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KERSTAN’S METHOD FOR COMPOUND
POISSON APPROXIMATION

BY BERO ROOS

Universität Hamburg

We consider the approximation of the distribution of the sum of
independent but not necessarily identically distributed random variables by
a compound Poisson distribution and also by a finite signed measure of
higher accuracy. Using Kerstan’s method, some new bounds for the total
variation distance are presented. Recently, several authors had difficulties
applying Stein’s method to the problem given. For instance, Barbour, Chen
and Loh used this method in the case of random variables on the nonnegative
integers. Under additional assumptions, they obtained some bounds for the
total variation distance containing an undesirable log term. In the present
paper, we shall show that Kerstan’s approach works without such restrictions
and yields bounds without log terms.

1. Introduction. In this paper, we consider the sum Sn of n ∈ N = {1,2, . . . }
independent random variables X1, . . . ,Xn with values in R and

pi = P (Xi �= 0), Qi(B) = P (Xi ∈ B|Xi �= 0), i ∈ {1, . . . , n},
for Borel-measurable sets B ⊆ R \ {0}, and λ = ∑n

i=1 pi > 0. We shall always
assume that the condition

Qi =
∞∑

r=1

qi,r Ur, i ∈ {1, . . . , n},(A)

is valid, where, for all i and r , qi,r ∈ [0,1] such that
∑∞

r=1 qi,r = 1 and the Ur are
probability measures concentrated on R \ {0}. Clearly, condition (A) can trivially
be fulfilled if we let Ur = Qr for all r ∈ {1, . . . , n} and if we let qi,r = δi,r be the
Kronecker symbol. An important nontrivial example follows.

EXAMPLE 1. If R \ {0} can be decomposed into pairwise disjoint measurable
sets Ar, r ∈ N, and if, for fixed r ∈ N, the conditional distributions P (Xi ∈ ·|
Xi ∈ Ar) are independent of i and denoted by Ur , then condition (A) is valid with
qi,r = P (Xi ∈ Ar |Xi �= 0) for all i and r . One of the simplest nontrivial examples
is the one with Ur being the Dirac measure εxr at point xr ∈ R \ {0}, r ∈ N.
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Later we give an additional example, where all the Qi are possibly different
exponential distributions (see Example 2). Sometimes we shall assume the finite-
ness of

µi =
∞∑

r=1

rqi,r , i ∈ {1, . . . , n}.

Further, we set

qr = 1

λ

n∑
i=1

piqi,r , r ∈ N,

νi =
∞∑

r=1

q2
i,r

qr

, i ∈ {1, . . . , n}.

Here we define, for r ∈ N, q2
i,r/qr = 0 whenever qr = 0. Note that, if pi > 0, then

νi ≤ λ/pi is finite.
An important interpretation of the above setting comes from risk theory and is

called the individual model: here we consider a portfolio with n policies, producing
the nonnegative risks X1, . . . ,Xn, the so-called individual claim amounts. The
probability that risk i produces a claim is denoted by pi , and Qi is the conditional
distribution of the claim in risk i, given that a claim occurs in risk i. Further, Sn is
the aggregate claim in the individual model. Frequently, the distribution L(Sn)

of Sn is quite involved and should be approximated by a simpler distribution. Since
the pi are often assumed to be small, the compound Poisson distribution

CPo(λ,Q) =
∞∑

k=0

π(k,λ)Q∗k,

with π(k,λ) = e−λλk/k!, k ∈ Z+ = {0,1,2, . . .}, is a convenient candidate, where

Q = 1

λ

n∑
i=1

piQi =
∞∑

r=1

qrUr,

Q∗k , k ∈ N, denotes the k-fold convolution of Q with itself, and Q∗0 = ε0. In the
terminology of risk theory, CPo(λ,Q) is called the aggregate claims distribution
in the collective model. It is well known that CPo(λ,Q) can be obtained as the
distribution of a sum S′

n, which is derived from Sn by replacing Xi with a random
sum

∑Ni

j=1 Yi,j , where all Ni,Yi,j are independent, Ni is Poisson distributed
with unit mean and Yi,j has the same distribution as Xi . For general works
on mathematical risk theory, we refer the reader, for example, to the books by
Gerber (1979) and Hipp and Michel (1990). Note that, below, we do not need to
assume that the Xi are nonnegative.

In what follows, we are concerned with the accuracy of the approximation
of L(Sn) by CPo(λ,Q) and also by a related finite signed measure of second
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order. As measures of accuracy, we consider the total variation distance and the
Kolmogorov metric

dTV(R1, R2) = sup
A

|R1(A) − R2(A)|,
dKM(R1, R2) = sup

x∈R
|F1(x) − F2(x)|

between two finite signed measures R1 and R2 on R with distribution functions
F1 and F2. Here the supA is taken over all Borel-measurable sets A ⊆ R. In the
case that Ri is the distribution of a random variable Zi , we also write dTV(Z1,Z2)

and dKM(Z1,Z2) for the respective distances between R1 and R2. We often use
the abbreviation

dτ = dTV
(
L(Sn),CPo(λ,Q)

)
, dκ = dKM

(
L(Sn),CPo(λ,Q)

)
.

As mentioned above, we always suppose that condition (A) is valid. Further-
more, we sometimes suppose that some of the following conditions are true:

Ur = U∗r for all r ∈ N, U = U1,(B)

Ur = εr = ε∗r
1 for all r ∈ N,(C)

rqr ≥ (r + 1)qr+1 for all r ∈ N.(D)

We use a method originally due to Kerstan (1964), which was refined in Daley
and Vere-Jones [(1988), pages 297–299], Witte (1990) and Roos [(1996), Kapitel 8
and (1999a)]. In the latter paper, it was used to remove an undesirable log-term,
which appeared in Barbour’s (1988) upper bound for the total variation distance
between the generalized multinomial distribution and a multivariate Poisson law
with independent components and the same mean vector. The present paper shows
further advantages of Kerstan’s approach over Stein’s method in the compound
Poisson approximation. However, it should be mentioned that, in contrast to
Kerstan’s approach, Stein’s method remains easily applicable in the case of
dependent random variables.

The paper is structured as follows. Section 2 is devoted to a review of known
results under different conditions. In Section 3, we present our first- and second-
order results, the proofs of which are contained in Section 4.

2. Review of some known results.

2.1. The Khintchine–Doeblin inequality. The first inequality known for the to-
tal variation distance is generally valid and is essentially due to Khintchine (1933)
and Doeblin (1939) [see also Le Cam (1960), page 1183]. It reads as

dτ ≤
n∑

i=1

p2
i =: λ2.(1)
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If we consider large n, this bound is often greater than 1 and therefore useless,
since dτ is always bounded by 1. However, it turns out that, in special cases, the
order can be improved (see below).

2.2. The case Q1 = · · · = Qn = ε1. If Q1 = · · · = Qn = ε1 is the Dirac
measure at point 1, bounds of better order are possible [see, e.g., Prohorov (1953)
for the binomial case, Le Cam (1960), Kerstan (1964), Barbour and Hall (1984),
Deheuvels and Pfeifer (1986), Witte (1990) and Roos (1999b, 2001)]. One of the
most remarkable results is due to Barbour and Hall. By using Stein’s method, they
proved in their Theorems 1 and 2 that, in the case above,

λ2

32
min

{
1

λ
,1

}
≤ dτ ≤ λ2

1 − e−λ

λ
≤ λ2 min

{
1

λ
,1

}
,(2)

where dτ and λ2 min{λ−1,1} are of the same order. It is easy to show that,
generally, the constants of the upper bound in (2) cannot be reduced. But under
further assumptions, more can be done: in Roos [(1999b), formula (32)], we gave
the following sharpening of a result of Deheuvels and Pfeifer (1986):

∣∣∣∣
√

2πe

θ
dτ − 1

∣∣∣∣ ≤ C1 min
{

1,
1√
λ

+ θ

}
, θ = λ2

λ
,(3)

where C1 ∈ (0,∞) is an absolute constant. In the binomial case, this was shown by
Prohorov [(1953), Theorem 2] [see also Barbour, Holst and Janson (1992), page 2].
In particular, here we have dτ ∼ θ/

√
2πe as λ → ∞ and θ → 0. In other words, if

λ ≥ a > 0 is large and θ ≤ ε ≤ 1 is small, then dτ ≤ C2(a, ε)θ with C2(a, ε) being
nearly equal to 1/

√
2πe, which, in turn, is asymptotically optimal for a → ∞ and

ε → 0. There arose the problem of an inequality containing a sharp constant if we
only assume that θ is small. In Roos [(2001), formula (10)], we gave such a bound,
which reads as follows:

dτ ≤
(

3

4e
+ 7

√
θ(3 − 2

√
θ)

6(1 − √
θ)2

)
θ.(4)

Further, we showed that the “≤” in (4) can be replaced with “∼” if θ → 0 and
λ → 1, which indicates that the constant 3/(4e) in (4) is best possible. In particular,
if we assume only small θ ≤ ε ≤ 1, we have an inequality of the form dτ ≤ C3(ε)θ

with C3(ε) being nearly equal to 3/(4e), which, in turn, is the asymptotical optimal
constant for ε → 0. Note that, comparing the constants in (3) and (4), we see that
1/

√
2πe ≈ 0.24 does not differ much from 3/(4e) ≈ 0.28. It should be mentioned

that, for the Kolmogorov metric and other distances, results similar to (3) and (4)
can be found in the papers cited above.
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2.3. Results under further conditions. From a simple observation made by
Le Cam [(1965), page 187] and later used by Michel [(1987), page 167], it follows
that the upper bound in (2) remains valid in the case Q1 = · · · = Qn �= ε1. But if
the Qi are arbitrary and possibly unequal, an upper bound for dτ independent
of the Qi cannot have order better than min{λ2, 1} [see Le Cam (1965), page 188,
and Zaitsev (1989), Remark 1.1]. Barbour and Utev [(1999), Example 1.4]
observed that this statement even holds in the presence of condition (C). However,
for the weaker Kolmogorov metric, more can be done, as shown by Le Cam (1965)
and Zaitsev (1983). We only cite Zaitsev’s result: in the general case, the inequality

dκ ≤ C4pmax(5)

holds, where C4 ∈ (0, ∞) is an absolute constant and pmax = max1≤i≤n pi . Note
that, since θ = λ2/λ ≤ pmax, the upper bound in (5) has weaker order than θ . To
get bounds for dτ of better order than min{λ2,1}, Barbour, Chen and Loh [(1992),
Theorem 5] considered the case that conditions (C) and (D) are satisfied. In this
context, we have qr = Q({r}) for r ∈ N, Q1, . . . ,Qn are concentrated on N
and µi is the mean of Qi . In particular, their results [see also Barbour and
Utev (1999), Proposition 1.5] imply that, in the case above, the inequality

dτ ≤ H(λ,Q)

n∑
i=1

p2
i µ2

i(6)

holds and H(λ,Q) is a quantity, which was derived with the help of Stein’s method
and satisfies

H(λ,Q) ≤ min
{

1,
1

λ(q1 − 2q2)

(
1

4λ (q1 − 2q2)
+ log+(

2λ(q1 − 2q2)
))}

.(7)

Therefore, if conditions (C) and (D) hold and if the Qi have bounded means
and q1 − 2q2 is bounded away from 0, then dτ is of order O(λ2 min{λ−1(1 +
log+ λ),1}). Barbour and Xia [(1999), Theorem 2.5; see also Barbour and
Chryssaphinou (2001), formula (2.21)] have shown that, if condition (C) is valid
and if

ϑ =
∞∑

r=2

r(r − 1)qr

µ
<

1

2
, µ =

∞∑
r=1

rqr,

then

H(λ,Q) ≤ 1

(1 − 2ϑ)λµ
.(8)

In Theorem 2 of the present paper, we will show substantial improvements of such
inequalities under weaker assumptions. In particular, this theorem implies that, in
the presence of condition (B), we have

dτ = O

(
n∑

i=1

p2
i min

{
µ2

i

λq1
,
νi

λ
,1

})
(9)
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and that, if additionally condition (D) is valid, the “q1” in the denominator of
the right-hand side of (9) can be removed. Note that (1 − 2ϑ)µ ≤ 2q1 − µ ≤ q1,
which shows that, in fact, the order in (9) is better than that of (6) together
with (8). Barbour and Utev [(1999), page 93] pointed out that, if condition (D)
is not satisfied, the best inequality known would be [see also Barbour, Chen and
Loh (1992), Theorem 4]

H(λ,Q) ≤ eλ min
{

1

λq1
,1

}
;(10)

note that the right-hand side of (10) is bounded away from 0, which shows that,
under the present assumptions, the method of Barbour, Chen and Loh (1992) leads
to unsatisfying results. For the Kolmogorov metric, Barbour and Xia [(2000),
Proposition 1.1] proved that, if both conditions (C) and (D) are satisfied, then

dκ ≤ min
{

1

λq1 + 1
,

1

2

} n∑
i=1

p2
i µ

2
i .(11)

Since dκ ≤ dτ , our Theorem 2 leads to a result better than (11) if we take into
account only the order of the bounds.

See Barbour and Utev (1998, 1999) for refinements of the method given in
Barbour, Chen and Loh (1992) and for other somewhat complicated estimates
of dτ and dκ . Further contributions on compound Poisson approximation, came,
for example, from Hipp (1985), Čekanavičius (1997, 1998) and Vellaisamy and
Chaudhuri (1999).

3. Main results. Recall that, as mentioned above, we always assume that
condition (A) holds.

3.1. First-order results. The following theorems concern the total variation
distance dτ . Some notation is necessary. For x ∈ (0,∞) and z ∈ C, let

g(z) = 2
ez

z2
(e−z − 1 + z),

α1(x) =
n∑

i=1

g(2pi)p
2
i min

{
xνi

λ
,1

}
,

β1 =
n∑

i=1

p2
i min

{
νi

λ
,1

}
.

The following bounds are direct consequences of Theorem 1 in Roos (1999a) and
are valid without assuming further constraints.



1760 B. ROOS

THEOREM 1. We have

dτ ≤ α1(2−3/2)

1 − 2eα1(2−3/2)
if α1(2

−3/2) <
1

2e
,(12)

dτ ≤ 8.8β1.(13)

REMARK 1. (a) Theorem 1 also holds in more general situations, where,
for example, the Ur are multidimensional (or even more general) measures. All
that we need for a proof is the finite operator norm applicable to convolutions of
operators; see Le Cam (1965).

(b) For practical usage, (12) is often sharper than (13), which, in turn, has
theoretical value.

(c) We have

1 ≤ max
1≤i≤n

g(2pi) ≤ g(2pmax) ≤ g(2) ≤ 4.1946 and lim
ε↓0

g(ε) = 1.

(d) Unfortunately, the Khintchine–Doeblin bound (1) is not contained in the
bounds of Theorem 1. From (13), it only follows that dτ ≤ cλ2 with c = 8.8. But if
we consider the case of small λ2, it follows from (c) that (12) contains the bound
with c ≈ 1.

The next theorem requires further notation: For x ∈ (0,∞), let

α2(x) =
n∑

i=1

g(2pi)p
2
i min

{
xµ2

i

λ
,

νi

23/2λ
,1

}
,

β2(x) =
n∑

i=1

p2
i min

{
xµ2

i

λ
,
νi

λ
,1

}
.

THEOREM 2. Let c1 = 3/(4e). In the presence of condition (B), we have

dτ ≤ α2(c1q
−1
1 )

1 − 2eα2(c1q
−1
1 )

if α2(c1q
−1
1 ) <

1

2e
,(14)

dτ ≤ 8.8β2(q
−1
1 ).(15)

In the presence of (B) and (D),

dτ ≤ α2(e
−1)

1 − 2eα2(e−1)
if α2(e

−1) <
1

2e
,(16)

dτ ≤ 9.2β2(1).(17)

REMARK 2. (a) Generally, in (14), the constant c1 cannot be reduced. Indeed,
if condition (C) holds, Q1 = · · · = Qn = ε1, pmax → 0 and λ → 1, then we obtain



COMPOUND POISSON APPROXIMATION 1761

α2(cq
−1
1 )/(1 − 2eα2(cq

−1
1 )) ∼ cλ2 for c ∈ (0, c1], and, in view of Roos [(2001),

Theorem 2], we see that dτ ∼ c1λ2 (see also Section 2.2).
(b) The inequalities of Theorem 2 are substantial improvements of the bounds,

which can be derived from the results of Barbour, Chen and Loh (1992) and
Barbour and Xia (1999); see (6)–(8).

EXAMPLE 2. For i ∈ {1, . . . , n}, let Qi = E(ti) be an exponential distribution
with parameter ti ∈ (0,∞). Let a > tmax = max1≤i≤n ti be arbitrary. Then it is
easily shown that conditions (A) and (B) are satisfied with

qi,r = (1 − bi)
r−1bi, bi = ti

a
, Ur = (E(a))∗r .

Indeed, the characteristic functions of Qi and
∑∞

r=1 qi,r (E(a))∗r coincide.
Using (15), it now follows that, if tmax is bounded and tmin = min1≤i≤n ti is
bounded away from 0, then dτ = O(λ2 min{λ−1,1}). In particular, by letting
a ↓ tmax, we obtain

dτ ≤ 8.8
n∑

i=1

p2
i min

{
t3
max

t2
i

∑n
j=1 pj tj

,1
}

≤ 8.8λ2 min
{

1

λ

(
tmax

tmin

)3

,1
}
.(18)

If 2tmin > tmax, then, as is easily shown, condition (D) is satisfied and (17) leads to

dτ ≤ 9.2
n∑

i=1

p2
i min

{
t2
max

λt2
i

,1
}

≤ 9.2λ2 min
{

1

λ

(
tmax

tmin

)2

,1
}
,

which is, under the present assumptions, of the same order as (18). Note that, in
this example, it is difficult to evaluate the νi , so that we did not use them in the
bounds above.

3.2. Second-order results. The following theorems are devoted to the second-
order approximation of L(Sn) by the finite signed measure

CPo2(λ,Q) =
(
ε0 − 1

2

n∑
i=1

p2
i (Qi − ε0)

∗2

)
∗ CPo(λ,Q).(19)

We shall give bounds for

d ′
τ := dTV

(
L(Sn),CPo2(λ,Q)

)
.

Let

h(z) = 3(g(z) − 1)

2z
, z ∈ C,

γ1 =
n∑

i=1

h(2pi)p
3
i min

{
0.46

(
νi

λ

)3/2

,1
}
.
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The next theorem is generally valid and follows from Theorem 2 in Roos (1999a).

THEOREM 3. We have

d ′
τ ≤ 4

3
γ1 + (α1(1))2

(
1 + 0.82α1(1)

1 − 2−1/2α1(1)e

)
,

where we assume that α1(1) < 21/2e−1.

For x ∈ (0,∞), let

γ2(x) =
n∑

i=1

h(2pi)p
3
i min

{
xµ3

i

λ3/2 ,0.46
(

νi

λ

)3/2

,1
}
.

THEOREM 4. If condition (B) is valid, then

d ′
τ ≤ 4

3
γ2

(
0.31q

−3/2
1

) + 4(α2(c1q
−1
1 ))2

1 − 2eα2(c1q
−1
1 )

,(20)

where we suppose that α2(c1q
−1
1 ) < 1/(2e) and c1 is defined in Theorem 2. In the

presence of (B) and (D),

d ′
τ ≤ 4

3
γ2(0.41) + 4.2(α2(e

−1))2

1 − 2eα2(e−1)
if α2(e

−1) <
1

2e
.(21)

The estimates in Section 4.2 and an inequality in Roos [(1999a), page 132] yield
some bounds for the total variation norm (for a definition, see Section 4.1) of the
finite signed measure CPo2(λ,Q):

LEMMA 1. In the general case,

‖CPo2(λ,Q)‖ ≤ 1 + 2β1.

If condition (B) is valid, then

‖CPo2(λ,Q)‖ ≤ 1 + 2β2(q
−1
1 ).

If conditions (B) and (C) are satisfied, then

‖CPo2(λ,Q)‖ ≤ 1 + 2β2(1).

REMARK 3. With the help of Lemma 1, one can remove the singularities in
the upper bounds of Theorems 3 and 4. For example, in the context of Theorem 3,
an absolute constant c ∈ (0,∞) can easily be found such that d ′

τ ≤ (4/3)γ1 +
c(α1(1))2. Similar statements are possible concerning the bounds in Theorem 4.
Unfortunately, the constants involved are quite large, so that we do not state them
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explicitly. Note that Čekanavičius [(1998), proof of Corollary 3.1] has shown that,
in the general case,

d ′
τ ≤ 2λ2

2 + 8
3

n∑
i=1

p3
i .

It is easily seen that a bound of this order is also contained in the estimates of
Theorems 3 and 4.

Using the bounds for d ′
τ and a separate consideration of the leading term in

Kerstan’s expansion (see below), it is possible to derive a further interesting first-
order result.

THEOREM 5. In the presence of (B) and (D),

dτ ≤ d ′
τ +

n∑
i=1

p2
i min

{
µ2

i E
(

Y + 2
2

)−1/2
,µ2

i e
−min{λ,2q−1

1 }, νi

23/2λ
,1

}
,(22)

where Y is a random variable with distribution CPo(λ,
∑∞

r=1 qrεr).

The bound in (22) can be further estimated, by using the following simple
inequalities:

E
(

Y + 2
2

)−1/2
≤ √

2 E
1

1 + Y
≤ √

2
1 − e−λ

λ
.(23)

4. Proofs.

4.1. Kerstan’s method. We use the following notation. Products and powers
of finite signed measures on R are understood in the sense of convolution. For a
finite signed measure R on R with Hahn–Jordan decomposition R = R+ −R−, we
define the total variation norm of R by ‖R‖ = (R+ +R−)(R). We shall repeatedly
use the easy inequality

‖R1R2‖ ≤ ‖R1‖‖R2‖
for two finite signed measures R1 and R2. The proofs of our results are based on a
slight modification of Kerstan’s expansion [cf. Roos (1999a)], which reads as

L(Sn) − CPo(λ,Q) =
(

n∏
i=1

(Li + ε0) − ε0

)
CPo(λ,Q)

=
n∑

j=1

∑
1≤i(1)<···<i(j)≤n

j∏
s=1

(
Li(s) CPo

(
λ

j
,Q

))
,

(24)
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where, for i ∈ {1, . . . , n},
Li = (

ε0 + pi(Qi − ε0)
)

exp
(−pi(Qi − ε0)

) − ε0

= −p2
i

2
(Qi − ε0)

2g
(
pi(ε0 − Qi)

)
.

(25)

Applying the polynomial theorem, we are now led to

dτ = 1

2
‖L(Sn) − CPo(λ,Q)‖

≤ 1

2

n∑
j=1

∑
1≤i(1)<···<i(j)≤n

j∏
s=1

∥∥∥∥Li(s) CPo
(

λ

j
,Q

)∥∥∥∥

≤ 1

2

n∑
j=1

1

j !
(

n∑
i=1

∥∥∥∥Li CPo
(

λ

j
,Q

)∥∥∥∥
)j

.

(26)

In what follows, we are concerned with suitable norm estimates.

4.2. Norm estimates.

LEMMA 2. Let t ∈ (0,∞), i ∈ {1, . . . , n}, and c1 be as in Theorem 2. Then, in
the presence of condition (B), we have

‖(U − ε0)CPo(t,Q)‖ ≤
√

2

tq1e
,(27)

‖(U − ε0)
2 CPo(t,Q)‖ ≤ 3

tq1e
,(28)

‖(U − ε0)
3 CPo(t,Q)‖ ≤ 3√

2

(
3

tq1e

)3/2

,(29)

‖(Qi − ε0)
2 CPo(t,Q)‖ ≤

√
2νi

t
,(30)

‖(Qi − ε0)
3 CPo(t,Q)‖ ≤ 1√

2

(
3νi

t

)3/2

,(31)

‖Li CPo(t,Q)‖ ≤ 2g(2pi)p
2
i min

{
c1µ

2
i

tq1
,

νi

23/2t
,1

}
.(32)

If, additionally, t ≥ pi supr∈N qi,r/qr , then

‖Li CPo(t,Q)‖ ≤ 2p2
i .(33)
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PROOF. Inequalities (27) and (28) follow from Roos [(2001), formulas (27)
and (29)] and the observation that, for q1 < 1,

CPo(t,Q) = CPo(tq1,U)CPo
(
t (1 − q1), Q̃

)
, Q̃ =

∞∑
m=2

qm

1 − q1
Um.

The proof of (29) is easily done with the help of (27), (28) and the inequality

‖(U − ε0)
3 CPo(t,Q)‖ ≤

∥∥∥∥(U − ε0)CPo
(

t

3
,Q

)∥∥∥∥
∥∥∥∥(U − ε0)

2 CPo
(

2t

3
,Q

)∥∥∥∥.
The bounds (30) and (31) follow from Roos [(1999a), formulas (19) and (26)] and
the simple fact that, for j ∈ Z+,

‖(Qi − ε0)
j CPo(t,Q)‖ = lim

k→∞

∥∥∥∥∥
(

k∑
r=1

qi,r (Ur − ε0)

)j

CPo
(
t(k),Q(k)

)∥∥∥∥∥,
where

t(k) = t

k∑
r=1

qr, Q(k) =
k∑

r=1

tqr

t(k)
Ur .(34)

Inequality (32) is an immediate consequence of (25), (28), (30) and the represen-
tation

Qi − ε0 =
( ∞∑

k=0

∞∑
r=k+1

qi,rU
k

)
(U − ε0).(35)

The proof of (33) is similar to the one of (23) in Roos (1999a) and is therefore
omitted. �

REMARK 4. (a) If U = Q = ε1, CPo(t,Q) is a Poisson distribution with
mean t and it follows from Proposition 4 of Roos (1999b) that, in this context,
we have, for t → ∞ and fixed j ∈ Z+,

‖(U − ε0)
j CPo(t,Q)‖ ∼ 1

tj/2

∫
R

∣∣∣∣ 1√
2π

dj

dxj
e−x2/2

∣∣∣∣dx.

In particular, here the norm term is of order O(t−j/2) for t → ∞. But in the general
case, this need not be true for j ∈ N. For example, if U = ε1 and Q = εj+1, we
easily get ‖(U − ε0)

j CPo(t,Q)‖ = 2j . This explains why the “q1” appears in the
denominator of some upper bounds given in Lemma 2.

(b) From (33), it follows that ‖Li CPo(λ,Q)‖ ≤ 2p2
i .

In the presence of conditions (B) and (D), we shall give norm estimates better
than (27)–(29). For the proof, we need the following lemma.
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LEMMA 3. Let t ∈ (0,∞). If conditions (B) and (D) are satisfied, then, for
all η ∈ (0,1), there exists a distribution Rη on R such that the decomposition

CPo(t,Q) = CPo
(
t,Q(η)

)
Rη, Q(η) =

∞∑
r=1

qr

(
ε0 + η(U − ε0)

)r
is valid.

This lemma is essentially due to Steutel and van Harn [(1979), Lemma 1.2 and
Theorem 2.2], who investigated the case U = ε1. Under this assumption, the above
property of CPo(t,Q) is called discrete self-decomposability. The generalization
of the statement by Steutel and van Harn to arbitrary distributions U is trivial.

LEMMA 4. Let t ∈ (0,∞) and j ∈ Z+. Further, let Y denote a random
variable with distribution L(Y ) = CPo(t,

∑∞
r=1 qrεr). We assume that (B) and (D)

are satisfied. Then

‖(U − ε0)
j CPo(t,Q)‖ ≤ 2jE

(
Y + j

j

)−1/2
.(36)

PROOF. From Lemma 3, we obtain, for all η ∈ (0,1),

‖(U − ε0)
j CPo(t, Q)‖

≤ ∥∥(U − ε0)
j CPo

(
t,Q(η)

)∥∥
≤ E

∥∥(U − ε0)
j (

ε0 + η(U − ε0)
)Y ∥∥

≤ 1

(η(1 − η))j/2
E

(
Y + j

j

)−1/2
,

where the latter inequality follows from Roos [(2000), formula (37)]. The proof
of (36) is completed by letting η = 1/2. �

REMARK 5. From (36) and (23), we derive an inequality better than (28): if
(B) and (D) are valid and t ∈ (0,∞), then

‖(U − ε0)
2 CPo(t,Q)‖ ≤ 4

√
2

1 − e−t

t
.(37)

In particular, here the “q1” does not appear in the denominator. In what follows,
we show that (37) can be further improved. We need the following lemma due to
Steutel and van Harn [(1979), Lemma 1.2 and Theorem 2.3].

LEMMA 5. Let t ∈ (0,∞). If the conditions (C) and (D) are satisfied, then
CPo(t,Q) is discrete unimodal. This means that, if am = CPo(t,Q)({m}) for
m ≥ −1, then the sequence (am−1 − am)m∈Z+ changes sign at most once.
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LEMMA 6. Let the conditions of Lemma 4 be valid and i ∈ {1, . . . , n}. Then:

‖(U − ε0)
j+1 CPo(t,Q)‖ ≤

(
2(j + 1)

te

)(j+1)/2

,(38)

‖Li CPo(t,Q)‖ ≤ 2g(2pi)p
2
i

µ2
i

te
.(39)

Further, we have

‖(U − ε0)
j+1 CPo(t,Q)‖ ≤ 2j+1 exp

(
−min

{
t,

j + 1

q1

})
.(40)

PROOF. Due to a simple coupling argument, we may assume that condi-
tion (C) is valid. By Lemma 5, it follows that, here,

‖(U − ε0)
j+1 CPo(t,Q)‖

≤
∥∥∥∥(U − ε0)CPo

(
t

j + 1
,Q

)∥∥∥∥
j+1

= 2j+1
(

sup
m∈Z+

CPo
(

t

j + 1
,Q

)
({m})

)j+1

≤
(

2(j + 1)

te

)(j+1)/2

,

where the latter bound is a consequence of

sup
n∈Z+

π

(
n,

t

j + 1

)
≤

(
j + 1

2te

)1/2

, sup
m∈Z+

∞∑
n=0

Qn({m}) ≤ 1.(41)

The second inequality in (41) follows from the fact that, if T1, T2, . . . are
independent and identically distributed random variables with L(T1) = Q, then,
according to (C), we may assume that Ti ≥ 1, i ∈ N, and therefore, for m ∈ Z+,

∞∑
n=0

Qn({m}) =
∞∑

n=0

P

(
n∑

i=1

Ti = m

)
= P

( ∞⋃
n=0

{
n∑

i=1

Ti = m

})
≤ 1.

Hence, (38) is shown. The bound (39) follows from (25), (35) and (38). To
prove (40), it suffices to consider only the case j = 0 and 0 < tq1 ≤ 1, since

‖(U − ε0)
j+1 CPo(t,Q)‖ ≤

∥∥∥∥(U − ε0)CPo
(

min
{

t

j + 1
,

1

q1

}
,Q

)∥∥∥∥
j+1

.

Let ϕ1(z) = exp(t (
∑∞

r=1 qrz
r − 1)) and ϕ2(z) = (z − 1)ϕ1(z), |z| ≤ 1, denote the

generating functions of CPo(t,Q) and (U − ε0)CPo(t,Q), respectively. In view
of

d

dz
ϕ2(z) = ϕ1(z)

(
1 − tq1 +

∞∑
r=1

(
rqr − (r + 1)qr+1

)
zr

)
,
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we see that, since tq1 ≤ 1, the power series expansion of the derivative of ϕ2(z)

has only nonnegative coefficients. Therefore, in this case, we have ϕ2(z) = −e−t +∑∞
m=1 Bmzm, where the Bm are all nonnegative. This yields

‖(U − ε0)CPo(t,Q)‖ = ϕ2(1) + 2e−t = 2e−t

and completes the proof of (40). �

PROOF OF LEMMA 1. The assertions easily follow from (19), (28), (30), (35),
(38) and an inequality in Roos [(1999a), page 132]. �

4.3. Proofs of the theorems.

PROOF OF THEOREM 2. Using (26), (32) and Stirling’s formula, (14) is easily
shown. To prove (15), we use (26), (32) and (33) and obtain

dτ ≤ min
{
f1

(
g(2)β2(q

−1
1 )

)
,1

}
,

where

f1(x) = x

23/2 + x2 + 1

2

∞∑
j=3

1

j !
(

jx√
2

)j

, x ≥ 0.

If x1 ∈ (0,∞) denotes the unique positive solution of f1(x) = 1, then we
obtain dτ ≤ g(2)β2(q

−1
1 )/x1. Numerical computations yield 0.477 < x1 < 0.478

giving (15). The proofs of (16) and (17) are analogously shown by using (26), (32),
(33) and (39). In particular, in the presence of (B) and (D), we obtain (17) in the
following way:

dτ ≤ min
{
f2

(
g(2)β2(1)

)
,1

} ≤ g(2)

x2
β2(1) ≤ 9.2β2(1),

where

f2(x) = x

e
+ x2 + 1

2

∞∑
j=3

1

j !
(

2jx

e

)j

, x ≥ 0,

and x2 ∈ (0.459,0.460) is the unique positive solution of f2(x) = 1. This
completes the proof of the theorem. �

PROOF OF THEOREM 4. To prove the second-order results, we use the
equality

L(Sn) − CPo2(λ,Q) = 1

3

n∑
i=1

p3
i h

(
pi(ε0 − Qi)

)
(Qi − ε0)

3 CPo(λ,Q)

+
n∑

j=2

∑
1≤i(1)<···<i(j)≤n

j∏
s=1

(
Li(s) CPo

(
λ

j
,Q

))
,

(42)
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which follows from (19) and (24). Using (42), we get

d ′
τ ≤ 1

6

n∑
i=1

h(2pi)p
3
i ‖(Qi − ε0)

3 CPo(λ,Q)‖

+ 1

2

∞∑
j=2

1

j !
(

n∑
i=1

∥∥∥∥Li CPo
(

λ

j
,Q

)∥∥∥∥
)j

.

Considering the summand for j = 2 separately, (20) is immediately shown by
using (29), (31), (32) and (35). Inequality (21) is analogously shown by using
(35), (31), (32), (38), (39) and (42). Theorem 4 is proved. �

Theorem 5 can easily be proved by using (19), (30), (35), (36) and (40).

PROOF OF THEOREM 1. First, let us mention that, for arbitrary k ∈ N,

dτ ≤ dTV(Sn, S
(k)
n ) + dTV

(
L(S(k)

n ),CPo(λ(k),Q(k))
)

+ dTV
(
CPo(λ(k),Q(k)),CPo(λ,Q)

)
,

where λ(k) and Q(k) are defined as in (34) (with t = λ) and S
(k)
n is the sum of

independent random variables X
(k)
1 , . . . ,X

(k)
n with distributions

L(X
(k)
i ) = ε0 +

k∑
r=1

piqi,r (Ur − ε0), i ∈ {1, . . . , n}.

It is not difficult to show that

dTV(Sn, S
(k)
n )

k→∞−→ 0, dTV
(
CPo(λ(k),Q(k)),CPo(λ,Q)

) k→∞−→ 0.

Further, from Roos [(1999a), Theorem 1] and a simple coupling argument, it
follows that

lim
k→∞dTV

(
L(S(k)

n ),CPo(λ(k),Q(k))
) ≤ α1(2−3/2)

1 − 2eα1(2−3/2)
,

lim
k→∞dTV

(
L(S(k)

n ),CPo(λ(k),Q(k))
) ≤ 8.8β1,

where, for the first inequality, we assume that α1(2−3/2) < 1/(2e). This leads to
(12) and (13). �

The proof of Theorem 3 is similar to the preceeding one and is therefore omitted.
Note that here we used Theorem 2 of Roos (1999a).
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