =

j=1

1
) - <1><y>} S0,

n
Therefore,

|J — 1| <|Ji1 — 1|+ [Ji2| + |J13] + | J2]
] oo . dt
§’LV.P./ e_’y’fn(t,x)——l‘
o _ t

+ A | (2, x)|| L AN

lr]=M, 1|
<2(1 = @) +21L, ()] + ALY
and (10.30) follows if we prove
(10.32) L2(y) < AL +x)e V2
for |y| <4(1 + x).
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By using Taylor’s expansion of ®(y) and noting |U;(x)| < 9}5_3,,/(1 + x), we
have

U; EU?(x)
Lin(y) = ‘Efb(y — ;—(’C)) —d(y) — #dﬂ%)]

n n

I/\

1 " |U;(x)]
—E|U; (x)| P y+0——— [where 0] < 1]
6B} B,

2
Al +y?)e /2 _
= o EIX; P x;1<0 exp(y1U; 01/ By)-
n

This estimate, together with |y| < 4(1 + x) and (10.3), implies that

La = 3 Lin0) + = (y) Y |EU; (x) — EX’|

j=1 b

< A(l+x)e 24,
as desired. [J
We are now ready to prove Proposition 5.4. Let yo = x — B! 2?21 EU j(x).

From (10.2), we get B, ' 31, |EU;(x)| < 4(1 4+ x)A. Hence, by (10.28) with
Yy =)o,

Kn=P( ZU (x) + -4ZWJk<x>>yo>

n j<k

1 — ®(y0)) + A(1 +x)e Y02 A + AAY3

A

A

=
(1= @) + AL +x) Ae™ /AU 4 g 743
(1= @)1+ AA, &8m%) + AAY3
< (1 - @)t + A",
where we have used the following facts:
—y5 < —x* +2x]yo — x| < —x?+6(1+x)*A

| (y0) — @ (x)| < [yo — x|®"(x +6|yo—x])  [for some [9] < 1]
< A(1 4 x)Ae~ho=xD?/2
< A( +x)Ae—x2/2+3A,,,X'

The proof of Proposition 5.4 is now complete.



2210 B.-Y. JING, Q.-M. SHAO AND Q. WANG

APPENDIX

PROOF OF LEMMA 6.1. Define
Li(b) = E(X %" _ 1) Lipx o1y,
D(b) = E(X =007 1) 1,x ).
Noting that A(bs) — 0 (bs)*> < A2/(40) for s € R!, we get
IL(B)] <4 P(bX] > 1) < /OB EX Ly o).
From the inequality
lef —1—s—s2/2| <|s]>e*v0/6
for any s € R! and EX = 0, it follows that
L(b) = E(MbX —0(bX)) Ipxi<1) + sE(AbDX — 0(bX)) [jpx <)
+ 30 EMDX —0(bX) P Ijpx <)
= —ADEXI{px|=1) + (A2 /2 = OB?EX* Ipx|<1y — MOD EX Iypx <1
+ (0% /DB EX* [px)<1y + O+ 03D  EIX PP I <1)
= (22— O*EX?+ 0(1)(h + [A2/2 = 0DL*EX* Ijpx -1
+ O0(1)(A0 4+ 6%/24 (. +0)3e* 16)b> E|X P Iypx <1
where |O(1)| < 1. This proves (6.1) by the above bounds on 1 (b) and I>(b). U

PROOF OF LEMMA 6.2. (6.2) is a direct consequence of (6.1). Write
Eé‘,—'ke)LE = Eéke)“sl{\bxbl} + Eéke)”él{u,x\fu, k=1,2,3.

Noting that & < 1, [§[Fe* <A K sup,_, |s|*e* = A~F max(Ake*, (k/e)~*) for k =
1,2,3, | —1—5| <0.55%¢*V0, and |e* — 1| < |s]e* V0 for s € R!, we have

E£e™ Ipx)<1)
= EE(1 + A8) [ px|<1) + EE(™ — 1 — AE) [px|<1
= —20EXIjpx|=1) + @A — DB*EX*Ipx <1
FAE(—4(bX)? + bX)N [ pxi<1) +0.50 (A2 EIEP Ipx <1
= (4r— DPEX* + 0()Q2 + |1 = 4A)D*EX* Ijpx > 1)
+ O (514 13.52MBPE|X P Ipx <1y
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E&%* Ipx)<1)
= E&% Ipx <1y + EE* (" — Dpxi<1)
= 4P EXIpxi<1) + E(=4(0X)* + 0 X) ) [px)<1)
+ O(re* EIE P Ipx <)
=4p2EX? + O()L*EX?Ipx|=1)
+0()(5 4 270N’ E X P Iypx <1y,
EEPe* Ipx <1
=0 E[&P Iypx <)
= 0(1)27" D’ E|\X P Ipx)<1),
|Ege*|
< max(e”, e/A)P(bX|> 1)+ |E&Ipx)<1y| + |E€(€AS — DIpx)<1y]
< (max(e*, /) +2)bE[X|Ipx|1) + b* EX*Ipx) <1y + e EE Ipx <1y
< (max(e*, e/A) +2)bE|X | Iypx)=1, + (1 + 91D EX* [px) <1y,
|Ege|?
<2(max(e*, e/A) +2) b2 EX2 Iypx =1y + 2(1 + 90 (BPEX I <))
<2(max(e*, e/A) +2)*B*EX Iypx =11 + 2(1 + 90e*) 20> E|X P Ipx <1y
O

PROOF OF LEMMA 6.3. Let
Vi) = Ee™i Iz, <,y J E™.

Consider the sequence of independent random variables {n;, 1 <i < n} with n;
having the distribution function V;(u). Denote by F;,(x) the distribution function
of the random variable (37 ;(n; — Eni))/(Z?lear(ni))l/z. In terms of the
conjugate method [cf. (4.9) of Petrov (1965)], we have

n n 00
P(Y&zy)=([]Ee e [ eI MG, (1),
(; ’ ) (,l:[l —m()=y)/o () !
By (6.10) and the Chebyshev inequality,

oo
/ e—ka (M)t an (t)
—(m@)=y)/o ()

2
>/ e—)\.O’()\.)[ an(t)
-2
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n 172
< 2( > Var(ni)> )

i=1

> (i —Em)

> e—ZAo(A) P (
i=1

> %B—ZAU(A)‘

This reduces to (6.9). [

PROOF OF LEMMA 6.4. When a <1, (6.11) is trivial. When a > 1, let

{ni, 1 <i <n} be an independent copy of {§;, 1 <i < n}. Then by the Chebyshev
inequality,
P (

n
> i
i=1

Zl_p(

n
Zm
i=1

1—

n
sszEjﬁ§4Da
i=1

n
> 2D,,) — P(Zni2 >4D,2,)

i=1

v

1
5

EN,
ENT.

Let {&;, 1 <i <n} be a Rademacher sequence independent of {&;, 1 <i < n} and
{ni, 1 <i <n}. Noting that

[l (£4) ) £

Zfi Zni
i=1 i=1
n n 1/2 n 1/2
Z@ﬂmZ4wﬁ(Z@—mﬁ —@yﬁ »am,
i=1

n
52Dm§jﬁ54D4
i=1

C :
i=1 i=1

Yot < 4D3}
i=1
> & —m)

i3
(3

D & —m)
i=1

n 1/2
za@Dn+(Z}&—mf) )—2D4
i=1

n 172
za(Z}a—mﬁ) }
i=1

and that {§ — n;, 1 <i < n} is a sequence of independent symmetric random
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variables, we have
" 172
Ao (50))
i=1 i=1
= P( Y6 za<4Dn + (Zsﬁ) ) Yo
i=1 i=1 i=1
n —1
<2D,,Y 0} < 4D,%>)

(=200

12
Z(él_nz >a(2($l_nz ) )
i=1

i=1
12
= a(Z(& — ;) ) )
i=1

Z &i (& — i)
as desired, where in the last inequality, we used the following inequality

i=1
" " 1/2 .
P( Zsixi 2a<2xi2> )523_“ /2
i=1

i=1
for any real numbers x;,1 <i <n and a > 0; see, for example, Ledoux and
Talagrand [(1991), page 90]. [

n
<2Dy,Y nf < 4D,%>

i=1

(r
(2
(2

Ee_
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