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STRONG LAW OF LARGE NUMBERS FOR SUMS OF PRODUCTS

By Cun-Hui Zhang

Rutgers University

Let X;Xn, n ≥ 1, be a sequence of independent identically dis-

tributed random variables. We give necessary and sufficient conditions for

the strong law of large numbers

n−k/p
∑

1≤i1<i2<···<ik≤n

Xi1
Xi2

: : :Xik
→ 0 a.s.

for k = 2 without regularity conditions on X, for k ≥ 3 in three cases: (i)

symmetric X, (ii) P�X ≥ 0� = 1 and (iii) regularly varying P��X� > x�
as x → ∞, without further conditions, and for general X and k under a

condition on the growth of the truncated mean of X. Randomized, centered,

squared and decoupled strong laws and general normalizing sequences are

also considered.

1. Introduction. Let X;Xn, n ≥ 1, be a sequence of independent identi-

cally distributed (i.i.d.) random variables. Define

�1:1� S�k�
m;n =

∑

m<i1<i2<···<ik≤n

Xi1
Xi2

: : :Xik
; S�k�

n = S
�k�
0; n; Sn = S�1�

n :

Then S
�k�
n /

(

n
k

)

are U-statistics. This paper concerns the strong law of large

numbers (SLLN)

�1:2� S�k�
n /bkn = b−k

n

∑

i1<i2<···<ik≤n

Xi1
Xi2

: : :Xik
→ 0 a.s.

and its randomized, centered, squared and decoupled versions, where bn =
b�n�, n ≥ 1; and b�t� is a positive continuous increasing function of t.

Let h�x1; : : : ; xk� be a measurable symmetric function: h�x1; : : : ; xk� =
h�xi1

; : : : ; xik
� for all permutations of �1; : : : ; k�. The Hoeffding (1961) SLLN

for U-statistics asserts that if E�h�X1; : : : ;Xk�� < ∞, then

(

n

k

)−1
∑

i1<i2<···<ik≤n

h�Xi1
; : : : ;Xik

� → Eh�X1; : : : ;Xk� a.s.

[see also Serfling (1980)]. Under the condition E�h�X1; : : : ;Xk��p < ∞, 0 <

p < 2, the Marcinkiewicz–Zygmund strong law

n−k/p
∑

i1<i2<···<ik≤n

h�Xi1
; : : : ;Xik

� → 0 a.s.
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was obtained by Sen (1974) for p < 1, by Teicher (1992) for the product

h�x1; : : : ; xk� =
∏k

i=1 xi, under EX = 0 when 1 ≤ p < 2, and by Giné and Zinn

(1992) for general h, completely degenerate when 1 ≤ p < 2. Assume EX = 0

whenever E�X� < ∞. By the Kolmogorov and Marcinkiewicz–Zygmund strong

laws, (1.2) holds for bn = n1/p and k = 1 if and only if (iff) E�X�p < ∞. How-

ever, the case k ≥ 2 is quite different. Giné and Zinn (1992) gave an example

to show that the condition E�X�p < ∞ is not necessary for (1.2) with k = 2

and bn = n1/p. For k = 2, Cuzick, Giné and Zinn (1995) recently obtained nec-

essary and sufficient conditions for the SLLN (1.2) under certain regularity

conditions on the sequence �bn� and the distribution of X (e.g., X symmetric,

P��X� > x� regularly varying), and considered the almost sure convergence of

normalized maxima of products and normalized sums of symmetrized, squared

or decoupled products.

In this paper, we consider k = 2 as well as the case k > 2. For k = 2, neces-

sary and sufficient conditions for the SLLN (1.2) are given without regularity

conditions on X and under a mild condition

either
bn
n1/p

≤ bn+1

�n+ 1�1/p
∀ n ≥ 1

or lim
t→∞

b�ct�
b�t� = c1/p ∀ c > 0;

(1.3)

for some 0 < p < 2, on the normalizing constants. For t > 0, define

cα�t� = sup

{

c > 1: E

( �X�
c

∧ 1

)α

≥ 1

t

}

; α > 0;

c∞�t� = lim
α→∞

cα�t�;
(1.4)

�1:5� µ�t� = E
[

X
∣

∣− t ≤ X ≤ t
]

; µ�t� = 0 if P��X� ≤ t� = 0;

�1:6� ν∗�t� = max
0≤x≤t

ν�x�; ν�t� = max�c2�t�; �tµ�c2�t����;

where sup \ = 1. The function cα�t� is increasing in t and decreasing in α.

For 0 < δ ≤ 1, we observe cα�δαt� ≤ δcα�t�, as E��X� ∧δc�α ≤ E��X� ∧ c�α. It is

also useful to note that P��X� ≥ cα�t�� ≤ 1/t. Here and throughout the sequel,

the following notation is used: x+ = x ∨ 0, x1 ∨ · · · ∨ xm = max�x1; : : : ; xm�,
x1 ∧ · · · ∧ xm = min�x1; : : : ; xm� and u ∼ v means �u/v� + �v/u� = O�1� for any

functions or sequences u and v (of n, x, t, etc.) as their argument tends to ∞.

Theorem 1.1 (SLLN for k = 2). Let M0 be a positive constant and cn ∼
ν∗�n/M0�. Suppose (1.3) holds. Then

�1:2′� b−2
n

∑

1≤i<j≤n

XiXj → 0 a.s.
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iff the following three conditions hold:

�1:7� cn/bn → 0;

�1:8�
∞
∑

n=1

P
{

cn�X1� > b2
n

}

< ∞;

�1:9�
∞
∑

n=1

nP
{

�X1X2� > b2
n; �X1� ∧ �X2� > cn

}

< ∞:

Theorem 1.1 is proved in Section 4. It follows from a Borel–Cantelli argu-

ment that (1.7), (1.8) and (1.9) together are essentially equivalent to

�1:10� ξ�2�n /b2
n → 0 a.s.; ξ�2�n = max

1≤i<j≤n
��Xi� ∨ cn���Xj� ∨ cn�

[cf. Theorems 4.1(ii) and 2.1]. This is the content of our conditions for the SLLN

(1.2′). The function ν�t� describes the order of magnitude of certain percentiles

of �Sn� (cf. Lemma 4.4). It also gives the L2-order of the sums of truncated Xi,

as ν2�n� ∼ E�∑n
i=1 X

′
i�2 for X′

i = c2�n�∧��−c2�n��∨Xi�. Condition (1.7) holds

for all 0 < M0 < ∞ iff

�1:7′� lim
n→∞

nE

( �X�
bn

∧ 1

)2

= 0; lim
n→∞

nE

(

X

bn

)

I��X� ≤ bn� = 0

iff the weak law Sn/bn = oP�1� holds. Therefore, Theorem 1.1 remains valid

if (1.7) is replaced by (1.7′) or the weak law.

The connection between (1.2′) and (1.10) can be described with the following

outline of the proof. The necessity of (1.10) can be obtained by a decoupling

argument. For sets A of positive integers, define SA = ∑

i∈A Xi and S
�2�
A =

∑

A2 XiXj, where A2 = ��i; j�: i < j; i ∈ A;j ∈ A�. Let A1; n be the odd

integers in �1; n� and A2; n the even ones. Since S
�2�
n = S

�2�
A1; n

+S
�2�
A2; n

+SA1; n
SA2; n

,

the SLLN (1.2′) implies its decoupled version

�1:11� SA1; n
SA2; n

/b2
n → 0 a.s.

By a recent result of Montgomery-Smith (1993) (cf. Theorem 4.3), (1.11) is

equivalent to

max
1≤i; j≤mn

∣

∣SA1; i
SA2; j

∣

∣/b2
n → 0 a.s. ∀ m = 1;2; : : : :

It will be shown in Lemma 4.4 that there exist positive δ0 and m such that

δ0ν
∗�n/M0� are bounded from above by certain percentiles of �Snm� for all n.

Thus, the decoupled SLLN (1.11) implies max�cn;X
�1�
A1;n

�max�cn;X
�1�
A2;n

�/b2
n →

0 a.s., which is equivalent to (1.10) and therefore implies (1.7)–(1.9). Here

X
�1�
A = maxi∈A �Xi�.
The sufficiency of our conditions is obtained by focusing on centered

variables as well as the lifted maxima in (1.10). Let M1 > M0 and
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µn = µ�c2�n/M1�� via (1.4) and (1.5). Since XiXj = �Xi − µn��Xj −
µn� + �Xi + Xj�µn − µ2

n, the SLLN (1.2′) is a consequence of its centered

version

�1:12� b−2
n

∑

1≤i<j≤n

�Xi − µn��Xj − µn� → 0 a.s.

and ��Sn�+�nµn���nµn�/b2
n → 0 a.s. Let X

�`�
n be the `th largest among ��Xi�: 1 ≤

i ≤ n�. By the Mori (1977) theorem on the SLLN of lightly trimmed sums,

X
�2�
n /bn → 0 a.s. implies ��Sn −nµn� −X

�1�
n �/bn → 0 a.s. This and (1.10) imply

��Sn� + �nµn���nµn�/b2
n → 0 a.s., so that (1.2′) is a consequence of the centered

SLLN (1.12). Let nj be suitable integers satisfying 1 < γ1 ≤ nj+1/nj ≤ γ2 < ∞.

It follows from a martingale argument and the Borel–Cantelli lemma that

(1.12) holds if

�1:13�
∞
∑

j=1

b−4
nj
E

{

∑

1≤i1<i2≤nj

�Xi1
− µnj

��Xi2
− µnj

�
}2

I�ξ�2�nj
≤ b2

nj
� < ∞:

It turns out that, due to the appropriate levels of centering and (random)

truncation, the cross-product terms in the expectation in (1.13) are of no larger

order than the squared terms (Lemma 3.4), so that the SLLN (1.2′) is implied

by

�1:14� E�X1X2�2
∞
∑

j=1

b−4
nj
n2
jI�ξ�2�nj

≤ b2
nj
� < ∞:

Since
∑∞

`=j b
−4
n`
n2
` is of the same order as b−4

nj
n2
j by (1.3), (1.14) holds if

�1:15� E�X1X2�2
∞
∑

j=1

b−4
nj
n2
jI�b2

nj−1
< ξ�2�nj−1

; ξ�2�nj
≤ b2

nj
� < ∞

(cf. Lemma 3.5). Finally, (1.14) and therefore the SLLN (1.2′) are obtained via

the Borel–Cantelli lemma from (1.10) and the inequality (Lemma 3.3)

�1:16� b−4
nj
n2
jE�X1X2�2I�b2

nj−1
< ξ�2�nj−1

; ξ�2�nj
≤ b2

nj
� = O�1�P�b2

nj−1
< ξ�2�nj−1

�:

The main difference between our proof of (1.12) and the common proofs of the

SLLN is that the Xi are truncated at random levels and that certain events

about ξ
�2�
n are kept throughout the calculation.

We also generalize the results of Cuzick, Giné and Zinn (1995) from k = 2

to k ≥ 3 under weaker regularity conditions, especially for P�X ≥ 0� = 1

and the case where xP��X� > x� is slowly varying as x → ∞. The regularity

conditions of Cuzick, Giné and Zinn (1995), Proposition 3.8, imply that the

random variable X is “essentially symmetric” in the sense that the mean

of the partial sums of truncated Xi does not have a larger order than their

standard deviation at proper levels of truncation, whereas a single regularity

condition is imposed in Theorem 2.3 on the magnitude of the truncated mean

relative to �bn� which holds automatically for k = 2 and allows the mean
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of truncated sums to grow faster than the standard deviation. Without any

condition on the distribution of X, the equivalence of symmetrized, centered

and squared versions of (1.2) is established for general k ≥ 2, and that of (1.2)

and its decoupled version for k = 2.

One of the main concerns in Cuzick, Giné and Zinn (1995) is the equivalence

of (1.2) and the strong law for the maxima of products

�1:17� b−k
n max

i1<i2<···<ik≤n

∣

∣Xi1
Xi2

: : :Xik

∣

∣ → 0 a.s.;

which is always a consequence of (1.2). In Section 5 we show that (1.17) does

not necessarily imply (1.2) even under quite strong conditions by giving an

example such that EX = 0 and both xP��X� > x� and bn are regularly varying

at ∞. Under our regularity conditions on the mean of truncated X and the

sequence �bn�, we obtain the equivalence of (1.2) and the SLLN for the lifted

maxima [i.e., the k-version of (1.10)]

�1:18� b−k
n max

i1<i2<···<ik≤n

k
∏

j=1

max
(

cn;
∣

∣Xij

∣

∣

)

= b−k
n

k
∏

`=1

max�cn;X�`�
n � → 0 a.s.;

with cn ∼ ν∗�n/M0�, but we still do not know whether (1.2) and (1.17) are

equivalent when X is symmetric and bn = n1/p, 0 < p < 2, even for k = 2.

The paper is organized as follows. The main results are stated in Section 2.

The sufficiency of our conditions is proved in Section 3, where some general

randomized and centered versions of (1.2) are also considered. The decoupled

versions of (1.2) and (1.18) are considered in Section 4, where the necessity

parts of the proofs are provided. Variables with a regularly varying P��X� > x�
at ∞ are considered in Section 5 with some discussion.

2. Main results. In this section, the main results are stated concerning

necessary and sufficient conditions for the strong law (1.2) and its random-

ized, centered and squared versions, and their relationship to each other and

to (1.17). Our regularity and necessary and/or sufficient conditions are also

explained here.

Consider conditions of the form

�2:1� cn/bn → 0;

�2:2�
∞
∑

n=1

k
∑

`=1

n`−1P�ck−`
n �X1 : : :X`� > εbkn; �X1� ∧ · · · ∧ �X`� > cn� < ∞;

where ε > 0 and �cn; n ≥ 1� is a suitable sequence of positive constants.

These conditions are the k-version of (1.7)–(1.9) and connected to (1.18) via

the following result.

Theorem 2.1 (SLLN for lifted maxima). Let cn ∼ c�n/M0� for some posi-

tive increasing function c�·� such that nP��X� > c�n�� = O�1�. Then (1.18)

holds for all 0 < M0 < ∞ iff both (2.1) and (2.2) hold for all positive ε and

M0.
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Theorem 2.1 is a consequence of Theorem 4.1(ii). For k = 2, Cuzick, Giné

and Zinn (1995), proof of Theorem 2.1′, showed that (1.17) holds iff (2.2) holds

for cn = c∞�n� and all ε. By (1.4), P��X� > c∞�n�� ≤ 1/n ≤ P��X� ≥ c∞�n��.

In most cases considered here, the sequence �cn� is of the form in Theorem 2.1

with c�t� = ν∗�t� or c�t� = cα�t� via (1.4)–(1.6).

We shall first consider symmetrized, centered and squared versions of the

SLLN. Let �εn� be a Rademacher sequence independent of �Xn�, i.i.d. with

P�εn = ±1� = 1/2.

Theorem 2.2 (Symmetrized, centered and squared SLLN). Let M0 and

M1 be positive constants and nj be positive integers with 1 < inf j nj+1/nj ≤
supj nj+1/nj < ∞. Let µ̄n = µ�c2�nj/M1�� for nj ≤ n < nj+1 and

cn ∼ c2�n/M0� via (1.4) and (1.5). Suppose

�2:3� sup
n≥1

b2k
n

nk

∞
∑

m=n

mk−1

b2k
m

< ∞:

Then (1.18) and the following symmetrized, centered and squared versions of

the SLLN are all equivalent to each other:

b−k
n

∑

i1<i2<···<ik≤n

εi1
εi2

: : : εikXi1
Xi2

: : :Xik
→ 0 a.s.;(2.4)

b−k
n

∑

i1<i2<···<ik≤n

�Xi1
− µ̄n��Xi2

− µ̄n� : : : �Xik
− µ̄n� → 0 a.s.;(2.5)

b−2k
n

∑

i1<i2<···<ik≤n

�Xi1
�2�Xi2

�2 : : : �Xik
�2 → 0 a.s.(2.6)

Furthermore, (2.4) holds [along with (2.5), (2.6) and (1.18)] iff both (2.1) and

(2.2) hold for (some or all) ε > 0.

Remark. It will be shown in Theorem 3.1 that the centered SLLN (2.5) still

holds when µ̄n is replaced by µn�c′n� at the centering level c∞�n/M� ≤ c′n ≤
Mc2�n/M1� for some 0 < M < ∞. Condition (2.1) holds with cn ∼ c2�n/M0�
for all 0 < M0 < ∞ iff

�2:7� lim
n→∞

nE

( �X�
bn

∧ 1

)2

= 0

iff the weak law �Sn − nµ�bn��/bn = oP�1� holds. Thus, condition (2.1) in

Theorem 2.2 can be replaced by (2.7).

Corollary to Theorem 2.2 (SLLN for symmetric and positive X). Let

ε = 1.

(i) Suppose (2.3) holds and X is symmetric. Then the SLLN (1.2) holds iff

both (2.1) and (2.2) hold for cn = c2�n�.
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(ii) Suppose P�X ≥ 0� = 1 and

�2:3′� sup
n≥1

bkn
nk

∞
∑

m=n

mk−1

bkm
< ∞:

Then the SLLN (1.2) holds iff both (2.1) and (2.2) hold for cn = c1�n�. In fact,

for cn = c1�n�, (2.1) and (2.2) imply (1.2) without the condition P�X ≥ 0� = 1.

The proofs of (2.1) and (2.2) ⇒ (2.4)–(2.6) are provided in Section 3, and

those of (2.4) or (2.5) or (2.6) ⇒ (1.18) ⇒ (2.1) and (2.2) in Section 4. For k = 2,

Cuzick, Giné and Zinn (1995), Lemma 4.5 and Proposition 4.7, proved (2.1) ⇒
(2.4) ⇒ (2.6), and provided somewhat different (but equivalent) necessary and

sufficient conditions for (2.4) under slightly stronger regularity conditions on

the normalizing sequence �bkn�.

Let µ�·� be given by (1.5). Define the sums of products of centered variables

H�k�
n �c� =

∑

i1<i2<···<ik≤n

�Xi1
− µ�c���Xi2

− µ�c�� : : : �Xik
− µ�c��;

H�0�
n = 1:

(2.8)

Since Xi = �Xi − µ�c�� + µ�c�, (1.1) can be decomposed into the sum

�2:9� S�k�
n =

k
∑

`=0

(

n− `

k− `

)

µk−`
n H�`�

n �c′n�

for suitable constants c′n, where µn = µ�c′n�. Consider c′n = c2�n� and condi-

tions (2.1) and (2.2) with cn = ν∗�n� ≥ c′n. The strong law for the term with

` = k in (2.9) is essentially (2.5) in Theorem 2.2. The term with ` = 0 is

bounded by �nµn�k ≤ ckn, which is o�bkn� by (2.1). As discussed in the outline

of the proof of Theorem 1.1 in Section 1, the term with ` = 1 in (2.9) can be

trimmed by (1.18) and then handled by Mori’s (1977) theorem on the strong

law of lightly trimmed sums. For general increasing bn → ∞ and ε > 0, Kiefer

(1972) proved that P�X�k�
n > εbn i.o.� = 0 iff

�2:10�
∞
∑

n=1

nk−1Pk ��X� > εbn� < ∞;

which is a consequence of (2.1) and (2.2) in view of the terms with ` = k in

(2.2). Conditions (2.10) and nµ�abn�/bn → 0 for all a > 0 are sufficient for the

Mori (1977) theorem, with the normalizing constants satisfying (1.3). Mori

(1977) required an additional condition b2n/bn = O�1�, which was removed by

Cuzick, Giné and Zinn (1995), Theorem 3.4, although (1.3) is still stronger than

(2.3). It is a consequence of Theorem 5.1 that (2.10) is not sufficient for (1.2),

even when X is symmetric with a regularly varying distribution function. For

k > 2, we have to deal with intermediate terms in (2.9) for 2 ≤ ` ≤ k − 1.

In our next theorem, an additional sufficient condition is imposed to control

the growth of the mean of truncated variables, which is essentially a modified
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(2.3) with respect to the SLLN for H
�`�
n in (2.9) with the normalizing sequence

�bkn/νk−`�n��.

Theorem 2.3 (SLLN for k ≥ 2). Let δ0 and Mj, j = 0;1;2;3, be positive

numbers.

(i) Let cn ≥ δ0ν
∗�n/M0�. Suppose (1.3) holds and

�2:11�
∞
∑

m=n

m

b2k
m

([

ν2

(

m

M1

)

−M2c
2
2

(

m

M1

)]+)k−2

<
M3c

2�k−2�
n n2

b2k
n

; n ≥ 1:

If (2.1) and (2.2) hold for all ε > 0, then the SLLN (1.2) holds.

(ii) Let cn ≥ δ0ν
∗�n/M0�. Suppose (2.3) holds and

�2:11′�
∞
∑

m=n

b−2k
m

([

ν2

(

m

M1

)

−M2c
2
2

(

m

M1

)]+)k−1

<
M3c

2�k−1�
n n

b2k
n

; n ≥ 1:

If (2.1) and (2.2) hold for ε = 1, then the SLLN (1.2) holds.

(iii) Let cn ∼ ν∗�n/M0�. Then the SLLN (1.2) implies the SLLN for lifted

maxima (1.18), which then implies both (2.1) and (2.2). If (2.3) holds, then the

SLLN (1.2) implies its symmetrized, centered and squared versions (2.4)–(2.6).

Remark. Condition (1.3) implies (2.3). For k = 2, (2.3) implies (2.11), so

that Theorem 1.1 is a consequence of Theorem 2.3(i) and (iii), except for the

redundancy of (2.2) for all ε > 0. Conditions (2.3) and (2.11′) imply (2.11) by

the Hölder inequality [cf. (3.18)].

Corollary to Theorem 2.3. Suppose either (1.3) and (2.11) hold or (2.3)

and (2.11′) hold for some cn ∼ ν∗�n/M0� with 0 < M0 < ∞. Then (2.1) and

(2.2) for all ε > 0 ⇔ (1.2) ⇔ (1.18).

Parts (i) and (ii) of Theorem 2.3 are proved in Section 3 and part (iii) in

Section 4. It will be shown in Section 5 that (2.11′) can be removed if P��X� >
x� is regularly varying as x → ∞. By the definition of ν�t� in (1.6), (2.11′) holds

if nµ�c2�n��/c2�n� = O�1� as in Cuzick, Giné and Zinn (1995), Definition 3.6

and Proposition 3.8.

3. Sufficiency. In this section, we verify the sufficiency parts of Theo-

rems 2.1–2.3. The main difference between our proofs and the common proofs

of the SLLN is that the Xi are truncated at random levels and that certain

events about the lifted maxima in (1.18) are kept throughout the calculation.

The sufficiency part of Theorem 2.2 concerning the symmetrized SLLN (2.4)

and the centered SLLN (2.5) is a consequence of Theorem 3.1. Let Y;Yn,

n ≥ 1, be i.i.d. random vectors independent of the sequence �Xn�, and let

h�y1; : : : ; yk� be a symmetric Borel function, completely degenerate and with

a finite variance: Eh�Y;y2; : : : ; yk� = 0 and E�h�Y1; : : : ;Yk��2 < ∞.
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Theorem 3.1. Let δ0, M, M0 and M1 be positive numbers. Suppose (2.3)

holds. Set µn = µ�c′n� for some c∞�n/M� ≤ c′n ≤ Mc2�n/M1�. If (2.1) and (2.2)

hold for some cn ≥ δ0c2�n/M0� and ε > 0, then

�3:1� b−k
n

∑

i1<i2<···<ik≤n

h�Yi1
; : : : ;Yik

�Xi1
Xi2

: : :Xik
→ 0 a.s.

and

�3:2� b−k
n

∑

i1<i2<···<ik≤n

�Xi1
− µn��Xi2

− µn� · · · �Xik
− µn� → 0 a.s.

Remark. In (2.4), h�y1; : : : ; yk� = y1 : : : yk and Yn = εn. In (2.5),

c2�n/M1� ≥ c′n = c2�nj/M1� ≥ c∞�n/M� for nj ≤ n < nj+1 and M >

M1 supnj+1/nj.

We need some lemmas for the proofs. Let X
�1�
m;n ≥ X

�2�
m;n ≥ · · · ≥ X

�n−m�
m;n

be the order statistics of �Xm+1�; : : : ; �Xn�, and X
�`�
n = X

�`�
0; n as in (1.10). For

positive c define as in (1.18) the lifted partial maxima of products

�3:3�
ξ�k�n �c� = ξ

�k�
0; n�c�;

ξ�k�m;n�c� =
k
∏

`=1

(

c ∨X�`�
m;n

)

= max
m<i1<i2<···<ik≤n

k
∏

j=1

max
(

c;
∣

∣Xij

∣

∣

)

:

Our first lemma implies the sufficiency part of Theorem 2.1.

Lemma 3.2. Let ε > 0, 1 < γ < ∞ and c�·� be an increasing function.

(i) For all integers m0 ≥ 1, (2.1) and (2.2) imply

�3:4�
∞
∑

n=1

n−1P
{

ξ�k�m0n
�cn� > εbkn

}

< ∞:

(ii) If (2.1) and (2.2) hold for cn ≥ c�n�, then

�3:5�
∞
∑

j=1

P
{

ξ�k�nj+1
�c�nj/

√
γ�� > εbknj

}

< ∞

for all sequences of positive integers �nj� such that 1 < inf j nj+1/nj ≤
supj nj+1/nj < ∞. Consequently, P�ξ�k�n �c�n/γ�� > εbkn i.o.� = 0.

Proof. (i) By (3.3) and for ckn < εbkn,

P
{

ξ�k�m0n
�cn� > εbkn

}

≤
k
∑

`=1

P
{

ck−`
n X�1�

m0n
: : :X�`�

m0n
> εbkn; X�1�

m0n
∧ · · · ∧X�`�

m0n
> cn

}

≤
k
∑

`=1

�m0n�`P
{

ck−`
n �X1 : : :X`� > εbkn; �X1� ∧ · · · ∧ �X`� > cn

}

:
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(ii) For m0n > nj+1 and n > nj/
√
γ, ξ

�k�
nj+1

�c�nj/
√
γ�� ≤ ξ

�k�
m0n�c�n��, so

that (3.4) implies (3.5). Take nj+1/nj ≤ √
γ in (3.5). Since ξ

�k�
n �c�n/γ�� ≤

ξ
�k�
nj+1

�c�nj/
√
γ�� for nj ≤ n < nj+1, (3.5) implies P�ξ�k�n �c�n/γ�� > εbkn i.o.� = 0

by the Borel–Cantelli lemma. 2

For α = 2 and cn = c2�n�, Lemma 3.3 asserts that the conditional expecta-

tion of the sum of squares in (2.6), given cn ∨X
�1�
n ; : : : ; cn ∨X

�k�
n is controlled

by that of the square of the lifted maxima (3.3). It extends (1.16) to general k.

Lemma 3.3. Let Ym;n = Ym;n�cn� = g�cn ∨X
�1�
m;n; : : : ; cn ∨X

�k�
m;n� for some

cn ≥ cα�n/M0� and a nonnegative Borel function g�x1; : : : ; xk�. Then, for 0 ≤
` ≤ k ≤ n,

�3:6� nk−`E

{

Y0; n

∏̀

i=1

∣

∣Xi

∣

∣

α
}

≤
(

M0

1 −M0/n
+ k

1 − `/n

)`

E
(

ξ
�`�
0; n

)α
Y0; n;

where ξ
�`�
m;n = ξ

�`�
m;n�cn� is given by (3.3). In particular,

b−α
2 �c∗�α�k−`�n`E

∣

∣

∣

∣

∏̀

i=1

Xi

∣

∣

∣

∣

α

I
{

b1 < ξ
�k�
0; n�cn�; ξ

�k�
0; n∗�c∗� ≤ b2

}

≤
(

M0

1 −M0/n
+ k

1 − `/n

)`

P
{

b1 < ξ
�k�
0; n�cn�

}

(3.7)

for all b1 < b2, c
∗ ≥ cα�n/M0� and n∗ ≥ n.

Proof. Let c′n = cα�n/M0� and R
�i�
m;n be the rank of �Xi� in �Xm+1�; : : : ;

�Xn� in descending order, m < i ≤ n, R
�i�
n = R

�i�
0; n, with ties broken by random-

ization. For 0 ≤ `1 ≤ `2 ≤ k− `, define

B�`1; `2�
n = I��Xi� ≤ c′n; 1 ≤ i ≤ `1y c′n < �Xi�; R

�i�
n > k; `1 < i ≤ `2y

c′n < �Xi�; R
�i�
n ≤ k; `2 < i ≤ k− `�:

On the event with B
�`1; `2�
n = 1, Y0; n = Y`2; n

and �X`1+1 : : :X`� ≤ ξ
�`−`1�
`2; n

, so that

Y0; n

∏̀

i=1

∣

∣Xi

∣

∣

α ≤
( `1
∏

i=1

�Xi�αI��Xi� ≤ c′n�
)

×
( `2

∏

i=`1+1

I�c′n < �Xi��
)

×
({

ξ
�`−`1�
`2; n

}α
Y`2; n

I
{

R
�i�
`2; n

≤ k; `2 < i ≤ k− `
})

:
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Since Xi are i.i.d., the three factors on the right-hand side above are indepen-

dent, so that

E

∣

∣

∣

∣

∏̀

i=1

Xi

∣

∣

∣

∣

α

Y0; nB
�`1; `2�
n

≤ �E�X�αI��X� ≤ c′n��`1 × �P��X� > c′n��`2−`1

×
(

E
{

ξ
�`−`1�
`2; n

}α
Y`2; n

I
{

R
�i�
`2; n

≤ k; `2 < i ≤ k− `
})

:

(3.8)

Set p′
n = P��X� > c′n�. Since c′n = cα�n/M0�, E�X�αI��X� ≤ c′n� =

�c′n�α�M0/n − p′
n� by (1.4). Since the rank vector �R�`2+1�

`2; n
; : : : ;R

�n�
`2; n

� is

uniformly distributed given the order statistics X
�i�
`2; n

(and therefore given

ξ
�`−`1�
`2; n

and Y`2; n
),

E
{

ξ
�`−`1�
`2; n

}α
Y`2; n

I
{

R
�i�
`2; n

≤ k; `2 < i ≤ `
}

≤ �k/�n− `2��`−`2E
{

ξ
�`−`1�
`2; n

}α
Y`2; n

:

Since c′n ≤ cn and ξ
�`�
m;n, 0 ≤ ` ≤ k, and Ym;n are functions of cn ∨ X

�`�
m;n,

0 ≤ ` ≤ k,

�3:9� ξ�`�m;nYm;nI��Xm� ≤ c′� = ξ
�`�
m−1; nYm−1; nI��Xm� ≤ c′n�;

so that E�ξ�`−`1�
`2; n

�αY`2; n
≤ �1−p′

n�−`2E�ξ�`−`1�
0; n �αY0; n. Inserting these inequal-

ities into (3.8), we obtain

E

∣

∣

∣

∣

∏̀

i=1

Xi

∣

∣

∣

∣

α

Y0; nB
�`1; `2�
n

≤ ��c′n�α�M0/n− p′
n��`1�p′

n�`2−`1�k/�n− `2��`−`2E�ξ�`−`1�
`2; n

�αY`2; n

≤ �M0/n− p′
n�`1�p′

n�`2−`1�k/�n− `��`−`2�1 −M0/n�−`2E�ξ�`�0; n�αY0; n

as p′
n ≤ M0/n and �c′n�`1ξ

�`−`1�
`2; n

�cn� ≤ ξ
�`�
`2; n

�cn� by (3.3) and the condition c′n ≤
cn. This gives (3.6) by the exchangeability of Xi, since

n`E

∣

∣

∣

∣

∏̀

i=1

Xi

∣

∣

∣

∣

α

Y0; n

=
∑

0≤`1≤`2≤`

(

`

`2

)(

`2

`1

)

n`E

∣

∣

∣

∣

∏̀

i=1

Xi

∣

∣

∣

∣

α

Y0; nB
�`1; `2�
n

≤
∑

0≤`1≤`2≤`

(

`

`2

)(

`2

`1

)�M0/n− p′
n�`1�p′

n�`2−`1

�1 −M0/n�`2

(

k

n− `

)`−`2

n`E�ξ�`�0; n�αY0; n

=
(

M0

1 −M0/n
+ k

1 − `/n

)`

E�ξ�`�0; n�αY0; n:
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For (3.7), Ym;n = P�b1 < ξ
�k�
m;n�cn�; ξ

�k�
m;n∗�c∗� ≤ b2�Xm; : : : ;Xn� is a

function of c′n ∨ X
�`�
m;n and �c∗�k−`ξ

�`�
0; n�c′n� ≤ ξ

�k�
0; n�c∗�, so that b−α

2 �c∗�α�k−`� ·
E�ξ�`�0; n�c′n��αY0; n is bounded by

b−α
2 �c∗�α�k−`�E�ξ�`�0; n�c′n��αI�b1 < ξ

�k�
0; n�cn�; ξ

�k�
0; n∗�c∗� ≤ b2�

≤ P�b1 < ξ
�k�
0; n�cn��: 2

Let H
�`�
n �c� be the centered sum of products and ξ

�k�
n �c� be the lifted maxima.

For suitable cn ≥ c′n, Lemma 3.4 asserts that E�H�`�
n �c′n��2I�ξ�k�n �cn� ≤ b� is

dominated by the expectation of the sum of the squared terms in its expansion

and therefore by the maxima in Lemma 3.3. For k = 2, this gives (1.14) ⇒
(1.13).

Lemma 3.4. Let H
�k�
n �c� be given by (2.8) and Ym;n = Ym;n�cn� be as in

Lemma 3.3 with cn ≥ c2�n/M0�. For M0 ≤ M1 and M0 < M2, set c′n =
c2�n/M1� and c′′n = c2�n/M2�. Then, for 0 ≤ `1 ≤ `1 + `2 = ` ≤ k ≤ n/3,

�c′′n�2`1E
{

H�`2�
n �c′n�

}2
Y0; n

≤ 3`2+1

2

(

2M1

1 −M1/n
+ 2k

)2`2
(

2

M2 −M0

)`1

n`E

{

Y0; n

∏̀

i=1

X2
i

}

:

Proof. Let H
�`�
n = H

�`�
n �c′n�. Expanding the square of (2.8), we obtain

�3:10� E
{

H�`�
n

}2
Y0; n =

∑̀

`1=0

Nn; `; `1
E

{

Y0; n

`−`1
∏

i=1

�Xi − µn�2
`+`1
∏

i=`−`1+1

�Xi − µn�
}

;

where Nn; `; `1
≤ n`+`1 and µn = µ�c′n�. The first step is to control the cross-

product terms in (3.10) with 1 ≤ `1 ≤ `.

Let X′
i = �Xi − µ�c′n��I��Xi� > c′n� with c′n = c2�n/M1�, and Z0 =

g0�X1; : : : ;Xm0
� with a Borel function g0 of m0 ≤ n− k variables. The proof

is based on the following facts:

E
(

Xn − µ�c′n�
)

Z0Y0; n = EX′
nZ0Y0; n;(3.11)

E
(

Xn − µ�c′n�
)2�Z0�Y0; n ≤ 4EX2

n�Z0�Y0;n;(3.12)

�3:13� �n−m0�E
∣

∣X′
nX

′
n−1Z0

∣

∣Y0; n ≤ 4

(

M1

1 −M1/n
+ k

)2

EX2
n�Z0�Y0; n

and

�3:14� c2
2

(

n

M2

)

E�Z0�Y0; n ≤ n�n−m0�
�M2 −M0��n−m0 − k�EX

2
n�Z0�Y0; n:

The proofs of (3.11)–(3.14) are given in the Appendix.
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Coming back to (3.10), we find by repeated applications of (3.11), (3.12) and

(3.13) with n−m0 ≥ n− 2` ≥ n/3 that

Nn; `; `1
E

{

Y0; n

`−`1
∏

i=1

�Xi − µn�2
`+`1
∏

i=`−`1+1

�Xi − µn�
}

= Nn; `; `1
E

{

Y0; n

`−`1
∏

i=1

�Xi − µn�2
`+`1
∏

`−`1+1

X′
i

}

≤ n`+`14`−`1E

{

Y0; n

`−`1
∏

i=1

X2
i

`+`1
∏

i=`−`1+1

�X′
i�
}

≤
(

M1

1 −M1/n
+ k

)2`1

3`14`n`E

{

Y0; n

∏̀

i=1

X2
i

}

;

due to the exchangeability of Xi. Summing up over `1 in (3.10), we obtain

E
{

H�`�
n

}2
Y0; n ≤ 3`+1

2

(

2M1

1 −M1/n
+ 2k

)2`

n`E

{

Y0; n

∏̀

i=1

X2
i

}

:

Since n−m0 ≤ 2�n−m0 −k� for m0 ≤ ` ≤ k ≤ n/3, it follows from (3.14) that

�c′′n�2`1E
{

H�`2�
n �c′n�

}2
Y0; n

≤ 3`2+1

2

(

2M1

1 −M1/n
+ 2k

)2`2

n`2�c′′n�2`1E

{

Y0; n

`2
∏

i=1

X2
i

}

≤ 3`2+1

2

(

2M1

1 −M1/n
+ 2k

)2`2
(

2

M2 −M0

)`1

n`E

{

Y0; n

∏̀

i=1

X2
i

}

: 2

The following elementary lemma is quite useful in our proofs here. For

k = 2, it gives (1.15) ⇒ (1.14).

Lemma 3.5. Let ηj be nonnegative random variables and Aj be events.

Then
∞
∑

j=j0

ηjIAj
≤ IAj0

∞
∑

i=j0

ηi +
∞
∑

j=j0

IAc
jAj+1

∞
∑

i=j+1

ηi:

In the rest of this section, M′ denotes a finite positive constant which may

change from one place to another.

Proof of Theorems 2.2 (Sufficiency) and 3.1. Suppose (2.1) and (2.2)

hold for some cn ≥ δ0c2�n/M0� and ε = 1. We shall prove (3.1), (3.2) and (2.6).

Assume further M1 > M0 and δ0 = 1. Let M0 < M2 < M1. By Lemma 3.2(i),

�3:15�
∞
∑

j=1

P
{

ξ�k�nj+1
�cnj

� > bknj

}

< ∞
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for some nj with 1 < γ1 ≤ nj+1/nj ≤ �nj+1 − k�/�nj − k� ≤ γ2 = M1/M2.

For example, we may choose nj+1 such that P�ξ�k�m0nj+1
�cnj+1

� > bknj+1
� is the

smallest among P�ξ�k�m0n�cn� > bkn�, γ1nj ≤ n ≤ γ2nj − �γ2 − 1�k, for some

m0 > γ2.

Set c∗j = c2�nj/M1�. Similar to (2.9), for nj ≤ n < nj+1, H
�k�
n �c′n� can be

written as

k
∑

`=0

(

n− `

k− `

)

�µ�c∗j� − µ�c′n��k−`H�`�
n �c∗j�:

Since c∞�n/M′� ≤ c′n ≤ M′c2�n/M1� and c∞�nj/M1� ≤ c∗j ≤ c2�n/M1� for

nj ≤ n < nj+1,

n
∣

∣EXI��X� ≤ c∗j� −EXI��X� ≤ c′n�
∣

∣

≤ nE�X�I�c∞�nj/M
′� ≤ �X� ≤ M′c2�nj+1/M1��

≤ M′c2�nj+1/M1�nP��X� > c∞�nj/M
′�� ≤ M′c2�nj/M2�;

which implies n�µ�c∗j�−µ�c′n�� ≤ M′c2�nj/M2� by (1.5) as P��X� > c′n� ≤ M′/n

and P��X� > c∗j� ≤ M1/nj. Thus, with c∗∗j = c2�nj/M2�, (3.2) is a consequence

of (2.1) and

�3:16� lim
j→∞

b−k
nj

�c∗∗j �k−` max
nj≤n<nj+1

∣

∣H�`�
n �c∗j�

∣

∣ = 0 a.s.; 1 ≤ ` ≤ k:

Define T
�k�
n = ∑

n h�Yi1
; : : : ;Yik

�Xi1
Xi2

: : :Xik
, V

�k�
n = ∑

n �Xi1
Xi2

: : :Xik
�2,

J1 =
∞
∑

j=j0

b−2k
nj

E
{

T�k�
nj

}2
I�ξ�k�nj

�cnj
� ≤ bknj

�

and J
�`�
2 and J3 in the same manner with �T�k�

nj
�2 replaced by ��c∗∗j �k−` ·

H
�`�
nj
�c∗j��2 and V

�k�
nj

, respectively. Let Fn be the σ-algebra generated by all

symmetric functions of �Xi;Yi�, 1 ≤ i ≤ n, under the permutation group for

the vectors. For nj ≤ n < nj+1,

E
[

T�k�
nj
I
{

ξ�k�nj
�cnj

� ≤ bknj

}
∣

∣Fn

]

= T�k�
n

(

n

k

)−1(
nj

k

)

on the event �ξ�k�nj+1
�cnj

� ≤ bknj
�. Since �nj!�n − k�!�/��nj − k�!n!� ≥ γ−k

2 and

bn ≥ bnj
for nj ≤ n < nj+1, by the Doob inequality for the martingale on the

left-hand side above

P
{

max
nj≤n<nj+1

�T�k�
n /bkn� ≥ ε; ξ�k�nj+1

�cnj
� ≤ bknj

}

≤ P
{

max
nj≤n<nj+1

∣

∣E
[

T�k�
nj
I
{

ξ�k�nj
�cnj

� ≤ bknj

}
∣

∣Fn

]
∣

∣ ≥ εbknj
γ−k

2

}

≤ 4
(

εbknj
γ−k

2

)−2
E
[

T�k�
nj

]2
I
{

ξ�k�nj
�cnj

� ≤ bknj

}

; ∀ ε > 0:
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Therefore, by (3.15) and the Borel–Cantelli lemma, J1 < ∞ implies

P�T�k�
n /bkn → 0� = 1 in (3.1). Similarly, (3.16) and (2.6) hold if J

�`�
2 , 1 ≤ ` ≤ k,

and J3 are all finite. The martingale argument applies to (3.16) since the level

of truncation c∗j is the same for nj ≤ n < nj+1. Since Eh�Y;y2; : : : ; yk� = 0

and �Yi� is independent of �Xi�, J1 = Eh2�Y1; : : : ;Yk�J3, so that it suffices

to prove J
�`�
2 < ∞, 1 ≤ ` ≤ k, and J3 < ∞.

Since
∑∞

i=j n
k
i /b

2k
ni

≤ M′nk
j/b

2k
nj

by (2.3), it follows from Lemmas 3.5 and 3.3

(with α = 2 and ` = 0) and (3.5) that, for large j0,

J3 =
∞
∑

j=j0

b−2k
nj

(

nj

k

)

E
k
∏

i=1

X2
iI

{

ξ�k�nj
�cnj

� ≤ bknj

}

≤ M′nk
j0

+M′
∞
∑

j=j0

nk
j+1

b2k
nj+1

E
k
∏

i=1

X2
iI

{

bknj
< ξ�k�nj

�cnj
�; ξ�k�nj+1

�cnj+1
� ≤ bknj+1

}

≤ M′ +M′
∞
∑

j=j0

P
{

bknj
< ξ�k�nj

�cnj
�
}

< ∞:

By Lemma 3.4 [with �`1; `2; `� ↔ �`; k− `; k� and Y0;n ↔ I�ξ�k�nj
�cnj

� ≤ bknj
��,

J
�`�
2 =

∞
∑

j=j0

b−2k
nj

�c∗∗j �2�k−`�E
{

H�`�
nj
�c∗j�

}2
I
{

ξ�k�nj
�cnj

� ≤ bknj

}

≤ M′
∞
∑

j=j0

b−2k
nj

nk
jE

k
∏

i=1

X2
iI

{

ξ�k�nj
�cnj

� ≤ bknj

}

≤ M′J3 < ∞:

Although the proof here is only for M1 > M0 and δ0 = 1, it poses no problem

as δ0c2�n/M0� ≥ c2�δ2
0n/M0� and the necessity part for (2.4) implies both (2.1)

and (2.2) for all M0 when cn ∼ c2�n/M0�. 2

Proof of Theorem 2.3(i) and (ii). We shall first prove part (i). Let M0 <

M∗
1 < ∞ and nj be arbitrary positive integers satisfying 1 < γ1 ≤ nj+1/nj ≤

γ2 < ∞. Set c∗j = c2�nj/M
∗
1�. It follows from (2.9) that (2.1) is a consequence

of

�3:17� b−k
nj

�njµ�c∗j��k−` max
nj≤n<nj+1

∣

∣H�`�
n �c∗j�

∣

∣ → 0 a.s.; 0 ≤ ` ≤ k:

For ` = 0, (3.17) follows from (2.1) and (1.6), as M0 < M∗
1 implies

�njµ�c∗j��/bnj
≤ M∗

1ν�nj/M
∗
1�/bnj

≤ M∗
1ν

∗�nj/M0�/bnj
≤ M∗

1δ
−1
0 cnj

/bnj
→ 0:

Since cn/bn → 0 by (2.1), it follows from (2.2) (with the terms for ` = k) that

(2.10) holds for all ε > 0, so that nP��X� > εnbn� → 0 for some εn → 0+. By

(1.4), nP��X� > c2�n/M0�� ≤ M0. For a > 0 and large n these imply

�nµ�abn�/bn� ≤ n�µ�c2�n/M0���/bn + nE�X�I�c2�n/M0� < �X� ≤ abn�/bn
≤ M′cn/bn + εnnP��X� > c2�n/M0�� + anP��X� > εnbn� = o�1�:
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Thus, the conditions for Mori’s theorem are satisfied for the normalizing se-

quence �b�n/γ2�� as discussed in the paragraph before Theorem 2.3, so that
∑

k≤R
�i�
n ≤n

Xi/b�n/γ2� → 0 a.s., where R
�i�
n is the rank of �Xi� in �X1�; : : : ; �Xn�.

By Lemma 3.2(ii), (2.1) and (2.2) for all ε > 0 imply

�njµ�c∗j��k−1X�1�
nj+1

/bknj
≤ M′ξ�k�nj+1

�c2�nj/M
∗
1��/bnj

→ 0 a.s.

Therefore, for ` = 1 the left-hand side of (3.17) is bounded by

�njµ�c∗j��k−1

bknj

{

max
nj≤n<nj+1

∣

∣

∣

∣

∑

k≤R
�i�
n ≤n

Xi

∣

∣

∣

∣

+ �k− 1�X�1�
nj+1

+ nj+1�µ�c∗j��
}

→ 0 a.s.

Hence, it suffices to show (3.17) for 2 ≤ ` ≤ k.

Take 0 < δ0 ≤ 1 without loss of generality. Set M∗
1 > M0δ

−2
0 such that

M∗
1 = m∗M1 for some integer m∗ ≥ 1. Define c̄�t� = �ν2�t� −M2c

2
2�t��+. Since

(1.3) implies (2.3), it follows from the Hölder inequality and (2.11) that, for

2 ≤ ` ≤ k,

∞
∑

m=n

mk−1

b2k
m

(

c̄�m/M1�
m

)k−`

≤
{ ∞
∑

m=n

mk−1

b2k
m

}1−1/p`
{ ∞
∑

m=n

mk−1

b2k
m

(

c̄�m/M1�
m

)p`�k−`�}1/p`

≤ M′n
`c

2�k−`�
n

b2k
n

;

(3.18)

where p` = �k − 2�/�k − `� ≥ 1. Thus, we may choose nj = m∗mj such that

m∗nj ≤ nj+1 < 2m∗nj,

�3:19�
∞
∑

i=j

�c̄�ni/M
∗
1��k−`n`

i

b2k
ni

< M′ c
2�k−`�
nj

n`
j

b2k
nj

; 2 ≤ ` ≤ k;

and such that, by Lemma 3.2(i) with ε = 1,

�3:15′�
∞
∑

j=1

P
{

ξ�k�nj+1
�cnj

� > bnj

}

< ∞:

This can be done by taking mj+1 to satisfy a�mj+1y `� ≤ kn−1
j

∑2nj

m=nj
a�my `�

for all 2 ≤ ` ≤ k with a�my `� being the summands on the left-hand side of

(3.18), as ni/M
∗
1 = mi/M1, and also to satisfy a�nj+1� ≤ kn−1

j

∑2nj

m=nj
a�m∗m�

with a�n� being the summands in (3.4).

By (3.15′) and the martingale argument in the proof of Theorem 2.2, for

2 ≤ ` ≤ k, (3.17) is a consequence of

J =
k
∑

`=2

∞
∑

j=j0

b−2k
nj

E
(

�njµ�c∗j��k−`H�`�
nj
�c∗j�

)2
I
{

ξ�k�nj
�cnj

� ≤ bknj

}

< ∞:
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Since M∗
1 > M0/δ

2
0 and c∗j = c2�nj/M

∗
1� ≤ c2�δ2

0nj/M0� ≤ cnj
∧ cnj+1

, it follows

from Lemma 3.4, Lemma 3.5 and (3.19), Lemma 3.3 and then (3.15′) that

J ≤ M′
k
∑

`=2

∞
∑

j=j0

b−2k
nj

�c∗j + c̄�nj/M
∗
1��k−`E

(

H�`�
nj
�c∗j�

)2
I
{

ξ�k�nj
�cnj

� ≤ bknj

}

≤ M′
k
∑

`=2

∞
∑

j=j0

b−2k
nj

�c̄�nj/M
∗
1��k−`n`

jE
∏̀

i=1

X2
iI

{

ξ�k�nj
�cnj

� ≤ bknj

}

≤ M′ +M′
k
∑

`=2

∞
∑

j=j0

c
2�k−`�
nj+1

n`
n+1

b2k
nj+1

E
∏̀

i=1

X2
iI

{

bknj
< ξ�k�nj

�cnj
�; ξ�k�nj+1

�cnj+1
� ≤ bknj+1

}

≤ M′ +M′
k
∑

`=2

∞
∑

j=j0

P
{

bknj
< ξ�k�nj

�cnj
�
}

< ∞:

For part (ii), we verify (3.17) for 1 ≤ ` ≤ k without using the Mori theorem.

Since (2.11′) holds, the value p` = �k− 1�/�k− `� is taken in (3.18). The rest

of the proof is similar and omitted. Condition (1.3) can be replaced by (2.3) as

it is not used after (3.18). Condition (2.2) is used only to obtain (3.15′) with

ε = 1. 2

4. Necessity. In this section we prove Theorems 1.1 and 2.1 and the ne-

cessity part of Theorems 2.2 and 2.3, through (1.2) ⇒ (1.18) ⇒ (2.1) and (2.2).

Decoupled products are also considered. Our methods include decoupling, a

Lévy-type inequality and certain bounds for the percentiles of �Sn�.
Let �X̃�`�

n ; n ≥ 1�, ` ≥ 1, be i.i.d. copies of the sequence �Xn�. Define

X̃
�`�∗
n = X̃

�`�∗
0;n ; X̃

�`�∗
m;n = max

(
∣

∣X̃
�`�
m+1

∣

∣; : : : ;
∣

∣X̃
�`�
n

∣

∣

)

;

ξ̃�k�n �c� = ξ̃
�k�
0;n�c�; ξ̃�k�m;n�c� =

k
∏

`=1

(

c ∨ X̃
�`�∗
m;n

)

; c > 0;

�4:1� S̃
�`�
m;n =

n
∑

i=m+1

X̃
�`�
i ; S̃

�`�
n = S̃

�`�
0; n; S̃

�`�∗
n = max

(
∣

∣S̃
�`�
1

∣

∣; : : : ;
∣

∣S̃
�`�
n

∣

∣

)

:

Consider the statements

�4:2�
∞
∑

j=1

P

{ k
∏

`=1

S̃
�`�∗
nj

> εbnj

}

< ∞ ∀ ε > 0; 1 < γ1 ≤ nj+1/nj ≤ γ2 < ∞;

�4:3� P�ξ�k�n �cn� > εbkn i.o.� = 0;

�4:4� P�ξ̃�k�n �cn� > εbkn i.o.� = 0:

Theorem 4.1. Let bn be an increasing sequence of constants.

(i) Let cn ∼ ν∗�n/M0� and ε > 0. Then (1.2) ⇒ (4.2) ⇒ (2.1) and (2.2).
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(ii) For ε > 0 and cn > 0, (4.3) implies (4.4). If, in addition, nP��X� >
cn� = O�1�, then (4.4) implies (2.1) and (2.2). Conversely, conditions (2.1) and

(2.2) with cn ≥ c�n� imply P�ξ�k�n �c�n/γ�� > εbkn i.o.� = 0, provided that c�·� is
increasing and 1 < γ < ∞.

(iii) The summability in (4.2) is equivalent to the decoupled SLLN

b−k
n

∏k
`=1 S̃

�`�
n → 0 a.s. or the stronger b−k

n

∏k
`=1 S̃

�`�∗
n → 0 a.s.

Remark. By Theorems 4.1(i) and (iii), 1.1 and 2.3 and Corollary to The-

orem 2.2, the SLLN (1.2) is equivalent to its decoupled versions in Theo-

rem 4.1(iii) under respective conditions.

For disjoint sets of positive integers A1; : : : ;A`, define the sum of “cross-

block” terms

S
�k�
A1⊗···⊗A`

=
∑

i1<i2<···<ik

h�Xi1
; : : : ;Xik

�I��i1; : : : ; ik� ∈ A1 ⊗ · · · ⊗A`�;

where A1 ⊗ · · · ⊗ A` is the set of vectors �i1; : : : ; ik� such that �i1; : : : ; ik� ⊆
⋃`

j=1 Aj and �i1; : : : ; ik� ∩ Aj 6= \ for all 1 ≤ j ≤ `. For example, S
�k�
A /

(�A�
k

)

is the U-statistic based on the set of variables �Xi; i ∈ A�, where �A� is the

size of the set A.

Proposition 4.2. Let Aj, 0 ≤ j ≤ `, be disjoint sets of positive integers and

ai be real numbers indexed by vectors i = �i1; : : : ; ik�. Then
∑

i∈3
aiI�i ∈ �A1 ⊗ · · · ⊗A`� ∪ �A0 ⊗A1 ⊗ · · · ⊗A`��

=
∑̀

j=0

�−1�`−j
∑

0<m1<···<mj≤`

∑

i∈3
aiI

{

�i1; : : : ; ik� ⊆ A0 ∪Am1
∪ · · · ∪Amj

}

for all sets 3 of finitely many vectors. In particular,

�4:5� S
�k�
A1⊗···⊗Ak

=
k
∑

j=0

�−1�k−j
∑

0<m1<···<mj≤k

S
�k�
A0∪Am1

∪···∪Amj

:

This proposition, proved in the Appendix, gives one-sided decoupling when

` = k. Giné and Zinn (1994), Lemma 1, obtained (4.5) for A0 = \. The case

A0 6= \ is useful for the application of the Borel–Cantelli lemma in our proofs.

The following Lévy-type inequality is a straightforward extension of

Montgomery-Smith (1993).

Theorem 4.3 [Montgomery-Smith (1993)]. Let S̃
�`�
n and S̃

�`�∗
n be given by

(4.1). Then there exist universal constants Ck;m0
such that, for positive integers

k and m0,

�4:6� P

{ k
∏

`=1

S̃
�`�∗
m0n > t

}

≤ Ck;m0
P

{

Ck;m0

∣

∣

∣

∣

k
∏

`=1

S̃
�`�
n

∣

∣

∣

∣

> t

}

:



SLLN FOR SUMS OF PRODUCTS 1607

For m0 = k = 1, (4.6) is Corollary 4 of Montgomery-Smith (1993). The

general case is proved by taking conditional expectation of each copy �X�`�
n �

given other copies.

Lemma 4.4 provides bounds for the percentiles of �Sn�. Its proof is provided

in the Appendix.

Lemma 4.4. Let cα�·� and ν�·� be given by (1.4) and (1.6), respectively.

(i) Suppose EX2 = ∞. Then there exists a universal constant C such that,

as n → ∞,

sup
−∞<a<∞

P
{

�Sn − a� ≤ c2�tn�/4
}

≤ �1 + o�1��C
√

t/2:

(ii) If P
{

X ≥ 0
}

= 1, then for, tM > 1,

P�Sn ≤ Mc1�tn�� ≥ min��1 − 1/�tn��n;1 − 1/�tM��;
P�Sn ≤ δc1�tn�� ≤ exp�−δ log�δt� + δ− 1/t�:

(iii) There exists a universal constant C such that, for
√
t�M− 1/t� > 1 and

δ ≤ 1/2,

P��Sn� ≤ Mν�tn�� ≥ min

{(

1 − 1

tn

)n

;1 − 1

t�M− 1/t�2

}

;

P
{

�Sn� ≤ δν�tn�
}

≤ max

{

C

√

t

2

(

1 − 1

tn

(

2δ+ 1

2δ

)2)−1/2

;1 −
(

1 − 1

tn

)n

; t−1

(

2δt

1 − δt

)2}

:

Remark. The constant C is the same as the one in Esséen’s (1968) upper

bound of concentration functions, which implies that, for L > 0,

�4:7� sup
a

P�a ≤ Sn ≤ a+L� ≤ CL�nE��Xs� ∧ �2L��2�−1/2;

where Xs = X1 −X2.

Proof of Theorem 4.1. We shall only prove (i) and (4.3) ⇒ (4.4) ⇒ (2.1)

and (2.2) for (ii), as the last statement of (ii) is in Lemma 3.2 and part (iii) is

a direct consequence of Theorem 4.3 and the Borel–Cantelli lemma.

Step 1. (4.3) ⇒ (4.4). Let Aj;n = Aj ∩ �1; : : : ; n�, Aj = j + A0 and A0 =
�mk: m = 0;1; : : :�. Define X

�1�
A = maxi∈A �Xi�. Then

∏k
`=1

(

cn ∨X
�1�
A`; n

)

≤ ξ
�k�
n .

Step 2. (4.4) ⇒ (2.1) and (2.2). Set λ = supn nP��X� > cn� ∈ �0;∞�. Since

ξ̃
�k�
n �cn� ≥ ckn, (2.1) holds. Since ��1 − e−λ�/λ�npn ≤ 1 − �1 − pn�n for pnn ≤ λ,

��1 − eλ�/λ�`n`P�ck−`
n �X1 : : :X`� > εbkn; �X1� ∧ · · · ∧ �X`� > cn�

≤ P
{

ck−`
n X̃

�1�∗
n X̃

�2�∗
n : : : X̃

�`�∗
n > εbkn; X̃

�1�∗
n ∧ · · · ∧ X̃

�`�∗
n > cn

}

≤ P
{

ξ̃�k�n �cn� > εbkn
}

;
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so that (2.2) holds if
∑

j P�ξ̃�k�nj
�cnj

� > εbknj
� < ∞ with nj being the index at

which P�ξ̃�k�n �cn� > bn� is maximized over 2j ≤ n < 2j+1. This summabil-

ity condition holds by the Borel–Cantelli lemma, as P�ξ̃nj−2;nj
�cnj

�/bnj
>

ε i.o.� = 0.

Step 3. (1.2) ⇒ (4.2). Let nj = �k + 1�j and A`; j, 1 ≤ ` ≤ k, be disjoint

subsets of �n: nj ≤ n < nj+1� of size nj. It follows from Proposition 4.2 that

there exist 2k sequences of i.i.d. variables �Y�m�
n ; n ≥ 1�, each a permutation

of �Xn�, such that

b−1
nj+1

∣

∣

∣

∣

k
∏

`=1

SA`; j

∣

∣

∣

∣

= b−1
nj+1

∣

∣S
�k�
A1;j⊗···⊗Ak; j

∣

∣ ≤ b−1
nj+1

2k
∑

m=1

max
nj≤n<nj+1

�S�m;k�
n � → 0 a.s.;

where SA = ∑

i∈A Xi and S
�m;k�
n is the sum of products based on Y

�m�
1 ; : : : ;Y

�m�
n

as in (1.1). Since A`; j, 1 ≤ ` ≤ k, j ≥ 1, are mutually exclusive sets, by the

Borel–Cantelli lemma

∞
∑

j=1

P

{ k
∏

`=1

∣

∣S̃
�`�
nj

∣

∣ > εbnj+1

}

=
∞
∑

j=1

P

{ k
∏

`=1

∣

∣SA`;j

∣

∣ > εbnj+1

}

< ∞ ∀ ε > 0;

which implies (4.2) by Theorem 4.3.

Step 4. (4.2) ⇒ (4.4). By Lemma 4.4(iii) there exist constants C0 and m0

depending on M0 only such that

P�ν∗�2n/M0� ∨ X̃
�`�∗
2n > t� ≤ C′

0P�C′
0S̃

�`�∗
m0n > t� ≤ C0P�C0S̃

�`�∗
n > t�

for all t > 0. Repeated applications of this inequality on each copy �X̃�`�
n � in the

summands in (4.2) yield
∑

j P�ξ̃ �k�
2nj

�ν∗�2nj/M0�� > εδk0b
k
nj
� < ∞ for nj = 2j,

which then implies (4.4) by the Borel–Cantelli lemma for cn ≤ δ−1
0 ν∗�n/M0�. 2

Proof of Theorems 2.2 and 2.3 (Necessity). Theorem 2.3(iii) follows

from Theorem 4.1(i). Since ν∗�t� = c2�t� for symmetric variables, Theo-

rem 4.1(i) also implies (2.4) ⇒ (2.1) and (2.2). Instead of (iii) in Step 4 of the

proof of Theorem 4.1, we use Lemma 4.4(i) and (ii), respectively, to obtain

(2.1) and (2.2) under (2.5) or (2.6). 2

Proof of Theorem 1.1. By Theorem 2.3(i) and (iii), we only need to

show that (1.7)–(1.9) imply (2.1) and (2.2) for k = 2 and all ε > 0, as

(1.3) ⇒ (2.3) ⇒ (2.11) for k = 2. It follows from Lemma 3.2(ii) that

P�ξ�k�n �ν∗�n/�2M0��� ≥ ε0b
k
n i.o.� = 0 for some ε0 > 0, which implies

X
�1�
n X

�2�
n /b2

n ≤ ξ
�k�
n �c2�γn/M0��/b2

n → 0 a.s. by Theorem 2.2. Set vγ =
lim supn ξ

�k�
n �ν∗�γn/�2M0���/b2

n. Since ν∗�γt� ≤ γν∗�t� + c2�γt� for γ ≥ 1, by

(2.1) and (1.3),

vγ

γ2
≤ v1 = lim sup

n→∞
ξ
�k�
2n �ν∗�n/M0��/b2

2n = lim sup
n→∞

ν∗�n/M0�X
�1�
2n/b

2
2n

≤ lim sup
n→∞

2ν∗�n/�2M0��X�1�
n /b2

2n ≤ 2v1/2
2/p ≤ 21−2/pε0 < ∞;
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which implies vγ = v1 = 0 as 0 < p < 2. Hence, (2.2) holds by Theo-

rem 4.1(ii). 2

5. Regularly varying distributions and discussion. In this section,

we consider conditions (2.1), (2.2), (2.11) and (2.11′) based on their interpre-

tation in the case

�5:1� C1P��X� > x� ≤ x−pL�x� ≤ C2P��X� > x�; x > x0;

where 0 < C1 < C2 < ∞ and L�x� is a slowly varying function as x → ∞.

This condition is slightly weaker than the requirement that P��X� > x� be

regularly varying as x → ∞. We shall assume EX = 0 when E�X� < ∞, due

to the strong law of Hoeffding (1961). Some discussion is given at the end.

Theorem 5.1. Suppose (2.3) and (5.1) hold for some 0 < p < 2, EX = 0 if

E�X� < ∞, and that b�t� is regularly varying as t → ∞ if p = 1. Let cn = ν∗�n�.
Then ν∗�t� = O�c2�t�� as t → ∞ and (2.11′) holds for p 6= 1, and (2.1) implies

(2.11′) for p = 1. Consequently, (2.1) and (2.2) together are equivalent to each

and all of the statements (1.2), (1.18), (4.2), (4.3) and (4.4), equivalent to (1.17),

(2.4), (2.5) and (2.6) if p 6= 1, and equivalent to

�5:2� b−k
n

∑

i1<i2<···<ik≤n

�Xi1
Xi2

: : :Xik
� → 0 a.s.

if 0 < p < 1 and (2.3′) holds. Furthermore, if ν∗�t� = O�c2�t�� (e.g., p 6= 1) and

�5:3� sup
y0≤y≤x1/p+ε

L�xL�y��/L�x� ∼ inf
y0≤y≤x1/p+ε

L�xL�y��/L�x� ∼ 1;

then for bn = n1/p (1.2) holds iff

�5:4�
∫ ∞

0

(

− log

[

min

(

tP��X�p > t�; 1

2

)])k−1

�tP��X�p > t��kdt
t

< ∞:

Remark. The last statement of Theorem 5.1 shows that (2.10) is not suffi-

cient for (1.2). Condition (5.3) holds if L�x� = ∏m
j=1�logj x�−βj , where log1�x� =

�log�x ∨ 1�� ∨ 1 and logj+1�x� = log1�logj�x��.

Proof.

Step 1. Proofs for p 6= 1. By (5.1), E��X� ∧ x�α ∼ xα−pL�x� for p < α and

E��X� − x�+ ∼ x1−pL�x� for p > 1. These and (1.4) imply c
p
2 �t�/L�c2�t�� ∼ t,

and together they imply

�nµ�c2�n��� ≤ nE
[

�X� ∧ c2�n�
]

= O�1�n
[

c2�n�
]1−p

L�c2�n�� = O�1�c2�n�
for 0 < p < 1 and

�nµ�c2�n��� ≤ nE��X� − c2�n��+ + nc2�n�P��X� > c2�n�� = O�1�c2�n�
for 1 < p < 2 and EX = 0. They also imply cα�t� ∼ c2�t� for p < α ≤ ∞ Thus,

(2.11′) holds, as c2�n/M1� ∼ ν�n/M1�. By Theorem 2.2, (1.2) ⇔ (2.1) and (2.2)
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with cn = ν∗�n� or cn = cα�n� for all p < α ≤ ∞. Therefore, (2.1) and (2.2)

are equivalent to (1.2) and (1.18) by Theorem 2.3, to (4.2), (4.3) and (4.4) by

Theorem 4.1 and to (2.3), (2.4) and (2.5) by Theorem 2.2. Also, c2�n� ∼ c∞�n�
implies (1.17) ⇒ (1.18), and c1�n� ∼ c2�n� implies (1.2) ⇒ (5.2) by Corollary

to Theorem 2.2(ii) under (2.3′).
Step 2. Prove (2.1) ⇒ (2.11′) for p = 1. Since bn is regularly varying, bkn =

nk/p′
L0�n� for some p′ and slowly varying function L0�n�. Let cn = ν∗�n�.

Since ν∗�n� ≥ c2�n� ∼ nL�c2�n�� and L�c2�n�� is slowly varying, (2.1) implies

p′ ≤ 1. Since L�x� is slowly varying,

�µ�c2�m�� − µ�c2�n��� ≤ c2�n�P��X� ≥ c2�n�� +
∫ c2�m�

c2�n�
P��X� ≥ x�dx

≤ c2�n�/n+C−1
1 c−δ

2 �n�
∫ c2�m�

c2�n�
xδ−1L�x�dx

≤ M′�L�c2�n�� +
[

c2�m�/c2�n�
]δ
L�c2�m���;

where M′ = M′
δ < ∞ does not depend on m or n, and 0 < δ < 1/�2k�. Since

both L0�n� and L�c2�n�� are slowly varying as n → ∞ and c2�n� ∼ nL�c2�n��,
(2.11′) holds for cn = ν∗�n� and M1 = 1, so that (1.2) ⇔ (2.1) and (2.2).

Step 3. Prove (5.4) ⇔ (2.1) and (2.2) for bn = n1/p, p 6= 1 and 0 < p <

2. Let cn = cα�n� for some α > p. By (5.3), c
p
n ∼ nL�n1/p�, so that (2.1)

holds iff L�x� → 0 as x → ∞. Since the finiteness of (2.2) depends only on

the order of P��X� > x� for large x, we may further assume without loss

of generality that �X� has a density function f�x� ∼ x−p−1L�x�. Let A` be

the event ��X1� ∧ · · · ∧ �X`−1� > cn, ck−i
n �X1 : : :Xi� ≤ bkn, 1 ≤ i < `�. Then

bknc
−k+`
n /�X1 : : :X`−1� and �Xi�, 1 ≤ i < `, are all between cn and bknc

−k+1
n on

A`. Since L�x� ∼ L�n1/p� for cn ≤ x ≤ bknc
−k+1
n by (5.3), we have

P�ck−`
n �X1 : : :X`� > bkn;A`� ∼

∫

A`

(

bknc
−k+`
n

x1 : : : x`−1

)−p

L�n1/p�
`−1
∏

i=1

f�xi�dxi

∼
(

ck−`
n

bkn

)p

L`�n1/p�
∫

A`

�x1 : : : x`−1�−1
`−1
∏

i=1

dxi

∼
(

ck−`
n

bkn

)p

L`�n1/p�
{

log

(

bkn
ckn

)}`−1

∼ Lk�n1/p�n−`

{

log

(

1

L�n1/p�

)}`−1

:

Since (2.1) ⇔ limx→∞ L�x� = 0, (2.2) holds with bn = n1/p iff

∫ ∞

x0

Lk�t1/p�
{

log

(

1

L�t1/p�

)}k−1
dt

t
< ∞;

which is equivalent to (5.4). 2
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Example 5.2. Suppose (5.1) holds with p = 1 and

�5:5� L�x� =
m
∏

j=1

�logj x�−βj; bkn = nkL0�x� = nk�logm0
x�−β0

for some m ≥ 1 and m0 ≥ 1. Similar to the case of p 6= 1, we have

n`P�ck−`
n �X1 : : :X`� > bkn;A`� ∼ �ckn/bkn��nL�n�/cn�`

{

log�bkn/ckn�
}`−1

:

By assumption, c2�n� ∼ nL�n� and log1�bkn/ck2�n�� ∼ log�L0�n�/Lk�n�� ∼
logm2

�n� for some m2 ≥ 2 if (2.1) holds. By Theorem 5.1, (2.4) holds iff

�5:6�
∫ ∞

0
�tL0�t��−1Lk�t��logm2

t�k−1 dt < ∞:

Suppose P�X ≥ M� = 1 for some −∞ < M < 0 if EX = 0 and M = 0

if E�X� = ∞. Then ν∗�n� ∼ �nµ�c2�n��� ∼ nL�n�L1�n� and (2.1) implies

log�bkn/�ν∗�n��k� = O�log2 n�, where L1�x� =
∏m1

j=1 logj�x� with m1 = min�j ≥
1: βj 6= 1�. Therefore, (1.2) holds iff

�5:7�
∫ ∞

0
�tL0�t�L1�t��−1�L�t�L1�t��k dt < ∞:

For example, if m = m0 = 1, then (2.4) ⇔ (5.6) ⇔ kβ1 − β0 > 1, while (1.2)

⇔ (5.7) ⇔ kβ1 − β0 > k. For β0 = 0 and β1 = 2/k, k ≥ 2, E�X� = ∞, (2.4)

holds but (1.2) does not. The same is true for β0 = 2�k − 1� and β1 = 2

under EX = 0. The general case is more complicated, where cn may fluctuate

between ± nL�n�L1�n�.

Remark 1. It is not clear whether the condition P�X ≥ 0� = 1 can be

completely removed from Corollary to Theorem 2.2(ii), even for bn = n1/p,

0 < p < 1. By Theorem 5.1, (1.2) and (5.2) are equivalent under (5.1) for

0 < p < 1. For k = 1, there is no need to center the variables and (1.2) is

equivalent to (5.2) for bn = n1/p by the Marcinkiewicz–Zygmund strong law of

large numbers. In Example 5.2, (2.4) and (1.2) are not equivalent for certain

parameter values in (5.5), so that (1.2) and (5.2) are not equivalent when Xi

is replaced by εiXi. However, (2.3′) does not hold.

Remark 2. The problem in Remark 1 is also related to the question con-

cerning the equivalence between (2.4) and (1.17). Suppose (2.3′) and (1.2) hold

and (5.2) does not. Then (1.18) holds by Theorem 2.2, so that

b−k/2
n max

i1<i2<···<ik≤n

√

�Xi1
Xi2

: : :Xik
� → 0 a.s.

On the other hand, Theorem 2.2 also implies that

b−k/2
n

∑

i1<i2<···<ik≤n

εi1
εi2

: : : εik

√

�Xi1
Xi2

: : :Xik
� → 0 a.s.

does not hold. This would show that (2.4) and (1.17) are not equivalent for
√

�X� and the normalizing sequence b
k/2
n .
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APPENDIX

Here we prove (3.11)–(3.14), Proposition 4.2 and Lemma 4.4.

Proof of (3.11)–(3.14). Let pn = P��X� > cn� and p′
n = P��X� > c′n�.

Similar to (3.9), we have

�A:1� Y0; nI��Xn� ≤ c′n� = Y0; n−1I��Xn� ≤ c′n�:

This implies (3.11) due to the independence of �Z0;Y0; n−1� and Xn, since, by

(1.5) µ�c′n� is the conditional expectation of Xn given �Xn� ≤ c′n. Similarly,

(A.1) and (1.5) imply

E�Xn − µ�c′n��2�Z0�Y0; n

≤ EX2
n�Z0�Y0; nI��Xn� ≤ c′n� +E�X′

n�2�Z0�Y0; nI��Xn� > c′n�;

so that (3.12) follows from

�A:2� �X′
j� ≤ ��Xj� + c′n�I��Xj� > c′n� ≤ 2�Xj�I��Xj� > c′n�:

Let R
�i�
m;n be the rank of �Xi� in �Xm+1�; : : : ; �Xn� in descending order as in

the proof of Lemma 3.3. By (A.2)

E�X′
nX

′
n−1Z0�Y0; n

≤ 4E�XnXn−1Z0�Y0; nI
{

R�n−1�
m0; n

≤ k; R�n�
m0; n

≤ k
}

+ 4E�XnXn−1Z0�Y0; nI
{

R�n−1�
m0; n

> k; R�n�
m0; n

> k;

�Xn−1� > c′n; �Xn� > c′n
}

+ 8E�XnXn−1Z0�Y0; nI
{

R�n−1�
m0; n

≤ k < R�n�
m0; n

; �Xn� > c′n
}

:

(A.3)

We shall derive (3.13) by bounding the three terms on the right-hand side

above. Since �XnXn−1� ≤ �X�1�
m0;n�2 and �R�n−1�

m0; n ;R
�n�
m0; n� is uniformly distributed

given �Z0;X
�1�
m0; n;Y0; n�,

E�XnXn−1Z0�Y0; nI�R�n−1�
m0;n

≤ k; R�n�
m0; n

≤ k�

≤ k�k− 1���n−m0��n−m0 − 1��−1E�X�1�
m0; n

�2�Z0�Y0; n

≤ k�k− 1���n−m0��n−m0 − 1��−1E�X2
m0+1 + · · · +X2

n��Z0�Y0; n

≤ k2�n−m0�−1EX2
n�Z0�Y0; n:

Since �XnXn−1� ≤ �X�1�
m0; n−2�2 and Y0; n = Y0; n−2 when R

�n−1�
m0; n and R

�n�
m0; n are

both greater than k, by the independence of �Xn−1;Xn� and �X�1�
m0; n−2;Z0;
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Y0; n−2� we obtain

E�XnXn−1Z0�Y0; nI�R�n−1�
m0; n

> k; R�n�
m0; n

> k; �Xn−1� > c′n; �Xn� > c′n�

≤ E�X�1�
m0; n−2�2�Z0�Y0; n−2�p′

n�2

≤ �p′
n/�1 − p′

n��2E�X2
m0+1 + · · · +X2

n−2��Z0�Y0; n−2I��Xn−1� ∨ �Xn� ≤ c′n�

≤ �n−m0��p′
n/�1 − p′

n��2EX2
n�Z0�Y0; n:

Combining the above arguments,

E�XnXn−1Z0�Y0; nI�R�n−1�
m0; n

≤ k; R�n�
m0; n

> k; �Xn� > c′n�

≤ E�X�1�
m0; n−1�2�Z0�Y0; n−1I�R�n−1�

m0; n
≤ k; �Xn� > c′n�

≤ p′
n�1 − p′

n�−1k�n− 1 −m0�−1E�X�1�
m0; n−1�2�Z0�Y0; n

≤ p′
n�1 − p′

n�−1kEX2
n�Z0�Y0; n:

Adding the above three inequalities together, we obtain (3.13) by (A.3) and

np′
n ≤ M1.

Finally, let us prove (3.14). By (1.4), c2
2�t�/t ≤ E��X� ∧ c2�t��2, so that by

(A.1)

M2c
2
2�n/M2�E�Z0�Y0; n ≤ nE

{

X2
n+1 ∧ c2

2�n/M2�
}

�Z0�Y0; n

≤ nEX2
n+1�Z0�Y0; nI��Xn+1� ≤ cn�

+ nc2
2�n/M2�E�Z0�Y0; nP��Xn+1� > cn�

≤ nEX2
n+1�Z0�Y0; n+1 + npnc

2
2�n/M2�E�Z0�Y0; n:

Hence, we have (3.14) as npn ≤ M0 and

EX2
n+1�Z0�Y0; n+1 = EX2

m0+1�Z0�Y0; n+1I�R
�n+1�
m0+1; n+1 > k�

+EX2
m0+1�Z0�Y0; n+1I�R

�n+1�
m0+1; n+1 ≤ k�

≤ EX2
n�Z0�Y0; n + k�n−m0�−1EX2

n+1�Z0�Y0; n+1: 2

Proof of Proposition 4.2. It suffices to show

I�i ∈ �A0 ⊗A1 ⊗ · · · ⊗A`� ∪ �A1 ⊗ · · · ⊗A`��

=
∑̀

j=0

�−1�`−j
∑

0<m1<···<mj≤`

I
{

�ii; : : : ; ik� ⊆ A0 ∪Am1
∪ · · · ∪Amj

}(A.4)

for all vectors i = �i1; : : : ; ik� with �i1; : : : ; ik� ⊆ A0 ∪A1 ∪ · · · ∪A`. Let Bm be

the indicator of the “event” �i1; : : : ; ik� ∩Am = \. Since

I
{

�i1; : : : ; ik� ⊆ A0 ∪Am1
∪ · · · ∪Amj

}

= Bm′
1
: : : Bm′

j′
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such that �m′
1; : : : ;m

′
j′� = �i; : : : ; `� ∩ �m1; : : : ;mj�c, by the inclusion–

exclusion formula for the union of events the right-hand side of (A.4) is

1 +
∑̀

j′=1

�−1�j′ ∑

0<m′
1<···<m′

j′≤`

Bm′
1
: : : Bm′

j′
=

∏̀

m=1

�1 −Bm�;

which equals the left-hand side of (A.4). Equation (4.5) follows as A0 ⊗A1 ⊗
· · · ⊗Ak = \. 2

Proof of Lemma 4.4. Let med�X� be the median of X. With Xs = X1−X2

as in (4.7), we observe P��Xs� > x� ≥ 1/2P��X−med�X�� > x�, which implies

2E��Xs� ∧ c�2 ≥ E��X − med�X�� ∧ c�2. Let c′n = c2�tn�. It follows from (4.7)

that

sup
a

P

{

�Sn − a� ≤ c′n
4

}

≤
√

2C�c′n/2�
�nE��X− med�X�� ∧ c′n�2�1/2 = �1 + o�1��C

√

t

2
:

This gives (i). The proof of Lemma 2.3 of Klass and Zhang (1994) gives (ii).

Let us prove (iii). Set µn = µ�c′n� and p = P��X� > c′n�. Let P∗ and E∗ be

the conditional probability and expectation given �Xi� ≤ c′n; 1 ≤ i ≤ n. Then

�1 − p�E∗X2
1 = �c′n�2�1/�nt� − p�. For C0 > 0 we have

P��Sn − nµn� ≤ C0c
′
n� ≥ �1 − p�nP∗��Sn − nµn� ≤ C0c

′
n�

≥ �1 − p�n�1 − nE∗X2
1/�C0c

′
n�2�

= �1 − p�n−1�1 − p− �t−1 − np�/C2
0�:

Since the right-hand side is log-concave in p, its minimum is reached ei-

ther at p = 0 or p = 1/�nt�, so that P��Sn − nµn� ≤ C0c
′
n� ≥ min�1 −

1/�tC2
0�; �1−1/�nt��n�. This gives the first inequality of (iii) with C0 = M−1/t

and the second one for δtn�µn� ≥ c′n/2 with C0 = �1 − δt�/�2δt�. Let X′
j =

min�max�Xj;−c′n�; c′n�, j = 1;2. For δtn�µn� ≤ c′n/2,

E�X′
1 −X′

2�2

2
= Var�X′

1� ≥ E�X′
1�2−��µn�+pc′n�2 ≥ �c′n�2

tn
−
(

c′n
n

)2(
1

2δt
+1

t

)2

:

Since �X′
1 −X′

2� ≤ min��Xs�2; �2c′n�2�, by (4.7),

P

{

�Sn� ≤
c′n
2

}

≤ Cc′n�nE��Xs� ∧ �2c′n��2�−1/2 ≤ C

[

2

t
− 2

n

(

1

2δt
+ 1

t

)2]−1/2

: 2
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