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In mathematical terms, an evolution is extraordinarily simple to state:

(1) &= ¢(x).

In the absence of any context for (1), little of value can be added. Any
situation in which ¢ is random can make a rightful claim for being called a
random evolution. As before, unless we have some additional structure, little
in the way of analysis can be performed.

On the other hand, large areas in the theory of probability and random

processes begin with a suitable form and interpretation of ¢. Perhaps the
most well known choice is
(2) d(x,w) =b(x) +o(x)w.
Here, x and 5(x) are vectors of the same dimension, say n, and w is a vector
perhaps of a second dimension, say d. Finally, o(x) is an n X d matrix. We
begin the discussion of stochastic differential equations by inserting a d-
dimensional white noise for w. Nowadays, we study two interpretations of
(2): the Ito formulation and the Stratonovich formulation. Excellent books
from all four corners of the globe have been written on stochastic differential
equations.

A second choice for ¢ is ¢,(x,) = A, x,. In this situation, the index ¢ for the
random process is frequently the non-negative integers, and the dot is taken
to be the difference

(3) Xy = Xyppq — Xy
Thus, we are studying the product of random square matrices
(4) X1 = (A, +1) - (Ag +1)x,.

For the case that {A,; ¢t € N} forms a stationary sequence of random matrices,
this line of investigation has lead us to an ergodic theory of matrix products
and, in particular, to the Oseledec multiplicative ergodic theorem with its
companion Lyapunov exponents.

The probabilistic techniques used in the development of a theory of
stochastic differential equations and a theory of random matrix products are
quite distinct. However, these two topics cover common ground in their
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respective generalizations to stochastic flows and to compositions of random
transformations.

When Griego and Hersh (1969) introduced the term random evolution,
they placed the subject in a context similar to control theory by making the
choice of ¢ having the form ¢(x,v). (This, of course, did not preclude the
development of the theory of stochastic control.) Unlike control theory, the
process v is not selected to control the process x with a view toward
optimizing some functional of x. However, by the structure of the evolution
equation, the effect of the random process v is to control the behavior of x.
Consequently, we sometimes refer to v as the driving process and to x as the
driven process.

A simple example of a random evolution results by taking ¢(x,v) = v and
letting v to be a two-state Markov chain with state space {v,,v,} € R. The
chain remains in either of its two states for an exponential length of time,
parameter A. This example was introduced by Goldstein (1951) and popular-
ized by Kac (1956), who used this telegraph process to give a stochastic
representation formula for the solution to the telegraph equation.

Beginning in Chapter 0 with this example, Mark Pinsky presents his
rather personal view on the development of the subject. Because the author
has made regular substantial contributions to the subject for more than two
decades, this point of view is a privileged one. The aim of Chapter 0 is a
description of the telegraph process by explicit computation. Pinsky’s method-
ology is largely analytical, using the Fourier and Laplace transforms and
techniques from differential equations and linear algebra. For example, he
takes the Fourier transform of the telegraph equation to find explicit expres-
sions for the distribution function of (x,,v,) in terms of Bessel functions. He
computes the Laplace transform of the distribution of the first exit time from
a set. If v is a Markov process having generator @,, then the pair (x,v) is
also a Markov process having generator

(5) L=¢(x,0) V, +Q,.

With this motivation, Pinsky makes use of the techniques available from the
theory of analytical semigroups by using, for example, the properties of the
resolvent to verify the semigroup property of the telegraph process.

When the driving process v is fluctuating rapidly compared to the fluctua-
tions of x, the emphasis moves to a study of the asymptotic properties of the
random evolution. For the analog to the law of large numbers, we consider

(6) x; = d)(‘xtg’vt/s)

in the limit as ¢ — 0. If the appropriate centering conditions hold, the analog
to the central limit theorem uses a more rapid time scaling for the driving
process:

1
(7) X = ;(f)(xf,vt/gz).
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Pinsky establishes these limit theorems for the telegraph process in Theo-
rem 0.3.1 by verifying a Feynman—Kac formula and taking limits for matrix
eigenvalues obtained by explicit computation.

In Chapter 1, we consider the case in which v is a finite-state irreducible
Markov chain, ¢ is a function of v and x, = 0. Thus, x is a continuous
additive functional of v,

(8) x, = [Ot¢(vs) ds.

The techniques and aims of Chapter 1 are similar to those in Chapter O.
Pinsky adds a renewal argument to the Laplace transform calculation to
establish the Kolmogorov forward equation. The asymptotic theory is now
based on estimates of the eigenvalue and eigenvector for the matrix @ + £¢
in a neighborhood of ¢ = 0.

The proof of the central limit theorem alludes to a method involving
perturbed test functions that will be more completely described in Chapter 4.
To introduce this method, note that if L®, £ > 0, and L generate Markov
processes and L°f — Lf suitably as ¢ — 0 for a sufficiently large class of
test functions f, then we can conclude that the semigroups associated to
L? converge to the semigroup associated to L. Consequently, the finite-
dimensional distributions of the corresponding Markov processes converge.

This method has little chance of success in the case of random evolutions
because L° is an operator on functions of x and v, whereas the desired
generator L is frequently an operator on functions of x only. The effects of
the Markov process v appear in L via some of its averaging properties. We
try to achieve the same result by choosing perturbations f? of f so that
f¢—f and L°f° converge as & — 0. For the situation described in (7), the
generator of the Markov process (x/, v, ,,2) is

1 1
(9) L8=;¢(x’v)'vx+?Qv'
If we choose
(10) f(x,v) =f(x) + eh(x,v) -V, f(x),
then
(11) Lefe(x,v) = ¢(x,v) - Vo(h(x,v) -V, f(x))
provided that
(12) Q,h(x,v) = —¢(x,v).

For the situation in Chapter 1, ¢ and hence A are functions of v alone.
Thus

2

(13) L7 (,0) = 6(2) - h(0) g ().
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The process v is a finite-state irreducible Markov process and hence has a
unique stationary distribution 7. If (¢(v)m(dv) = 0, then (12) has a solution.
Call the solution operator H. Now

(14) Lfe(x,v) = ¢(v) - Hd>(v) f( )-

The final step involves justifying the averaging over the stationary distribu-
tion 7 to obtain

(15) Lf(x) = ([ 6(0) - Ho(v)m(dv) A,

Thus the limit process is a Brownian motion without drift.
For the symmetric telegraph process v, = —v;. Take A(v) =v/2) to
obtain Qh(v) = —v. Then

2

1 d? o 92
(16) Lf*(x,0) = v v f(x) = 5o f(x).

The chapter concludes with a criterion for recurrence of x, and a general-
ization to additive functionals ¢ having jumps.

The topic of Chapter 2 is general random evolutions. The ingredients are a
finite-state irreducible Markov chain v on {1,2,..., N}, and a set of genera-
tors {A, A,,..., Ay} with their corresponding semigroups {7, T, ..., Ty}
The random evolution equation under investigation is

(17) x, =Au,xt

To set the stage for this abstract setting, the author begins the chapter with a
brief, but general, introduction on semigroups of operators.

Let 7 < 75 < *-- be the jump times of v and let N(¢) = max{n: 7, < t}.
Pinsky bases his analysis on the multiplicative operator functional

M(s, t] = Tv(TN(,))(t - TN(t)) TU(TN(S))(TN(S)Jrl ~ TNGs))

(18)
XTyryeyy- o (Tavs) = 8)-

(Note that the order of the products is reversed here from the convention
chosen in the lecture notes.)

The proof of the limit theorems in this general context uses results on the
convergence of resolvents. The chapter also includes the case of discontinuous
random evolutions and places the concept of a multiplicative operator func-
tional in the context of the martingale problem.

In moving from the two-state velocity model to the operator based random
evolution, the author concludes his general investigation on random evolu-
tions. For a more extensive treatment on Markov processes and the conver-
gence of random processes, see the book by Ethier and Kurtz (1986). For more
on random evolutions, consult the monographs and papers of the Ukrainian
school. The book by Koroliuk and Svishchuk (1995) is a good place to start.
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The lecture notes conclude with three chapters that serve as introductions
to applications of the ideas in random evolutions—the linear Boltzmann
equation, isotropic transport on manifolds and the stability analysis of a
linear system of stochastic equations with a jump Markov process serving as
the driving process. Because the purpose has shifted from instruction to
overview, these latter chapters are less self-contained. Mark Pinsky has made
significant contributions to each of the areas.

The linearized Boltzmann equation has the form

oh oh
(19) — v —— = V(U)ng[k(v,n)h(t, x,m) = h(t, x,0)] p(dn).

Let v be a jump Markov process with generator

(20) Lf(v) = v() [ (F(n) = F(v))p(dn)
and define the multiplicative operator functional

(21) M(s’t] = ]._[ k(v,—,v,4)-
s<u<t
Chapter 3 develops the apparatus to prove the stochastic representation
formula
Uy = v}

for the solution to (19) and concludes with an asymptotic analysis of the
linearized Boltzmann equation.

Chapter 4 begins with the Rayleigh model of random flight. In this Markov
model, the author chooses a complete Riemannian manifold for the state
space of the driven process. The driving process is a jump Markov process.
The time between jumps is exponential with parameter 1. The state between
jumps is a direction chosen according to a rotationally invariant distribution
on the space of unit vectors. The driven process is motion at speed 1 along the
geodesic determined by the driving process. Under central limit theorem
scaling, Pinsky shows, using the perturbed test function method, that the
resolvents of these random flight models converge to the resolvents of Brown-
ian motion on the manifold. Borrowing from a Lyapunov method, he then
goes on to give two results on the recurrence properties of this limit process
determined by a condition on the curvature of the manifold.

The concluding chapter focuses on the detailed analysis of the two-
dimensional system,

(23) x, = Ax, + ¢F(v,)Bx,,

(22) h(t, x,v) =E[M(O,t]h(0,x—ftvS ds,vt)
0

where v is a finite irreducible Markov chain on {1,2,..., N} having station-
ary distribution 7. The “noise” is centered, that is, [F(v)7(dv) = 0 and the
noise term parameter £ is small.
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Pinsky notes that the small noise analysis in (23) can be separated into
three cases. The harmonic oscillator is the case in which the 2 X 2 matrix A
has complex conjugate eigenvalues. The free particle and saddle point models
correspond to cases in which A has real eigenvalues which are, respectively,
repeated and distinct.

Call the radial process p and the angular process 6. Pinsky’s principle aim
is the determination of the Lyapunov exponent

(24) tim 208
t1e L

Because the equation is linear, the pair (6,v) is a Markov process. For
determining the Lyapunov exponent, this property suggests a trial function of
the form f(p, 6,v) = p + f(0,v). The analysis proceeds with expansion of f
in powers of £. A comparison is then made of the Lyapunov exponent of this
system and an analogous system stated as a linear stochastic differential
equation in Stratonovich form.

The case of a free particle is a nilpotent system. A scaling argument shows
that the appropriate power series expansion for the Lyapunov exponent is in
powers of £2/3, In this case, Pinsky uses the analogous stochastic differential
equation to approximate the Lyapunov exponent in (23).

Overall, the lectures notes provide a good introduction to the subject of
random evolutions. I was able to read each of the six lectures in a single
sitting and gained from this reading a historical perspective on the develop-
ment of stochastic analysis. Unfortunately, the notes suffer from having a few
too many typos and confusing choices of notation. Most of these glitches are
easy to fix. However, they are likely to be frustrating for anyone new to the
subject. My personal choice for the notes would be to have them serve as the
basis of a reading course with a graduate student. The book repeatedly
entices the student to explore the many areas of analysis and probability that
have had an impact on the theory of random evolutions.
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